The DXGI_PRESENT_ALLOW_TEARING flag might cause unexpected tearing
side effect. Setting it in fullscreen mode only seems to be
the correct usage as in the Microsoft's direct3d examples.
DXVA spec is saying that the size of bitstream buffer provided by hardware decoder
should be 128 bytes aligned. And also the host software decoder should
align the size of written buffer to 128 bytes. That means if the slice
(or frame in case of VP9) size is not aligned with 128 bytes,
the rest of non 128 bytes aligned memory should be zero-padded.
In addition to aligning implementation, some variables are renamed
to be more intuitive by this commit.
This implementation is similar to what we've done for nvcodec plugin.
Since supported resolution, profiles, and formats are device dependent ones,
single template caps cannot represent them, so this modification
will help autoplugging and fallback.
Note that the legacy gpu list and list of resolution to query were
taken from chromium's code.
gst_video_frame_copy will copy input frame to stating texture
of fallback frame. Then, we need to map fallback texture with GST_MAP_D3D11
flag to upload the staging texture to render texture. Otherwise
the render texture wouldn't be updated.
Source texture (decoder view) might be larger than destination (staging) texture.
In that case, D3D11_BOX structure should be passed to CopySubresourceRegion method
in order to specify the exact target area.
DXGI_SWAP_EFFECT_DISCARD cannot be used with dirty rect drawing feature
of IDXGISwapChain1::Present().
Note that IDXGISwapChain1 interface is available on Platform Update for Windows 7
and DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL is also the case.
Use resolution specified in caps for input_rect instead of
passed width and height value. The width and height might be modified
ones by d3d11videosink, then frame resolution might be different.
* Move decoding process to handle_frame
* Remove GstVideoDecoder::parse implementation
* Clarify flush/drain/finish usage
In forward playback case, have_frame() call will be followed by
handle_frame() but reverse playback is not the case.
To ensure GstVideoCodecFrame, the decoding process should be placed inside
of handle_frame(), instead of parse().
Since we don't support alignment=nal, the parse() implementation is not worth.
In order to fix broken reverse playback, let's remove the parse()
implementation and revisit it when adding alignment=nal support.
... and remove unused start, stop method from subclass.
Current implementation does not require subclass specific behavior
for the handle_frame() method.
Actually our buffer pool size and the number of backbuffer are
independent. In case of reverse playback, upstream might request
a lot of buffers (up to GOP size).
The class data with the caps in it will be leaked if the element is
registered but never instantiated. There is no way around this. Mark
the caps as such so that the leaks tracer does not warn about it.
This is the same as pad template caps getting leaked, which are also
marked as may-be-leaked. These objects are initialized exactly once,
and are 'global' data.
video/x-vp9 is required in the src pad, however the output includes a
IVF header, which makes the pipeline below doesn't work
gst-launch-1.0 videotestsrc ! msdkvp9enc ! msdkvp9dec ! fakesink
Since mfx 1.26, the VP9 encoder supports bitstream without IVF header,
so in this patch, the mfx version is checked and msdkvp9enc is enabled
only if mfx 1.26+ is available
Android 25 added support for i-frame-interval to be a floating
point value. Store the property as a float and use the newer
version when it's available.
Android 19 added an API for dynamically changing the bitrate in a running
codec.
Also make it so that even when not update-able at runtime, parameters will at least
be stored so that they take effect the next the codec is restarted.
d3d11window holds one buffer to redraw client area per resize event.
When the input format is being changed, this buffer should be cleared
to avoid mismatch beween newly configured shader/videoprocessor and
the format of previously cached buffer.
Because the size of texture array cannot be updated dynamically,
allocator should block the allocation request. This cannot be
done at buffer pool side if this d3d11 memory is shared among
multiple buffer objects. Note that setting NO_SHARE flag to
d3d11 memory is very inefficient. It would cause most likey
copy of the d3d11 texture.
...for color space conversion if available
ID3D11VideoProcessor is equivalent to DXVA-HD video processor
which might use specialized blocks for video processing
instead of general GPU resource. In addition to that feature,
we need to use this API for color space conversion of DXVA2 decoder
output memory, because any d3d11 texture arrays that were
created with D3D11_BIND_DECODER cannot be used for shader resource.
This is prework for d3d11decoder zero-copy rendering and also
for conditional HDR tone-map support.
Note that some Intel platform is known to support tone-mapping
at the driver level using this API on Windows 10.
We've been using NvEncodeAPICreateInstance method to find the supported API
version, but that seems to be insufficient since there is a case
where plugin failed in opening encoding session even if NvEncodeAPICreateInstance
succeeded. Asking driver about the version would be the most certain way.
User is seeing corrupted display when running `videotestsrc !
video/x-raw,format=NV12,width=xxx,height=xxx ! msdkh265enc ! msdkh265dec
! glimagesink` with changed frame size, e.g. from 1920x1080 to 1920x240
The root cause is a same dmabuf fd is used for frames with
different size, which causes some unexpected result. This patch requires
cached response is used for frames with same size only for DMABuf, so a
dmabuf fd can't be used for frames with different size any more.
Don't specify the resolution of backbuffer. Then dxgi will let us know the
actual client area. When upstream resolution is chagned, updating the size
of backbuffer without the consideration for client size would cause mismatch
between them.
Setting the CUVID_PKT_DISCONTINUITY implies clearing any past information
about the stream in the decoder. The GStreamer discont flag is used for
discontinuity caused by a seek, for first buffer and if a buffer was
dropped. In the first two cases, the parsers and demuxers should ensure we
start from a synchronization point, so it's unlikely that delta will be
matched against the wrong state.
For packet lost, the discontinuity flag will prevent the decoder from doing
any concealment, with a result that ca be much worst visually, or freeze the
playback until an IDR is met. It's better to let the decoder handle that for
us.
Removing this flag, also workaround a but in NVidia parser that makes it
ignore our ENDOFFRAME flag and increase the latency by one frame.
