Direct3D11 objects are COM, and most COM C APIs are verbose
(C++ is a little better). So, by using C++ APIs, we can make code
shorter and more readable.
Moreover, "ComPtr" helper class (which is C++ only) can be
utilized, that is very helpful for avoiding error-prone COM refcounting
issue/leak.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2077>
... instead of the largest we ever seen.
Note that d3d11h264dec element holds previously configured DPB size
for later decoder object re-open decision.
This is to fix below case:
1) Initial SPS, required DPB size is 6
- decoder object is opened with DPB size 6
- max_dpb_size is now 6
2) SPS update with resolution change, required DPB size is 1
- decoder object is re-opened with DPB size 1
- max_dpb_size should be updated to 1, but it didn't happen (BUG)
3) SPS update without resolution change, only required DPB size is updated to 6
- decoder object should be re-opened but didn't happen
because we didn't update max_dpb_size at 2).
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2056>
To convert decoded texture into other format, downstream would use
video processor instead of shader. In order for downstream to
be able to use video processor even if we copied decoded texture
into downstream pool, we should set this bind flag. Otherwise,
downstream would keep switching video processor and shader
to convert format which would result in inconsistent image quality.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2051>
AS-IS:
D3D11Convert class is baseclass of D3D11ColorConvert and D3D11Scale
* GstD3D11Convert
|_ GstD3D11ColorConvert
|_ GstD3D11Scale
TO-BE:
Introducing a new base class for color conversion and/or rescale elements
* GstD3D11BaseConvert
|_ GstD3D11Convert
|_ GstD3D11ColorConvert
|_ GstD3D11Scale
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2029>
Add a new element d3d11deinterlace to support deinterlacing.
Similar to d3d11videosink and d3d11compositor, this element is
a wrapper bin of set of child elements including helpful
conversion elements (upload/download and color convert)
to make this element configurable between non-d3d11 elements.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2016>
Since our decoder DPB texture pool cannot be grown once it's
configured, we should pre-allocate sufficient number of textures
for zero-copy playback (but not too many).
The "min buffers" allocation query parameter can be a hint for
the number of required textures in addition to DPB size.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2017>
Unlike other stateless decoder implementations (e.g., VA),
our DPB pool cannot be grown since we are using
texture array (pre-allocated, fixed-size d3d11 texture pool).
So, if there's no more available texture to use,
there's no way other than copying it to downstream's
d3d11 buffer pool. Otherwise deadlock will happen.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2003>
* Don't warn for live object, since ID3D11Debug itself seems to be
holding refcount of ID3D11Device at the moment we called
ID3D11Debug::ReportLiveDeviceObjects(). It would report live object
always
* Device might not be able to support some formats (e.g., P010)
especially in case of WARP device. We don't need to warn about that.
* gst_d3d11_device_new() can be used for device enumeration. Don't warn
even if we cannot create D3D11 device with given adapter index therefore.
* Don't warn for HLSL compiler warning. It's just noise and
should not be critical thing at all
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1986>
Add a way to support drawing on application's texture instead of
usual window handle.
To make use of this new feature, application should follow below step.
1) Enable this feature by using "draw-on-shared-texture" property
2) Watch "begin-draw" signal
3) On "begin-draw" signal handler, application can request drawing
by using "draw" signal action. Note that "draw" signal action
should be happen before "begin-draw" signal handler is returned
NOTE 1) For texture sharing, creating a texture with
D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX flag is strongly recommend
if possible because we cannot ensure sync a texture
which was created with D3D11_RESOURCE_MISC_SHARED
and it would cause glitch with ID3D11VideoProcessor use case.
NOTE 2) Direct9Ex doesn't support texture sharing which was
created with D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX. In other words,
D3D11_RESOURCE_MISC_SHARED is the only option for Direct3D11/Direct9Ex interop.
NOTE 3) Because of missing synchronization around ID3D11VideoProcessor,
If shared texture was created with D3D11_RESOURCE_MISC_SHARED,
d3d11videosink might use fallback texture to convert DXVA texture
to normal Direct3D texture. Then converted texture will be
copied to user-provided shared texture.
* Why not use generic appsink approach?
In order for application to be able to store video data
which was produced by GStreamer in application's own texture,
there would be two possible approaches,
one is copying our texture into application's own texture,
and the other is drawing on application's own texture directly.
The former (appsink way) cannot be a zero-copy by nature.
In order to support zero-copy processing, we need to draw on
application's own texture directly.
For example, assume that application wants RGBA texture.
Then we can imagine following case.
