Now when used with video/x-raw as input, the GLMemoryUpload method checks for
->tex_target in input GLMemory(es) and sets the output texture-target
accordingly.
Fixes video corruption with a pipeline like avfvideosrc ! video/x-raw !
glimagesink where on macos avfvideosrc pushes RECTANGLE textures but glupload
was configuring texture-target=2D as output.
The headers passed as parametter are relative to the build dir
basically "../subproject/gst-plugins-bad/gst-libs/gst/mpegts/XXX.h"
but that does not match what is needed at build time when building as
subproject, also we always add current dir as include_dir so we are
safe including directly.
And link mpegtsdemux against the 'math' library as it is needed.
Don't set the chosen texture-target into the wrong structure.
The input caps may not be writable, and in any case - the
intention was to configure the othercaps. Also, remove an
extra unref - the othercaps ref is consumed by
gst_caps_make_writable already.
And scale the bitrate with the absolute rate (if it's bigger than 1.0) to get
to the real bitrate due to faster playback.
This allowed in my tests to play a stream with 10x speed without buffering as
the lowest bitrate is chosen, instead of staying/selecting the highest bitrate
and then buffering all the time.
It was previously disabled for not very well specified reasons, which seem to
be not valid anymore nowadays.
Prevent the manifest update loop from looping endlessly
after a seek event, by clearing the variable that tells
the task function not to immediately exit.
The new streams should not be exposed until all streams are done with the
current fragment. The old code is incorrect and actually only checked the
current stream. Fix this by properly checking all streams.
Also, ignore the current stream. The code is only reached when the current
stream finished downloading and since
07f49f15b1 ("adaptivedemux: On EOS, handle it
before waking download loop") download_finished is set after
gst_adaptive_demux_stream_advance_fragment_unlocked() is called.
Without this HLS playback with multiple streams is broken, because the new
streams are never exposed.
https://bugzilla.gnome.org/show_bug.cgi?id=770075
https://github.com/mesonbuild/meson
With contributions from:
Tim-Philipp Müller <tim@centricular.com>
Matej Knopp <matej.knopp@gmail.com>
Jussi Pakkanen <jpakkane@gmail.com> (original port)
Highlights of the features provided are:
* Faster builds on Linux (~40-50% faster)
* The ability to build with MSVC on Windows
* Generate Visual Studio project files
* Generate XCode project files
* Much faster builds on Windows (on-par with Linux)
* Seriously fast configure and building on embedded
... and many more. For more details see:
http://blog.nirbheek.in/2016/05/gstreamer-and-meson-new-hope.htmlhttp://blog.nirbheek.in/2016/07/building-and-developing-gstreamer-using.html
Building with Meson should work on both Linux and Windows, but may
need a few more tweaks on other operating systems.
Multiple threads may be accessing the wayland fd at the same time which
requires the use of special wayland API to deal with to ensure nobody
will steal reads and cause a stall for anyone else.
This allows to gradually download part of a fragment when the final size is
not known and only a part of it should be downloaded. For example when only
the moof should be parsed and/or a single keyframe should be downloaded.
https://bugzilla.gnome.org/show_bug.cgi?id=741104
When connect to qmlglsrc, x11 event loop will be replace by qt event loop
which will cause the window cannot receive event from xserver, such as resize
https://bugzilla.gnome.org/show_bug.cgi?id=768160
Makes infinitely more sense and implementation were expecting that behaviour
anyway and would enter a resize, draw, resize, draw, ... cycle instead of only
resizing once.
This helps catch those 404 server errors in live streams when
seeking to the very beginning, as the server will handle a
request with some delay, which can cause it to drop the fragment
before sending it.
https://bugzilla.gnome.org/show_bug.cgi?id=753751
To allow adaptivedemux to make retry decisions, it needs to know what
sort of HTTP error has occurred. For example, the retry logic for a
410 error is different from a 504 error.
https://bugzilla.gnome.org/show_bug.cgi?id=753751
Some derived classes (at least dashdemux) expose a seeking range
based on wall clock. This means that a subsequent seek to the start
of this range will be before the allowed range.