This sets the CUVID_PKT_ENDOFPICTURE flag in order to inform the decoder that
we have a complete picture. This should remove one frame latency otherwise
introduce by NVidia parser.
This patch fixed compiler warning below:
[1/4] Compiling C object 'sys/msdk/dc44ea0@@gstmsdk@sha/gstmsdkvpp.c.o'.
../../gst-plugins-bad/sys/msdk/gstmsdkvpp.c: In function
‘gst_msdkvpp_context_prepare’:
../../gst-plugins-bad/sys/msdk/gstmsdkvpp.c:214:7: warning: suggest
parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’
[-Wparentheses]
Our context is non-persistent, and we propagate it throughout the
pipeline. This means that if we try to reuse any gstmsdk element by
removing it from the pipeline and then re-adding it, we'll clone the
mfxSession and create a new gstmsdk context as a child of the old one
inside `gst_msdk_context_new_with_parent()`.
Normally this only allocates a few KB inside the driver, but on
Windows it seems to allocate tens of MBs which leads to linearly
increasing memory usage for each PLAYING->NULL->PLAYING state cycle
for the process. The contexts will only be freed when the pipeline
itself goes to `NULL`, which would defeat the purpose of dynamic
pipelines.
Essentially, we need to optimize the case in which the element is
removed from the pipeline and re-added and the same context is re-set
on it. To detect that case, we set the context on `old_context`, and
compare it to the new one when preparing the context. If they're the
same, we don't need to do anything.
Fixes https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/946
Split it out into a separate function with early exits to make the
flow clearer, and document what the function is doing clearly.
No functional changes.
We weren't using the correct calling convention when calling CUDA and
CUVID APIs. `CUDAAPI` is `__stdcall` on Windows. This was working fine
on x64 because `__stdcall` is ignored and there's no special calling
convention. However, on x86, we need to use `__stdcall`.
Before this change decoder used the oldest frame in the list to pair it
with the decoded surface. This only works when there's a perfect stream
like HEADERS,SYNCPOINT,DELTA...
When playing RTSP streams we can get imperfect streams like HEADERS,
DELTA,SYNCPOINT,DELTA... In this case decoder drops the frames
between HEADERS and SYNCPOINT which leads into using wrong PTS on
the output frames.
With this change we inject the input PTS into the bitstream and use it
to align the internal frame list with the actually decoded position.
Fixes playback with:
```
gst-launch-1.0 rtspsrc location=... latency=0 drop-on-latency=1 ! ...
```
Hard-coded 16x16 resolution is likely to differ from the device's support
in most cases. If we can use NV_ENC_CAPS_WIDTH_MIN and NV_ENC_CAPS_HEIGHT_MIN,
update pad template with returned value.
need_reconfig is added to allow sub class requires a reconfig when
the input frame or the MetaData (e.g. GstVideoRegionOfInterestMeta)
attached to the input frame is changed.
`pipe()` isn't used since 15927b6511,
and `socketpair()` from `#include <sys/socket.h>` is used only in the
examples. In practice, you can use probably also use anything that
allows you to create fd pairs, such as named pipes or anonymous pipes.
We use the cross-platform GstPollFD API in the plugin.
Use consistent memory layout between dxva and other shader use case.
For example, use DXGI_FORMAT_NV12 texture format instead of
two textures with DXGI_FORMAT_R8_UNORM and DXGI_FORMAT_R8G8_UNORM.
This reverts commit ddd13fc7c0
Dynamic usage can reduce the number of copy per frame but make
things complicated and the benefit seems to not significant.
Also since we don't provide _map() method for the dynamic usage,
application cannot read buffers which make "last-sample" property
unusable in case of d3d11videosink.
Commit a1584b6 caused big performance drop if the downstream element
is not a msdk element because it is very slow to read data from video
memory directly.
This reverts commit a1584b6f99.
If 8 bit are required by the device/mode then it will be converted internally
by the SDK, but the SDK won't automatically convert from 8 to 10 bit. As
such, always use 10 bit VANC.
Some devices require configuring also a 10 bit video format when using
10 bit VANC is required but those would fail regardless and the
application would have to configure the correct video format.
With newer versions of the SDK this information can be retrieved via the
BMDDeckLinkVANCRequires10BitYUVVideoFrames flag but we don't use a new
enough SDK version yet to extract this information.
Although the target platform of D3D11 decoding API are both desktop and UWP app,
DXVA header is blocked by "WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)"
which is meaning that that's only for desktop app.
To workaround this inconsistent annoyingness, we need to define WINAPI_PARTITION_DESKTOP
regardless of target WinAPI partition.
The codec profile should be consistent with the frame fourcc code, this
fixes pipeline below:
gst-launch-1.0 videotestsrc ! \
video/x-raw,width=320,height=240,format=P010_10LE ! msdkvp9enc ! \
fakesink
The frame width and height is rounded up to 128 and 32 since commit
8daac1c, so the width, height for initialization should be rounded up to
128 and 32 too because the MSDK VP9 encoder will do some check on width
and height.
Sample pipeline:
gst-launch-1.0 videotestsrc ! \
video/x-raw,width=320,height=240,format=NV12 ! msdkvp9enc ! fakesink
Renegotiation was implemented for bitrate change. We can re-use
the same sequence when video info changes except that this can be
executed right away when receiving the new input format. I.e. no
need to wait for the next call to handle_frame.
The block that sets use_video_memory flag is after the
the condition `if gst_msdk_context_prepare` but it
always returns false when there is no other msdk elements.
So the decoder ends up with use_video_memory as FALSE.
Note that msdkvpp always set use_video_memory as TRUE.
When use_video_memory is FALSE then the msdkdec allocates
the output frames with posix_memalign (see gstmsdksystemmemory.c).
The result is then copied back to the GstVideoPool's buffers
(or to the downstream pool's buffers if any).
When use_video_memory is TRUE then the msdkdec uses vaCreateSurfaces
to create vaapi surfaces for the hw decoder to decode into
(see gstmsdkvideomemory.c). The result is then copied to either
the internal GstVideoPool and to the downstream pool if any.