"d3d11h264dec ! d3d11convert ! video/x-raw(memory:D3D11Memory),format=RGBA ! appsink"
^
|_ allocate new Direct3D texture for RGBA format
In above case, d3d11convert will allocate new texture(s) for RGBA format
and then application will copy again the our RGBA texutre into
application's own texture. One texture allocation plus per frame GPU copy will hanppen
in that case therefore.
Moreover, in order for application to be able to access
our texture, we need to allocate texture with additional flags for
application's Direct3D11 device to be able to read texture data.
That would be another implementation burden on our side
But with this MR, we can configure pipeline in this way
"d3d11h264dec ! d3d11videosink".
In that way, we can save at least one texture allocation and
per frame texutre copy since d3d11videosink will convert incoming texture
into application's texture format directly without copy.
* What if we expose texture without conversion and application does
conversion by itself?
As mentioned above, for application to be able to access our texture
from application's Direct3D11 device, we need to allocate texture
in a special form. But in some case, that might not be possible.
Also, if a texture belongs to decoder DPB, exposing such texture
to application is unsafe and usual Direct3D11 shader cannot handle
such texture. To convert format, ID3D11VideoProcessor API needs to
be used but that would be a implementation burden for application.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1873>
gstd3d11window_corewindow.cpp(408): warning C4189:
'storage': local variable is initialized but not referenced
gstd3d11window_corewindow.cpp(490): warning C4189:
'self': local variable is initialized but not referenced
gstd3d11window_swapchainpanel.cpp(481): warning C4189:
'self': local variable is initialized but not referenced
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1962>
Some GPUs (especially NVIDIA) are complaining that GPU is still busy
even we did 50 times of retry with 1ms sleep per failure.
Because DXVA/D3D11 doesn't provide API for "GPU-IS-READY-TO-DECODE"
like signal, there seems to be still no better solution other than sleep.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1913>
Move d3d11 device, memory, buffer pool and minimal method
to gst-libs so that other plugins can access d3d11 resource.
Since Direct3D is primary graphics API on Windows, we need
this infrastructure for various plugins can share GPU resource
without downloading GPU memory.
Note that this implementation is public only for -bad scope
for now.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/464>
Add a new video source element "d3d11desktopdupsrc" for capturing desktop image
via Desktop Duplication based on Microsoft's Desktop Duplication sample available at
https://github.com/microsoft/Windows-classic-samples/tree/master/Samples/DXGIDesktopDuplication
This element is expected to be a replacement of existing dxgiscreencapsrc
element in winscreencap plugin.
Currently this element can support (but dxgiscreencapsrc cannot)
- Copying captured D3D11 texture to output buffer without download
- Support desktop session transition
e.g., can capture desktop without error even in case that
"Lock desktop" and "Permission dialog"
- Multiple d3d11desktopdupsrc elements can capture the same monitor
Not yet implemented features
- Cropping rect is not implemented, but that can be handled by downstream
- Mult-monitor is not supported. But that is also can be implemented by
downstream element for example via multiple d3d11desktopdup elements
with d3d11compositor
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1855>
Hide most of symbols of GstD3D11Memory object.
GstD3D11Memory is one of primary resource for imcoming d3d11 library
and it's expected to be a extensible feature.
Hiding implementation detail would be helpful for later use case.
Summary of this commit:
* Now all native Direct3D11 resources are private of GstD3D11Memory.
To access native resources, getter methods need to be used
or generic map (e.g., gst_memory_map) API should be called
apart from some exceptional case such as d3d11decoder case.
* Various helper methods are added for GstBuffer related operations
and in order to remove duplicated code.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1892>
... instead of READY state. READY state is too early for setting
overlay window handle especially playbin/playsink scenario
since playsink will set given overlay handle on videosink once
READY state change of videosink is ensured.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1893>
Add a new property "render-stats" to allow rendering statistics
data on window for debugging and/or development purpose.
Text rendering will be accelerated by GPU since this implementation
uses Direct2D/DirectWrite API and Direct3D inter-op for minimal overhead.
Specifically, text data will be rendered on swapchain backbuffer
directly without any copy/allocation of extra texture.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1830>
Even if resolution and/or bitdepth is not updated, required
DPB size can be changed per SPS update and it could be even
larger than previously configured size of DPB. If so, we need
to reconfigure DPB d3d11 texture pool again.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1839>
We don't need to preserve input color range for transformed target
color space. Also some GPUs doesn't seem to be happy with 16-235
color range for RGB color space.