To solve this, seeks without the ACCURATE flag are allowed to seek
before the start for live streams, in which case the segment is
shifted to start at the start of the new seek range. If there is
an end position, is is shifted too, to keep the duration constant.
https://bugzilla.gnome.org/show_bug.cgi?id=753751
There's no need for the jump to an extra thread in most cases, especially
when relying solely on a shader to render. We can use the provided
render_to_target() functions to simplify filter writing.
Facilities are given to create fbo's and attach GL memory (renderbuffers
or textures). It also keeps track of the renderable size for use with
effective use with glViewport().
Make state changes of internal elements more reliable by locking
their state, and ensuring that they aren't blocked pushing data
downstream before trying to set their state.
Add a boolean to avoid starting tasks when the main
thread is busy trying to shut the element down.
Try harder to make switching pads work better by
making sure concurrent downloads are finished before exposing
a new set of pads.
Release the manifest lock when signalling no-more-pads, as
that can call back into adaptivedemux again
If other stream fragments are still downloading but new streams
have been scheduled, don't expose them yet - wait until the last
one finishes. Otherwise, we can cancel a partially downloaded
auxilliary stream and cause a gap.
Drop the manifest lock when performing actions that might
call back into adaptivedemux and trigger deadlocks, such
as adding/removing pads or sending in-band events (EOS).
Unlock the manifest lock when changing the child bin state to
NULL, as it might call back to acquire the manifest lock when
shutting down pads.
Drop the manifest lock while pushing events.
In the case of KEY_UNIT and TRICKMODE_KEY_UNITS seeks, we want to
"snap" to the closest fragment.
Without this, we end up pushing out a segment which does not match
the first fragment timestamp being pushed out, resulting in one or
more buffers being eventually dropped because they are out of segment.
Calling glUniformMatrix before the shader is bound is invalid and
would result in errors like:
GL_INVALID_OPERATION in glUniformMatrix(program not linked)
Move glUniformMatrix() to after the gst_gl_shader_use() call.
Rather than assuming something. e.g. zerocopy on iOS with GLES3 requires
the use of Luminance/Luminance Alpha formats and does not work with
Red/RG textures.
Take the used texture type from the memory instead.
Fixes conversion from multi-planar YUV formats with two components per plane
(NV12, NV21, YUY2, UYVY, GRAY16_*, etc) with Luminance Alpha input textures.
This is also needed for zerocopy decoding on iOS with GLES 3.x.
The intention was to assert if both maj and min were NULL (as there would be no
point calling the function). Instead if either maj or min were NULL, the assert
would occur.
Fix that.
Newer devices require using a different GLSL extension for accessing
external-oes textures in a shader using the texture() functions.
While the GL_OES_EGL_image_external_essl3 should supposedly be supported
on a any GLES3 android device, the extension was defined after a lot of the
older drivers were built so they will not know about it. Thus there are two
possible interpretations of which of texture[2D]() should be supported for
external-oes textures. Strict adherence to the GL_OES_EGL_image_external
extension spec which uses texture2D() or following GLES3's pattern, also
allowing texture() as a function for accessing external-oes textures
This adds another mangling pass to convert
#extension GL_OES_EGL_image_external : ...
into
#extension GL_OES_EGL_image_external_essl3 : ...
on GLES3 and when the GL_OES_EGL_image_external_essl3 extension is supported.
Only uses texture() when the GLES3 and the GL_OES_EGL_image_external_essl3
extension is supported for external-oes textures.
Uses GLES2 + texture2D() + GL_OES_EGL_image_external in all other external-oes
cases.
https://bugzilla.gnome.org/show_bug.cgi?id=766993
Otherwise we will leak GstGLContext's when adding the same context more than
once.
Fixes a regression caused by 5f9d10f603 in the
gstglcontext unit test that failed with:
Assertion 'tmp == NULL' failed
Until now we would start the task when the pad is activated. Part of the
activiation concist of testing if the pipeline is live or not.
Unfortunatly, this is often too soon, as it's likely that the pad get
activated before it is fully linked in dynamic pipeline.
Instead, start the task when the first serialized event arrive. This is
a safe moment as we know that the upstream chain is complete and just
like the pad activation, the pads are locked, hence cannot change.
https://bugzilla.gnome.org/show_bug.cgi?id=757548