(vaDeriveImage/vaMapBuffer is used in order to read the surfaces)
Use boolean instead of GstFlowReturn as declared.
Note that since base class does not check return value of GstVideoDecoder::flush(),
this would not cause any change of behavior.
https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/merge_requests/924
is trying to use video memory for decoding on Linux, which reveals a
hidden bug in msdkdec.
For video memory, it is possible that a locked mfx surface is not used
indeed and it will be un-locked later in MSDK, so we have to check the
associated MSDK surface to find out and free un-used surfaces, otherwise
it is easy to exhaust all pre-allocated mfx surfaces and get errors below:
0:00:00.777324879 27290 0x564b65a510a0 ERROR default
gstmsdkvideomemory.c:77:gst_msdk_video_allocator_get_surface: failed to
get surface available
0:00:00.777429079 27290 0x564b65a510a0 ERROR msdkbufferpool
gstmsdkbufferpool.c:260:gst_msdk_buffer_pool_alloc_buffer:<msdkbufferpool0>
failed to create new MSDK memory
Note the sample code in MSDK does similar thing in
CBuffering::SyncFrameSurfaces()
A ID3D11Texture2D memory can consist of multiple planes with array.
For array typed memory, GstD3D11Allocator will allocate new GstD3D11Memory
with increased reference count to the ID3D11Texture2D but different array index.
Even if one of downstream d3d11 elements can support dynamic-usage memory,
another one might not support it. Also, to support dynamic-usage,
both upstream and downstream d3d11device must be the same object.
If d3d11colorconvert element is configured, do color space conversion
regardless of the device type whether it's S/W emulation or real H/W.
Since d3d11colorconvert is no more a child of d3d11videosinkbin,
we don't need this behavior. Note that previous code was added to
avoid color space conversion from d3d11videosink if no hardware
device is available (S/W emulation of d3d11 is too slow).
d3d11upload should be able to support upstream d3d11 memory, not only system memory.
Fix for following pipeline
d3d11upload ! "video/x-raw(memory:D3D11Memory)" ! d3d11videosink
borderless top-most style full screen mode support.
Basically fullscreen toggle mode is disabled by default. To enable it
use "fullscreen-toggle-mode" property to allow fullscreen mode change
by user input and/or property.
In some cases, rendering and dxgi (e.g., swapchain) APIs should be
called from window message pump thread, but current design (dedicated d3d11 thread)
make it impossible. To solve it, change concurrency model to locking based one
from single-thread model.
In earlier implementation of d3d11videosink where no shader was implemented,
the aspect ratio and render size were adjusted by manipulating the backbuffer size
with unintuitive formula. Since now we do color conversion and resize using
shader, we can remove the hack.
window event queue now does not lock on the class lock, so we can now shut
it down without releasing the class lock, thus avoiding a potential race when
stopping the sink.
... and use SetParent() WIN32 API when external window is used.
Depending on DXGI swap effect, the external window might not be
reusable by another backend. To preserve the external window's property
and setting, drawing to internal window seems to be safer way.
Otherwise GstVideoDecoder is not finalized and
resources are leaked.
Somehow GST_TRACERS="leaks" GST_DEBUG="GST_TRACER:7" did not catch it.
Valgrind output:
==31645== 22,480 (1,400 direct, 21,080 indirect) bytes in 5 blocks are definitely lost in loss record 5,042 of 5,049
==31645== at 0x4C2FB0F: malloc
==31645== by 0x51D9E88: g_malloc
==31645== by 0x51FA7B5: g_slice_alloc
==31645== by 0x51FAC68: g_slice_alloc0
==31645== by 0x58D9984: g_type_create_instance
==31645== by 0x58BA344: g_object_new_with_properties
==31645== by 0x58BADA0: g_object_new
==31645== by 0x8ECA966: gst_video_decoder_init
==31645== by 0x58D99E7: g_type_create_instance
==31645== by 0x58BA344: g_object_new_with_properties
An issue can be seen when using msdkh265enc with bitrate change in
playing state. The root cause is the corresponding plugin is loaded
again.
Returning MFX_ERR_UNDEFINED_BEHAVIOR from MSDK just means the plugin has
been loaded, so we may ignore this error when doing configuation again
in the sub class, otherwise the pipeline will be interrupted
If d3d11window does not convert format internally, shader resource view
is not required. Note that shader resource view is used for
color conversion using shader but when conversion is not required,
we just copy input input texture to backbuffer.
In theory it should not happen but it happened to me
in some cases where it failed to allocate some video
buffers so this was a consequence of a corner case.
Better to be safe than sorry.
Can happen if the oldest frame is the current frame
and if gst_video_decoder_finish_frame failed in which
case the current is unref and then drop instead of
just drop.
This patch also removes some assumptions, it was strange
to call unref and finish_frame in gst_msdkdec_finish_task.
In principle when owning a frame, the code should either
unref, or drop or finish.
D3D11 dynamic texture is a special memory type, which is mainly used for
frequent CPU write access to the texture. For now, this texture type
does not support gst_memory_{map,unmap}
* Create staging texture only when the CPU access is requested.
Note that we should avoid the CPU access to d3d11 memory as mush as possible.
Incoming d3d11upload and d3d11download will take this GPU memory upload/download.
* Upload/Download texture memory from/to staging only if it needed, similar to
GstGL PBO implementation.
* Define more dxgi formats for future usage (e.g., color conversion, dxva2 decoder).
Because I420_* formats are not supported formats by dxgi, each plane should
be handled likewise GstGL separately, but NV12/P10 formats might be supported ones.
So we decide the number of d3d11memory per GstBuffer for video memory depending on
OS version and dxgi format. For instance, if NV12 is supported by OS,
only one d3d11memory with DXGI_FORMAT_NV12 texture can be allocated by this commit.