Also, since our default display target color space is
DXGI_COLOR_SPACE_RGB_FULL_G22_NONE_P709, choosing full color range
would make more sense.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1814>
Managing reference picture type by using two variables
(ref and long_term) seems to be redundant and that can be
represented by using a single enum value.
This is to sync this implementation with gstreamer-vaapi so that
make comparison between this and gstreamer-vaapi easier and also
in order to minimize the change required for subclass to be able
to support interlaced.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1534>
As per spec 7.4.3 Slice header semantics, the flag value is derived as
MbaffFrameFlag = (mb_adaptive_frame_field_flag && !field_pic_flag)
and DXVA uses the value.
Regarding FrameNumList, in case of long-term ref, FrameNumList[i]
value should be long_term_frame_idx not long_term_pic_num.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1780>
Output texture of d3d11 decoder cannot have the bind flag
D3D11_BIND_SHADER_RESOURCE (meaning that it cannot be used for shader
input resource). So d3d11convert (and it's subclasses) was copying
texture into another internal texture to use d3d11 shader.
It's obviously overhead and we can avoid texture copy for
colorspace conversion or resizing via ID3D11VideoProcessor
as it supports decoder output texture.
This commit would be a visible optimization for d3d11 decoder with
d3d11compositor use case because we can avoid texture copy per frame.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1718>
GstMemory object could be disposed if GstBuffer is not allocated
by GstD3D11BufferPool such as via gst_buffer_copy() and/or
gst_buffer_make_writable(). So attaching qdata on GstMemory
object would cause unnecessary view alloc/free.
By using view pool which is implemented in GstD3D11Allocator,
we can avoid redundant view alloc/free.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1716>
In order to know the chroma format, besides profile, subsampling_x and
subsampling_y are needed (Spec 7.2.2 Color config semantics). These values are
in GstVp9Parser but not in GstVp9Framehdr.
Also, bit_depth is available in parser but not frame header. Evenmore, those
values are copied to picture structure later.
In case of VA-API, to configure the pipeline, it is require to know the chroma
format and depth.
It is possible to know chroma and depth through caps coming from vp9parser, but
it requires string parsing. It would be less error prone to get these values
through the parser structure at new_sequence() virtual method.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1700>
Add new video composition element which is equivalent to compositor
and glvideomixer elements. When d3d11 decoder elements are used,
d3d11compositor can do efficient graphics memory handling
(zero copying or at least copying memory on GPU memory space).
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1323>
New d3d11colorconvert and d3d11scale elements will perform only
colorspace conversion and rescale, respectively. Those new elements
would be useful when only colorspace conversion or rescale is required
and the other part should be done by another elements.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1323>
Staging texture is used for memory transfer between system and
gpu memory. Apart from d3d11{upload,download} elements, however,
it should happen very rarely.
Before this commit, d3d11bufferpool was allocating at least one
staging texture in order to calculate cpu accessible memory size,
and it wasn't freed for later use of the texture unconditionally.
But it will increase system memory usage. Although GstD3D11memory
object is implemented so that support CPU access, most memory
transfer will happen in d3d11{upload,download} elements.
By this commit, the initial staging texture will be freed immediately
once cpu accessible memory size is calculated.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1627>
Note that newly added formats (YUY2, UYVY, and VYUY) are not supported
render target view formats. So such formats can be only input of d3d11convert
or d3d11videosink. Another note is that YUY2 format is a very common
format for hardware en/decoders on Windows.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1581>
If the run_async() method is expected to be called from streaming
thread and not from application thread, use INFINITE as timeout value
so that d3d11window can wait UI dispatcher thread in any case.
There is no way to get a robust timeout value from library side.
So the fixed timeout value might not be optimal and therefore
we should avoid it as much as possible.
Rule whether a timeout value can be INFINITE or not is,
* If the waiting can be cancelled by GstBaseSink:unlock(), use INFINITE.
GstD3D11Window:on_resize() is one case for example.
* Otherwise, use timeout value
Some details are, GstBaseSink:start() and GstBaseSink:stop() will be called
when NULL to READY or READY to NULL state change, so there will be no
chance for GstBaseSink:unlock() and GstBaseSink:unlock_stop()
to be called around them. So there is no other way then timeout way.
GstD3D11Window:consturcted() and GstD3D11Window:unprepare() are the case.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1461>
All subclasses are retrieving list to get target output frame, which
can be done by baseclass. And pass the ownership of the GstH264Picture
to subclass so that subclass can clear implementation dependent resources
before finishing the frame.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1449>