D3D11 dynamic texture is a special memory type, which is mainly used for
frequent CPU write access to the texture. For now, this texture type
does not support gst_memory_{map,unmap}
* Create staging texture only when the CPU access is requested.
Note that we should avoid the CPU access to d3d11 memory as mush as possible.
Incoming d3d11upload and d3d11download will take this GPU memory upload/download.
* Upload/Download texture memory from/to staging only if it needed, similar to
GstGL PBO implementation.
* Define more dxgi formats for future usage (e.g., color conversion, dxva2 decoder).
Because I420_* formats are not supported formats by dxgi, each plane should
be handled likewise GstGL separately, but NV12/P10 formats might be supported ones.
So we decide the number of d3d11memory per GstBuffer for video memory depending on
OS version and dxgi format. For instance, if NV12 is supported by OS,
only one d3d11memory with DXGI_FORMAT_NV12 texture can be allocated by this commit.
One use case of such texture is DXVA. In case DXVA decoder, it might need to produce decoded data
to one DXGI_FORMAT_NV12 instead of seperate Y and UV planes.
Such behavior will be controlled via configuration of GstD3D11BufferPool and
default configuration is separate resources per plane.
Depending on selected feature level, d3d11 API usage can be different.
Instead of querying the selected feature level by user whenever required,
store it once by d3d11device.
Do not accept any GstD3D11Device context which has different adapter
index from the required one. For example, if a d3d11 element is expecting
d3d11 device with adapter 1 (i.e., the second GPU), any d3d11 device
context having different adapter could not be shared with
the d3d11 element.
Make them consistent with cuda context utils functions.
Put in-only parameter before all in-out parameters, and add _handle()
suffix to native handle getter functions.
In certain cases, the sink's buffer pool will not call the parent's
release_buffer method, so the pool does not clean up properly
after the buffer is released.
Since macOS Mojave (10.14), video permissions have to be explicitly
granted by a user in order to open a video device such as a camera.
This commit adds a check for the current permission status, and tries
to request for permission if applicable.
The whole `src_read()` function is a hot loop since the ringbuffer
thread is waiting on us, and printing to the console from inside it
can easily cause us to miss our deadline.
F.ex., if you had GST_DEBUG=3 and we accidentally missed a device
period, we'd trigger the "reported glitch" warning, which would cause
us to miss another device period, and so on. Let's reduce the log
level so that GST_DEBUG=3 is more usable, and only print buffer flag
info when it's actually relevant.
Some audio drivers return varying amounts of data per ::GetBuffer
call, instead of following the device period that they've told us
about in `src_prepare()`.
Previously, we would just drop those extra buffers hoping that the
extra buffers were temporary (f.ex., a startup 'burst' of audio data).
However, it seems that some audio drivers, particularly on older
Windows versions (such as Windows 10 1703 and older) consistently
return varying amounts of data.
Use GstAdapter to smooth that out, and hope that the audio driver is
locally varying but globally periodic.
Initially reported in https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/808
We were miscalculating the device period, i.e. the number of frames
we'll get from WASAPI in each IAudioClient::GetBuffer call, due to
a calculation mistake (truncate instead of round).
For example, on my machine when the aux input is set to 44.1KHz, the
reported device period is 101587, which comes out to 447.998 frames
per ::GetBuffer call. In reality we will, of course, get 448 frames
per call, but we were truncating, so we expected 447 and were
discarding one frame every time. This led to glitching, and skew over
time.
Interestingly, I can only see this with 44.1Khz. 48Khz/96Khz are fine,
because the device period is a more 'even' number.
Fixes https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/806
The for loop in gst_msdkdec_handle_frame is error prone
about how it manages surfaces. Because sometimes it sets
the surface variable to NULL and sometimes it needs to free
it right away. So better to print an error if surfaces are
leaked to help with any change around the loop.
msdk plugin is not used for sofware encode/decode as there are better
solutions available. Also, with MFX_IMPL_AUTO_ANY, if software decode
is not supported, the plugin will still load, but will then fail when trying to
run the (autoplugged) pipeline. With MFX_IMPL_HARDWARE_ANY,
the plugin fails and a better software decoder is auto-plugged.
GstNvBaseEnc::n_bufs was set from the previous encoding session
but it wasn't cleared after stop. That might result to invalid memory
access at the next start (no encoded data) and then stop sequence.
Instead of defining a variable for array length, use GArray::len
directly to avoid such confusion.