One use case of such texture is DXVA. In case DXVA decoder, it might need to produce decoded data
to one DXGI_FORMAT_NV12 instead of seperate Y and UV planes.
Such behavior will be controlled via configuration of GstD3D11BufferPool and
default configuration is separate resources per plane.
Depending on selected feature level, d3d11 API usage can be different.
Instead of querying the selected feature level by user whenever required,
store it once by d3d11device.
Do not accept any GstD3D11Device context which has different adapter
index from the required one. For example, if a d3d11 element is expecting
d3d11 device with adapter 1 (i.e., the second GPU), any d3d11 device
context having different adapter could not be shared with
the d3d11 element.
Make them consistent with cuda context utils functions.
Put in-only parameter before all in-out parameters, and add _handle()
suffix to native handle getter functions.
In certain cases, the sink's buffer pool will not call the parent's
release_buffer method, so the pool does not clean up properly
after the buffer is released.
Since macOS Mojave (10.14), video permissions have to be explicitly
granted by a user in order to open a video device such as a camera.
This commit adds a check for the current permission status, and tries
to request for permission if applicable.
The whole `src_read()` function is a hot loop since the ringbuffer
thread is waiting on us, and printing to the console from inside it
can easily cause us to miss our deadline.
F.ex., if you had GST_DEBUG=3 and we accidentally missed a device
period, we'd trigger the "reported glitch" warning, which would cause
us to miss another device period, and so on. Let's reduce the log
level so that GST_DEBUG=3 is more usable, and only print buffer flag
info when it's actually relevant.
Some audio drivers return varying amounts of data per ::GetBuffer
call, instead of following the device period that they've told us
about in `src_prepare()`.
Previously, we would just drop those extra buffers hoping that the
extra buffers were temporary (f.ex., a startup 'burst' of audio data).
However, it seems that some audio drivers, particularly on older
Windows versions (such as Windows 10 1703 and older) consistently
return varying amounts of data.
Use GstAdapter to smooth that out, and hope that the audio driver is
locally varying but globally periodic.
Initially reported in https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/808
We were miscalculating the device period, i.e. the number of frames
we'll get from WASAPI in each IAudioClient::GetBuffer call, due to
a calculation mistake (truncate instead of round).
For example, on my machine when the aux input is set to 44.1KHz, the
reported device period is 101587, which comes out to 447.998 frames
per ::GetBuffer call. In reality we will, of course, get 448 frames
per call, but we were truncating, so we expected 447 and were
discarding one frame every time. This led to glitching, and skew over
time.
Interestingly, I can only see this with 44.1Khz. 48Khz/96Khz are fine,
because the device period is a more 'even' number.
Fixes https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/806
The for loop in gst_msdkdec_handle_frame is error prone
about how it manages surfaces. Because sometimes it sets
the surface variable to NULL and sometimes it needs to free
it right away. So better to print an error if surfaces are
leaked to help with any change around the loop.
msdk plugin is not used for sofware encode/decode as there are better
solutions available. Also, with MFX_IMPL_AUTO_ANY, if software decode
is not supported, the plugin will still load, but will then fail when trying to
run the (autoplugged) pipeline. With MFX_IMPL_HARDWARE_ANY,
the plugin fails and a better software decoder is auto-plugged.
GstNvBaseEnc::n_bufs was set from the previous encoding session
but it wasn't cleared after stop. That might result to invalid memory
access at the next start (no encoded data) and then stop sequence.
Instead of defining a variable for array length, use GArray::len
directly to avoid such confusion.
Can be reproduced with:
videotestsrc ! x264enc key-int-max=$N ! \
h264parse ! msdkh264dec ! fakesink sync=1
It happens with any gop size but the smaller is the distance N
between key frames, the quicker it is leaking.
Fixes#1023
In case of pkg-config we need to create the include directories object
from the path using include_directories(). For INTELMEDIASDKROOT or
MFX_HOME we need to add the alternate include path ./include/mfx as
Intel MediaSDK now puts the headers there.
This adds a check to avoid draining when the imported buffers are in
fact own by kmssink. This happens since we export our kms buffer as
DMABuf. They are not really imported back as we pre-fill the cache,
but uses the same format as if they were external. This fixes
performance issues seen with videocrop2-test (found in -good).
Draining systematically on caps changes was a hack. Instead, properly
save the render information used to render last_render, and use that
information to drain. This fixes performance issues met with video crop
meta and per frame caps changes.
By passing NULL to `g_signal_new` instead of a marshaller, GLib will
actually internally optimize the signal (if the marshaller is available
in GLib itself) by also setting the valist marshaller. This makes the
signal emission a bit more performant than the regular marshalling,
which still needs to box into `GValue` and call libffi in case of a
generic marshaller.
Note that for custom marshallers, one would use
`g_signal_set_va_marshaller()` with the valist marshaller instead.
In future, a sub class of GstMsdkEncClass may decide a native format by
using this method, e.g. JPEG encoder may accept YUY2 input, however the
current implemation needs a conversion from YUY2 to NV12 before encoding.
In addtion, a sub class may choose a format for encoding if the input
format is not supported by MSDK, e.g. the current implemation does
UYVY->NV12 if the input format is UYVY. We may do UYVY->YUY2 for JPEG
encoder in future
MFX_FOURCC_BGR4 is mapped to VA_FOURCC_ABGR and JPEG encoder needs a
MFX_FOURCC_BGR4 frame for internal usage when the input format is
MFX_FOURCC_RGB4
This is a preparation for supporting native formats of JPEG encoder
Instead of using a proxy of `is_packetized` flag this patch
replaces it with the accessor to that flag in decoder base class,
avoiding probable mismatches.
commit 55c0d720 added the capability to handle non-packetized bitstream,
and there is a loop to handle multiple frames in a non-packetized buffer
in gst_msdkdec_handle_frame. However it is possible that a
non-packetized buffer still contains valid data but there is no long any
pending unfinished frame. Currently gst_video_decoder_decode_frame is
invoked to send a new frame with new input data, the situaltion is
repeated till an EOS is received. An application has to exit when
receiving an EOS, however there is still valid data in a
non-packetezied input buffer, hence some frames are dropped.
