Now that the system_frame_number is saved on the pictures we can use
gst_video_decoder_get_frame() helper instead of getting the full list
and looping over it.
On new_segment, the decoder is expected to negotiate. The decoder may want to
pre-allocate the needed buffers. Pass the max_dpb_size as this is needed to
determin how many buffers should be allocated.
This introduce a library which contains a set of base classes which
handles the parsing and the state tracking for the purpose of decoding
different CODECs. Currently H264, H265 and VP9 are supported. These
bases classes are used to decode with low level decoding API like DXVA,
NVDEC, VDPAU, VAAPI and V4L2 State Less decoders. The new library is
named gstreamer-codecs-1.0 / libgstcodecs.
This commit moves parsing code for superframe and frame header into
handle_frame() method, and removes parse() implementation from vp9decoder
baseclass.
The combination of
- multiple frames are packed in a given input buffer (i.e., superframe)
- reverse playback
seems to be complicated and also it doesn't work as intended in some case
* Remove redundant variables for width/height and par from GstD3D11Window.
GstVideoInfo holds all the values.
* Don't need to pass par to gst_d3d11_window_prepare().
It will be parsed from caps again
* Remove duplicated math
Fixing regression of the commit 9dada90108
gst_d3d11_result() will print warning message when HRESULT != S_OK.
However, since the retry is trivial stuff, check hr == E_PENDING first
and do not warn it.
The DXGI_PRESENT_ALLOW_TEARING flag might cause unexpected tearing
side effect. Setting it in fullscreen mode only seems to be
the correct usage as in the Microsoft's direct3d examples.
DXVA spec is saying that the size of bitstream buffer provided by hardware decoder
should be 128 bytes aligned. And also the host software decoder should
align the size of written buffer to 128 bytes. That means if the slice
(or frame in case of VP9) size is not aligned with 128 bytes,
the rest of non 128 bytes aligned memory should be zero-padded.
In addition to aligning implementation, some variables are renamed
to be more intuitive by this commit.
This implementation is similar to what we've done for nvcodec plugin.
Since supported resolution, profiles, and formats are device dependent ones,
single template caps cannot represent them, so this modification
will help autoplugging and fallback.
Note that the legacy gpu list and list of resolution to query were
taken from chromium's code.
gst_video_frame_copy will copy input frame to stating texture
of fallback frame. Then, we need to map fallback texture with GST_MAP_D3D11
flag to upload the staging texture to render texture. Otherwise
the render texture wouldn't be updated.
Source texture (decoder view) might be larger than destination (staging) texture.
In that case, D3D11_BOX structure should be passed to CopySubresourceRegion method
in order to specify the exact target area.
DXGI_SWAP_EFFECT_DISCARD cannot be used with dirty rect drawing feature
of IDXGISwapChain1::Present().
Note that IDXGISwapChain1 interface is available on Platform Update for Windows 7
and DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL is also the case.
Use resolution specified in caps for input_rect instead of
passed width and height value. The width and height might be modified
ones by d3d11videosink, then frame resolution might be different.
* Move decoding process to handle_frame
* Remove GstVideoDecoder::parse implementation
* Clarify flush/drain/finish usage
In forward playback case, have_frame() call will be followed by
handle_frame() but reverse playback is not the case.
To ensure GstVideoCodecFrame, the decoding process should be placed inside
of handle_frame(), instead of parse().
Since we don't support alignment=nal, the parse() implementation is not worth.
In order to fix broken reverse playback, let's remove the parse()
implementation and revisit it when adding alignment=nal support.
... and remove unused start, stop method from subclass.
Current implementation does not require subclass specific behavior
for the handle_frame() method.
Actually our buffer pool size and the number of backbuffer are
independent. In case of reverse playback, upstream might request
a lot of buffers (up to GOP size).
d3d11window holds one buffer to redraw client area per resize event.
When the input format is being changed, this buffer should be cleared
to avoid mismatch beween newly configured shader/videoprocessor and
the format of previously cached buffer.
Because the size of texture array cannot be updated dynamically,
allocator should block the allocation request. This cannot be
done at buffer pool side if this d3d11 memory is shared among
multiple buffer objects. Note that setting NO_SHARE flag to
d3d11 memory is very inefficient. It would cause most likey
copy of the d3d11 texture.
...for color space conversion if available
ID3D11VideoProcessor is equivalent to DXVA-HD video processor
which might use specialized blocks for video processing
instead of general GPU resource. In addition to that feature,
we need to use this API for color space conversion of DXVA2 decoder
output memory, because any d3d11 texture arrays that were
created with D3D11_BIND_DECODER cannot be used for shader resource.
This is prework for d3d11decoder zero-copy rendering and also
for conditional HDR tone-map support.
Note that some Intel platform is known to support tone-mapping
at the driver level using this API on Windows 10.
Don't specify the resolution of backbuffer. Then dxgi will let us know the
actual client area. When upstream resolution is chagned, updating the size
of backbuffer without the consideration for client size would cause mismatch
between them.
Use consistent memory layout between dxva and other shader use case.
For example, use DXGI_FORMAT_NV12 texture format instead of
two textures with DXGI_FORMAT_R8_UNORM and DXGI_FORMAT_R8G8_UNORM.
This reverts commit ddd13fc7c0
Dynamic usage can reduce the number of copy per frame but make
things complicated and the benefit seems to not significant.
Also since we don't provide _map() method for the dynamic usage,
application cannot read buffers which make "last-sample" property
unusable in case of d3d11videosink.
Although the target platform of D3D11 decoding API are both desktop and UWP app,
DXVA header is blocked by "WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)"
which is meaning that that's only for desktop app.
To workaround this inconsistent annoyingness, we need to define WINAPI_PARTITION_DESKTOP
regardless of target WinAPI partition.