- glimagesink needs to be able to resize the viewport on aspect ratio
changes resulting from either caps changes or 3d output mode changes.
- Performing a glViewport outside the GstGLWindow::resize callback
will not have the winsys' stack of viewports required to correctly
place the output frame.
Provide a function to request a resize on the next draw event from the
winsys.
Also track size changes inside the base GstGLWindow class rather
than in each subclass.
https://bugzilla.gnome.org/show_bug.cgi?id=755111
They require to get_proc_address some functions through the
platform specific {glX,egl}GetProcAddress rather than the default
GL library symbol lookup.
Otherwise we could end up being mistaken for the diference between a
gl3 and a gl2 context resulting in a failure getting the list of
extensions from the wrapped context due to the difference between
glGetString and glGetStringi for the GL_EXTENSIONS token.
https://bugzilla.gnome.org/show_bug.cgi?id=749728
Otherwise the pipeline stalls when running
more than one glimagesink with gst-launch.
Also only register the custom nsapp loop
when setting up the nsapp from gstgl.
This fix a very slow rendering rate regression that only
happens when using gst-launch, i.e. in the case where
the main thread does not run any NSApp loop.
Git bisect reported it has been introduced by the commit
e10d2417e2:
"move to CGL and CAOpenGLLayer for rendering".
Then the commit 7d46357627:
"gstglwindow_cocoa: fix slow render rate" attempted to fix
the slow rendering rate problem when using gst-launch.
At least for me it does not work. I tried several
combinations, for example to flush CA transactions in the
custom app loop, as mentioned in the doc, but the only solution
that fixes the slow rendering is by reducing the loop latency.
From what I tested, no need to put less than 60ms, even if the
framerate has an interval much lower (16.6ms for 60 fps).
In gst_gl_window_cocoa_draw we used to just call setNeedsDisplay:YES. That was
creating an implicit CA transaction which was getting committed at the next
runloop iteration. Since we don't know how often the main runloop is running,
and when we run it implicitly (from gst_gl_window_cocoa_nsapp_iteration) we only
do so every 200ms, use an explicit CA transaction instead and commit it
immediately. CA transactions nest and debounce automatically so this will never
result in extra work.
Depending on the platform, it was only ever implemented to 1) set a
default surface size, 2) resize based on the video frame or 3) nothing.
Instead, provide a set_preferred_size () that elements/applications
can use to request a certain size which may be ignored for
videooverlay/other cases.
Removes the use of NSOpenGL* variety and functions. Any Cocoa
specific functions that took/returned a NSOpenGL* object now
take/return the CGL equivalents.
The hack causes deadlocks and other interesting problems and it really
can only be fixed properly inside GLib. We will include a patch for
GLib in our builds for now that handles this, and hopefully at some
point GLib will also merge a proper solution.
A proper solution would first require to refactor the polling in
GMainContext to only provide a single fd, e.g. via epoll/kqueue
or a thread like the one added by our patch. Then this single
fd could be retrieved from the GMainContext and directly integrated
into a NSRunLoop.
https://bugzilla.gnome.org/show_bug.cgi?id=741450https://bugzilla.gnome.org/show_bug.cgi?id=704374
Otherwise interesting things will happen in Cocoa applications, like
infinite event loops that block the NSApplication loop forever.
This was only needed for GNUStep and thus can safely be removed now.
Until gcc and GNUStep properly support Objective-C blocks and other
"new" features of Objective-C we can't properly support them without
making the code much more ugly.
https://bugzilla.gnome.org/show_bug.cgi?id=739152
Otherwise when resizing the window you will also get messages like:
class NSConcreteMapTable autoreleased with no pool in place - just leaking
class NSConcreteValue autoreleased with no pool in place - just leaking
class NSConcreteValue autoreleased with no pool in place - just leaking
class __NSCFDictionary autoreleased with no pool in place - just leaking
Need to set the ':' as the reshape method now takes one parameter.
For the story, the GstGLNSView was previously inheriting from
NSOpenGLView which has a reshape function without any parameter.
Now the GstGLNSView inherits from NSView and we re-use the reshape
function manually.
Use the reshape function after being defined. The other way
would have been to declare the reshape function in the header.
gstglwindow_cocoa.m: In function '-[GstGLNSView drawRect:]':
gstglwindow_cocoa.m:555: warning: 'GstGLNSView' may not respond to '-reshape'
gstglwindow_cocoa.m:555: warning: (Messages without a matching method signature
gstglwindow_cocoa.m:555: warning: will be assumed to return 'id' and accept
gstglwindow_cocoa.m:555: warning: '...' as arguments.)
gstglwindow_cocoa.m: In function '-[GstGLNSView drawRect:]':
gstglwindow_cocoa.m:555: warning: 'GstGLNSView' may not respond to '-reshape'
gstglwindow_cocoa.m:555: warning: (Messages without a matching method signature
gstglwindow_cocoa.m:555: warning: will be assumed to return 'id' and accept
gstglwindow_cocoa.m:555: warning: '...' as arguments.)
Using NSApp directly seems to confuse something, as the compiler
was expecting an id<NSFileManagerDelegate>. Switched to using
[NSApplication sharedApplication], and specified the delegate
protocol on the window class as well.
https://bugzilla.gnome.org/show_bug.cgi?id=738740
The visible rect and bounds might be the same as before, but Cocoa
might've changed our viewport without us nothing. This happens if
you hide the view and show it again.
This is only for non-Cocoa apps but previously caused a 2 second
waiting during startup for Cocoa apps. This is unacceptable.
Instead we now check a bit more extensive if something actually
runs on the GLib default main context, and if not don't even
bother waiting for something to happen from there.
It avoids to draw to an invalid buffer.
Withtout this the default frame buffer is undefined:
glBindFramebuffer (GL_FRAMEBUFFER, 0)
Visually you could see some white frames at the beginning
when lunching videotestsrc ! glimagesink
With OpenGL Profiler from XCode you could see some
GL_INVALID_FRAMEBUFFER_OPERATION for the first frames
"(NSApplication *)sharedApplication This method also makes a connection
to the window server and completes other initialization"
The implicit thing which is not mentioned is that it required
to be called in the main thread.
Fix a regression introduces by 82b7c915bb
When using with gst-launch, it was not possible to click on the close
cross of the window anymore which is a bit anoying and also because
it's was possible before.
Prior to this commit the GstGLContextCocoaClass was initialized
in the main thread because gst_gl_context_new was called in the
state change function from going from ready to paused.
From this commit this call is done from the streaming thread.
So that the call to [NSApplication sharedApplication];
was not done in the main thread anymore.
We now ensure that by assuming there is a GMainLoop running.
It's for debugging purpose so that's ok to do that. Also
note we already do this assumtion to run app itereations.
The regression had no consequence on the cocoa/videooverlay example
(that should be moved from gst-plugins-gl to -bad) because the
application is responsible for that necessary call.