This fix adds a parse callback for non-packeteized input, a new frame
will be sent to the subclass as soon as the input buffer has valid data
This fixes https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/665
Upon bitrate change, make sure to close the encoder otherwise
the encoder is not re-initialized and the target bitrate is
never reached, and the encoder was flushed at each frame
from this moment.
Regression introduced in f2b35abcab which replaced the call
that was closing the encoder by an early return to avoid
re-initialization.
gstwasapiutil.c(173) : warning C4715: 'gst_wasapi_device_role_to_erole': not all control paths return a value
gstwasapiutil.c(188) : warning C4715: 'gst_wasapi_erole_to_device_role': not all control paths return a value
The GstDeviceProvider isn't subclass of GstElement.
(gst-device-monitor-1.0:49356): GLib-GObject-WARNING **: 20:21:18.651:
invalid cast from 'GstWasapiDeviceProvider' to 'GstElement'
The first channel in memory for MFX_FOURCC_RGB4 (VA_FOURCC_ARGB or
GST_VIDEO_FORMAT_BGRA) is B, not A. In MSDK, channle B is used to access
data for RGB4 surface. In addition, the returned pointers for
MFX_FOURCC_AYUV and MFX_FOURCC_Y410 in gst_msdk_video_memory_map_full
were wrong too before this fix.
When the bitrate is changed in playing state the encoder issues a reconfig
that drains and recreates the underlaying hw encoder instance.
With this set of changes we ensure that all this work is only made when
the bitrate did actually change. It also tries to reuse the vpp buffer
pool and fixes the pool leak spotted when testing this feature.
When postpone_free_surface is TRUE, the output buffer is not writable,
however the base decoder needs a writable buffer as output buffer,
otherwise it will make a copy of the output buffer. As the underlying
memory is always lockable, so we may set the LOCKABLE flag for this buffer
to avoid buffer copy in the base class.
The refcount of the output buffer is 1 when postpone_free_surface is
FALSE, so needn't set the LOCKABLE flag for this case.
... instead of calculated display ratio from given PAR and DAR.
d3d11window calculates output display ratio
to decide padding area per window resize event. In the formula,
actual PAR is required to handle both 1:1 PAR and non-1:1 PAR.
Both MSDK and this plugin use mfxFrameAllocResponse for video and DMABuf
memory, it is possible that some GST buffers are still in use when calling
gst_msdk_frame_free, so add a reference count in the wrapper of
mfxFrameAllocResponse (GstMsdkAllocResponse) to make sure the underlying
mfx resources are still available if the corresponding buffer pool is in
use.
In addtion, currently all allocators for input or output share the same
mfxFrameAllocResponse pointer in an element, so it is possible that
the content of mfxFrameAllocResponse is updated for a new caps then all
GST buffers allocated from an old allocator will use this new content of
mfxFrameAllocResponse, which will result in unexpected behavior. In this
fix, we save the the content of mfxFrameAllocResponse in the corresponding
tructure to avoid such issue
Sample pipeline:
gst-launch-1.0 filesrc location=vp9_multi_resolutions.ivf ! ivfparse ! msdkvp9dec !
msdkvpp ! video/x-raw\(memory:DMABuf\),format=NV12 ! glimagesink
Otherwise it is possible that different wrappers share the same
mfxFrameAllocResponse pointer, so instead of caching the pointer, we may
cache the content of mfxFrameAllocResponse
For a skipped frame in VC1, MSDK returns the mfx surface of the reference
frame, so we have to make sure the corresponding surface for the
reference frame is not freed. In this fix, we postpone surface free because
we don't know whether a surface is referenced
Before this fix, the error is like as below:
New clock: GstSystemClock
0:00:00.181793130 23098 0x55f8a9d622d0 ERROR msdkdec
gstmsdkdec.c:622:gst_msdkdec_finish_task:<msdkvc1dec0> Couldn't find the
cached MSDK surface
Sample pipeline:
gst-launch-1.0 filesrc location=input_has_skipped_frame.wmv ! asfdemux !
vc1parse ! msdkvc1dec ! glimagesink
If the surface is not in use, we may release it even if GST_FLOW_OK is going
to be returned, which may avoid the issue of failing to get surface
available
This fixes the regression caused by commit c05acf4
GstAllocationParams::align is set to 31 in msdkdec/msdken/msdkvpp, hence
the stride align should be greater than or equal to 31, otherwise it
will result in issue
https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/861
(msdk: "GStreamer-CRITICAL: gst_buffer_resize_range failed" SPAM),
In addition, the stride should match the pitch alignment in the media driver,
otherwise it will result in some issues when a buffer is shared between
different elements, e.g. the NV12 issue mentioned in commit 3f2314a, which
can be reproduced by `gst-launch-1.0 vidoetestsrc ! msdkvpp !
video/x-raw\(memory:DMABuf\),format=NV12 ! glimagesink`
Fixed https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/861
For some hevc 10bit 4K encoding cases, the encoding process may be
slow, and MediaSDK surface can't be released in time before one other
available surface is needed. So add an extra surface for hevc encoding
to avoid this issue.
If the last flow was not GST_FLOW_OK, the encoding thread is not running
and there is nothing to pop from GAsyncQueue (this causes deadlock).
To prevent deadlock, just return the handle_frame without further encoding
process if the last flow was not GST_FLOW_OK. Note that the last flow
will be cleared per FLUSH_STOP and STREAM_START event.
The hard-coded upper bound 32 (or 48 depending on resolution) might waste
GPU memory and high resolution encoding causes OUT-OF-MEMORY allocation error
quite easily. This commit calculates the number of required pre-allocated
device memory based on encoding options and it can reduce the amount of device memory
used by nvenc.
NVDEC driver always uses input timestamp without adjustment
even if bframe encoding was enabled.
So DTS can be larger than PTS when bframe was enabled.
To ensure PTS >= DTS, we should adjust the timestamp manually
based on the PTS difference between the first
encoded frame and the second one. That's also the maximum PTS/DTS
difference.
To support rc-lookahead and bframe encoding, nvenc needs one more
staging queue, because NvEncEncodePicture can return NV_ENC_ERR_NEED_MORE_INPUT
but which was not considered so far.
As documented by NVENC programming guide, pending buffers should wait
other inputs until NvEncEncodePicture returns success.
New encoding flow is
- Submit raw picture buffer to encoder with NvEncEncodePicture
- The submitted input/output buffer pair will be queued to pending_queue
- If NvEncEncodePicture returned success, then move all pair in pending_queue
to final stage
- Otherwise, wait more input raw pictures.
Another change is dropping NV_ENC_LOCK_INPUT_BUFFER usage.
So now nvenc always uses CUDA memory input buffer. As a result,
both opengl and system memory handling are unified.
* The number of iteration is always one so the iteration is useless
and that makes code complicated.
* Also defining named structure can code mroe readable.
* g_free is null safe
New rate-control modes are introduced (if device can support)
* cbr-ld-hr: CBR low-delay high quality
* cbr-hq: CBR high quality
* vbr-hq: VBR high quality
Also, various configurable rate-control related properties are added.
Introducing new dynamic class between GstNvBaseEncClass and
each subclass to be able to access device specific properties and
capabilities from each subclass implementation side.
Add new macro for sink/src pad template to ensure no DMABuf caps
features are exposed on Windows. Some DMABuf caps features
were not handled by the commit 9ec62418c3
gst_buffer_make_writable() requires exclusive reference to the
GstMemory so the _make_writable() for the msdk buffer will result
to fallback system memory copy, because the msdk memory were initialized
with GST_MEMORY_FLAG_NO_SHARE flag.
Note that, disable sharing GstMemory brings high overhead but actually
the msdk memory objects can be shared over multiple buffers.
If the memory is not shareable, newly added GstAllocator::mem_copy will
create copied msdk memory.
Sometimes a HEVC/H265 stream doesn't have a valid profile but MSDK can
handle this stream. Like vaapih265dec, msdkh265dec may advertise the sink
caps without profile
DecodedOrder was deprecated in msdk-2017 version, but some customers
still use this for low-latency streaming of non-b-frame encoded streams,
which needs to output the frame at once
Asking decklink to render audio data seems to be based entirely on
the sample counts which completely disregards the timestamps
we pass to decklink. As a result, we need to explicitly check
for late buffers and drop them ourselves.
Do not restrict allowed maximum resolution depending on the
initial resolution. If new resolution is larger than previous one,
just re-init encode session.
Due to uncleared last flow, decoding after seek was never possible
(last_ret == GST_FLOW_FLUSHING).
nvdec dose not need to keep track of the previous flow return,
and actually the interest is data/even flow of the current handle_frame().
Implementing ::negotiate() method to support runtime output format
change. If downstream was reconfigured, baseclass will invoke
::negotiate() method, and nvdec should update output memory
type depending on downstream caps.
Input stream might be silently changed without ::set_format() call.
Since nvdec has internal parser, nvdec element can figure out the format change
by itself.
Register openGL resource only once per memory. Also if upstream
provides the registered information, reuse the information
instead of doing it again. This can improve performance dramatically
depending on system since the resource registration might cause
high overhead.
Introduce GstCudaGraphicsResource structure to represent registered
CUDA graphics resources and to enable sharing the information among
nvdec and nvenc. This structure can reduce the number of resource
registration which cause high overhead.
For openGL interoperability, nvdec uses cuGraphicsGLRegisterImage API
which is to register openGL texture image.
Meanwhile nvenc uses cuGraphicsGLRegisterBuffer API to registure openGL buffer object.
That means two kinds of graphics resources are registered per memory
when nvdec/nvenc are configured at the same time.
The graphics resource registration brings possibly high overhead
so the registration should be performed only once per resource
from optimization point of view.
Both g_list_delete_link and g_list_remove remove an element and free it,
so l->next is invalid (catched by valgrind) after calling g_list_delete_link
or g_list_remove
Returning MFX_WRN_INCOMPATIBLE_VIDEO_PARAM means MSDK detects some
incompatible parameters but it is resolved, and we may not regard
MFX_WRN_INCOMPATIBLE_VIDEO_PARAM as a fatal error. In this fix,
GST_FLOW_OK is returned but with a warning message so that a pipeline
may run to the end.
Fixes werror build:
In file included from ../sys/androidmedia/gstahcsrc.c:70:
../gst-libs/gst/interfaces/photography.h:27:2: error: "The GstPhotography interface is unstable API and may change in future." [-Werror,-W#warnings]
#warning "The GstPhotography interface is unstable API and may change in future."
^
../gst-libs/gst/interfaces/photography.h:28:2: error: "You can define GST_USE_UNSTABLE_API to avoid this warning." [-Werror,-W#warnings]
#warning "You can define GST_USE_UNSTABLE_API to avoid this warning."
^
video-direction property is common property in gstreamer. In addition,
both mirroring & rotation properties are marked as deprecated,
video-direction will override mirroring & rotation properties when they
are set explicitly
Fix https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/1058
gst_msdkdec_finish_task() may release all frames in
GstVideoDecoder object. In this case, allocate_output_buffer()
cannot get the oldest frame to allocate buffer.
So gst_msdkdec_handle_frame() should return GST_FLOW_OK for
letting gst_video_decoder_decode_frame() to send a new frame
for decoding.
Fixes#664.
Fixes#665.
When vpp rotation is 90 or 270, the output frame
should be rotated, too.
Example:
gst-launch-1.0 -vf videotestsrc \
! video/x-raw,width=720,height=480 \
! msdkvpp rotation=90 ! vaapisink
There is no NdkMediaCodecList API yet, but it is still better to isolate
JNI code. This will facilitate porting to a native API if Google ever
release one.
gst_query_get_n_allocation_pools > 0 does not guarantee that
the N th internal array has GstBufferPool object. So users should
check the returned GstBufferPool object from
gst_query_parse_nth_allocation_pool.
Async CUDA operation with default stream (NULL CUstream) is not much
beneficial than blocking operation since all CUDA operations which belong
to the CUDA context will be synchronized with the default stream's operation.
Note that CUDA stream will share all resources of the corresponding CUDA context
but which can help parallel operation similar to the relation between thread and process
The internal decoding state must be GST_NVDEC_STATE_PARSE before
calling CuvidParseVideoData(). Otherwise, nvdec will be confused
on decode callback as if the frame is decoding only frame and
the input timestamp of corresponding frame will be ignored.
Eventually one decoded frame will have non-increased PTS.
The destroy callback can be called just before the fìnalization of
GstMiniObject. So the nvdec object might be destroyed already.
Instead, store the GstCudaContext with increased ref to safely
unregister the CUDA resource.
Fix unexpected cropping with non 1:1 pixel aspect-ratio.
The actual buffer width/height should be passed to gst_d3d11_window_render(),
instead of the calculated resolution. The width/height
values are parameters for copying d3d11 video memory.
Also, aspect-ratio should be considered on resize callback
to decide render rectangle size.
YV12 format is supported by Nvidia NVENC without manual conversion.
So nvenc is exposing YV12 format at sinkpad template but there is some
missing point around uploading the memory to GPU.
Currently h264parser produces a field or a frame for
alignment=au for interlaced streams, but the flag
MFX_BITSTREAM_COMPLETE_FRAME needs a complete frame
or complementary field pair of data, this results in
broken images being output.
Some patches have been sent out to fix h264parser,
but they are pending on some unfinished work. In
order to make gstreamer-msdk decoding work properly
for interlaced streams before h264parser is fixed,
this flag will be removed temporarily and will be
added back once h264parser if fixed.
Related to:
https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/merge_requests/399https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/merge_requests/228
Instead of using the information we stored ourselves for the video frame
itself. Which was also the wrong one: it was the mode from the property,
not the autodetected one.
This fixes vanc extraction with mode=auto
The gst_cuda_result macro function is more helpful for debugging
than previous cuda_OK because gst_cuda_result prints the function
and line number. If the CUDA API return was not CUDA_SUCCESS,
gst_cuda_result will print WARNING level debug message with
error name, error text strings.
... and drop CUvideoctxlock usage. The CUvideoctxlock basically
has the identical role of cuda context push/pop but nvdec specific
way. Since we can share the CUDA context among encoders and decoders,
use CUDA context directly for accessing GPU API.
... and add support CUDA context sharing similar to glcontext sharing.
Multiple CUDA context per GPU is not the best practice. The context
sharing method is very similar to that of glcontext. The difference
is that there can be multiple context object on a pipeline since
the CUDA context is created per GPU id. For example, a pipeline
has nvh264dec (uses GPU #0) and nvh264device0dec (uses GPU #1),
then two CUDA context will propagated to all pipeline.
New object and helper functions can remove duplicated code
from nvenc/nvdec. Also this is prework for CUDA device context sharing
among nvdec(s)/nvenc(s).
We don't support negotiation with downstream but simply set caps based
on the buffers we receive. This prevents renegotiation to other formats,
and negotiation to NTSC in mode=auto in the beginning until the first
buffer is received.
As side-effect of this, also remove various other caps handling code
that was working around the behaviour of the default
BaseSrc::negotiate().
During GstVideoInfo conversion from GstCaps, interlace-mode is
inferred to progressive so unspecified interlace-mode should not cause any
negotiation issue. Simly set GST_PAD_FLAG_ACCEPT_INTERSECT flag
on sinkpad to fix issue.
Encoded bitstream might not have valid framerate. If upstream
provided non-variable-framerate (i.e., fps_n > 0 and fps_d > 0)
use upstream framerate instead of parsed one.
Encoding thread is terminated without any notification so
upstream streaming thread is locked because there is nothing
to pop from GAsyncQueue. If downstream returns error,
we need put SHUTDOWN_COOKIE to GAsyncQueue for chain function
can wakeup.
By adding system memory support for nvdec, both en/decoder
in the nvcodec plugin are able to be usable regardless of
OpenGL dependency. Besides, the direct use of system memory
might have less overhead than OpenGL memory depending on use cases.
(e.g., transcoding using S/W encoder)
False warning from MSVC, or it does not understand that
g_assert_not_reached() does not return.
...\gst-plugins-bad-1.0-1.17.0.1\sys\decklink\gstdecklink.cpp(1647) : warning C4715: 'gst_decklink_configure_duplex_mode': not all control paths return a value
Any plugin which returned FALSE from plugin_init will be blacklisted
so the plugin will be unusable even if an user install required runtime
dependency next time. So that's the reason why nvcodec returns TRUE always.
This commit is to remove possible misreading code.
Since we build nvcodec plugin without external CUDA dependency,
CUDA and en/decoder library loading failure can be natural behavior.
Emit error only when the module was opend but required symbols are missing.
This commit includes h265 main-10 profile support if the device can
decode it.
Note that since h264 10bits decoding is not supported by nvidia GPU for now,
the additional code path for h264 high-10 profile is a preparation for
the future Nvidia's enhancement.
GstVideoDecoder::drain/flush can be called at very initial state
with stream-start and flush-stop event, respectively.
Draning with NULL CUvideoparser seems to unsafe and that eventually
failed to handle it.
It is possible that the output region size (e.g. 192x144) is different
from the coded picture size (e.g. 192x256). We may adjust the alignment
parameters so that the padding is respected in GstVideoInfo and use
GstVideoInfo to calculate mfx frame width and height
This fixes the error below when decoding a stream which has different
output region size and coded picture size
0:00:00.057726900 28634 0x55df6c3220a0 ERROR msdkdec
gstmsdkdec.c:1065:gst_msdkdec_handle_frame:<msdkh265dec0>
DecodeFrameAsync failed (failed to allocate memory)
Sample pipeline:
gst-launch-1.0 filesrc location=output.h265 ! h265parse ! msdkh265dec !
glimagesink
... and add our stub cuda header.
Newly introduced stub cuda.h file is defining minimal types in order to
build nvcodec plugin without system installed CUDA toolkit dependency.
This will make cross-compile possible.
* By this commit, if there are more than one device,
nvenc element factory will be created per
device like nvh264device{device-id}enc and nvh265device{device-id}enc
in addition to nvh264enc and nvh265enc, so that the element factory
can expose the exact capability of the device for the codec.
* Each element factory will have fixed cuda-device-id
which is determined during plugin initialization
depending on the capability of corresponding device.
(e.g., when only the second device can encode h265 among two GPU,
then nvh265enc will choose "1" (zero-based numbering)
as it's target cuda-device-id. As we have element factory
per GPU device, "cuda-device-id" property is changed to read-only.
* nvh265enc gains ability to encoding
4:4:4 8bits, 4:2:0 10 bits formats and up to 8K resolution
depending on device capability.
Additionally, I420 GLMemory input is supported by nvenc.
Only the default device has been used by NVDEC so far.
This commit make it possible to use registered device id.
To simplify device id selection, GstNvDecCudaContext usage is removed.
By this commit, each codec has its own element factory so the
nvdec element factory is removed. Also, if there are more than one device,
additional nvdec element factory will be created per
device like nvh264device{device-id}dec, so that the element factory
can expose the exact capability of the device for the codec.
Callbacks of CUvideoparser is called on the streaming thread.
So the use of async queue has no benefit.
Make control flow straightforward instead of long while/switch loop.
Previously we would've reported that there is signal unless we know for
sure that we don't have signal. For example signal would've been
reported before the device is even opened.
Now keep track whether the signal state is unknown or not and report no
signal if we don't know yet. As before, only send an INFO message about
signal recovery if we actually had a signal loss before.
... and put them into new nvcodec plugin.
* nvcodec plugin
Now each nvenc and nvdec element is moved to be a part of nvcodec plugin
for better interoperability.
Additionally, cuda runtime API header dependencies
(i.e., cuda_runtime_api.h and cuda_gl_interop.h) are removed.
Note that cuda runtime APIs have prefix "cuda". Since 1.16 release with
Windows support, only "cuda.h" and "cudaGL.h" dependent symbols have
been used except for some defined types. However, those types could be
replaced with other types which were defined by "cuda.h".
* dynamic library loading
CUDA library will be opened with g_module_open() instead of build-time linking.
On Windows, nvcuda.dll is installed to system path by CUDA Toolkit
installer, and on *nix, user should ensure that libcuda.so.1 can be
loadable (i.e., via LD_LIBRARY_PATH or default dlopen path)
Therefore, NVIDIA_VIDEO_CODEC_SDK_PATH env build time dependency for Windows
is removed.
Direct3D11 was shipped as part of Windows7 and it's obviously
primary graphics API on Windows.
This plugin includes HDR10 rendering if following requirements are satisfied
* IDXGISwapChain4::SetHDRMetaData is available (decleared in dxgi1_5.h)
* Display can support DXGI_COLOR_SPACE_RGB_FULL_G2084_NONE_P2020 color space
* Upstream provides 10 bitdepth format with smpte-st 2084 static metadata
MFX_FOURCC_VP9_SEGMAP surface in MSDK is an internal surface however
MSDK still call the external allocator for this surface, so this plugin
has to return UNSUPPORTED and force MSDK allocates surface using the
internal allocator.
See https://github.com/Intel-Media-SDK/MediaSDK/issues/762 for details
The call of MFXVideoENCODE_EncodeFrameAsync may not generate output and
the function returns MFX_ERR_MORE_DATA with NULL sync point, the input
frame is cached in this case, so it is possible that all allocated
frames go into the surfaces_used list after calling
MFXVideoENCODE_EncodeFrameAsync a few times, then the encoder will fail
to get an available surface before releasing used frames
This patch adds a new field of num_extra_frames to GstMsdkEnc and allows
encode element requires extra frames, the default value is 0.
This patch is the preparation for msdkvp9enc element.
msdkenc supports CSC implicitly, so it is possible that two VPP
processes are required when a pipeline contains msdkvpp and msdkenc.
Before this fix, msdkvpp and msdkenc may share the same context, hence
the same mfx session, which results in MFX_ERR_UNDEFINED_BEHAVIOR
in MSDK because a mfx session has at most one VPP process only
This fixes the broken pipelines below:
gst-launch-1.0 videotestsrc ! video/x-raw,format=I420 ! msdkh264enc ! \
msdkh264dec ! msdkvpp ! video/x-raw,format=YUY2 ! fakesink
gst-launch-1.0 videotestsrc ! msdkvpp ! video/x-raw,format=YUY2 ! \
msdkh264enc ! fakesink
MSDK supports JPEG YUY2 (422 chroma) output color
format. The color format of input bitstream is
described by JPEGChromaFormat and JPEGColorFormat
fields in the mfxInfoMFX structure which is filled
in by the MFXVideoDECODE_DecodeHeader function.
To obtain lossless decoded output from 422 encoded
JPEGs, we must set the output color format in the
FourCC and ChromaFormat fields in the mfxFrameInfo
structure to the appropriate values at post_configure
so that they are propagated through to the srcpad
caps accordingly.
A post_configure virtual method is added to allow
codec subclasses to adjust the initialized parameters
after MFXVideoDECODE_DecodeHeader is called from the
gstmsdkdec::gst_msdkdec_handle_frame function.
This is useful if codecs want to adjust the output
parameters based on the codec-specific decoding
options that are present in the mfxInfoMFX structure
after MFXVideoDECODE_DecodeHeader initializes them.