When switching bitrates we set the old streams as cancelled, but it
could also be confused with a cancel due to other reasons (as an error)
and it would lead the element to stop the pipeline mistankely. This
would happen when the stream being replaced was waiting for a manifest
update on live. Ss make it sure that we are stopping for switching
bitrates to avoid erroring out.
https://bugzilla.gnome.org/show_bug.cgi?id=789457
If we're adding to the tail of the queue, it's because we're converting
a gap event, so don't block there it means we're calling from the output
thread.
https://bugzilla.gnome.org/show_bug.cgi?id=784911
Add a comment for when the state matters. Use a local var for priv in
update_time_level() to improve readability. Move the our_latency local
var below the query results checks.
We want to skip serialization for FLUSH_STOP events (apparently). We can
simplify the code to add it to the top-level conditions. There was nothing
done in the first code path if the event was FLUSH_STOP.
Just queue it like any other serialized event. This way we don't need to
check if there still are buffers in the queue.
Validated with the tests and gst-launch-1.0 pipelines.
Don't reuse the offset variables will contain a sample offset for an
intermediate time value. Instead add a segment_pos variable of type
GstClockTime for this. Use The clock-time macros to check if we got
a valid time.
Acording to the logic this cannot happen (we already check this before). So
add a assert like we do above and remove the check. This make it clearer that
we check for the offset range.
Also remove a dead assignment since we reassign this a few lines below.
Don't copy the whole event struct. Set the input params when we call the
forwarding helper. Initialize the internal fields and return values in the
helper.
This simplifies the code a lot without any functional changes apart from
not closing the display connection. Closing the display connection is
not safe to do as it is shared between all other code in the same
process and no reference counting or anything happens at the platform
layer.
1. Propagate the GstGLDisplay we create
2. Add the created GstGLContext to the propagated GstGLDisplay
Otherwise with multi-branch GL pipelines involving gtkglsink, things
will fall apart and errors will be genarated somewhere.
Except for gst/gl/gstglfuncs.h
It is up to the client app to include these headers.
It is coherent with the fact that gstreamer-gl.pc does not
require any egl.pc/gles.pc. I.e. it is the responsability
of the app to search these headers within its build setup.
For example gstreamer-vaapi includes explicitly EGL/egl.h
and search for it in its configure.ac.
For example with this patch, if an app includes the headers
gst/gl/egl/gstglcontext_egl.h
gst/gl/egl/gstgldisplay_egl.h
gst/gl/egl/gstglmemoryegl.h
it will *no longer* automatically include EGL/egl.h and GLES2/gl2.h.
Which is good because the app might want to use the gstgl api only
without the need to bother about gl headers.
Also added a test: cd tests/check && make libs/gstglheaders.check
https://bugzilla.gnome.org/show_bug.cgi?id=784779
Scenario:
A manifest starts out in live mode but then the recording is finalized
and a subsequent update changes the state to a non-live manifest when
the server has finished recording/transcoding/whatever with the full
list of fragments.
Without this patch, the manifest update task is never stopped on the
live->non-live transition and will busy loop, burning through one CPU
core.
https://bugzilla.gnome.org/show_bug.cgi?id=786275
Make a bunch of symbols private that are currently leaked
accidentally because they have a gst_* prefix and are used
internally. We mark those we can't make static with
G_GNUC_INTERNAL so that they get hidden with the autotools
build as well (although we could just pass -fvisibility=hidden
there too).
The goal here is to minimize the work needed to bring all images
to a common format. A better criteria than the number of pads
with a given format is the number of pixels with a given format.
https://bugzilla.gnome.org/show_bug.cgi?id=786078
This commit ensures that the idle probe which GstAdaptiveDemuxStream
adds to the upstream source pad is removed after use. Previously a new
probe was added to the pad whenever a fragment was downloaded, meaning
the number of pad probe callbacks being executed increased continually.
https://bugzilla.gnome.org/show_bug.cgi?id=785957
There can be twice as many stream tasks running as there are output
pads for playback of variant HLS playlists. Half of them are the
current pads, and the other half are the pads that are about to be
switched to due to a bitrate change.
The old code only stopped the current streams which could result
in a deadlock on stopping the pipeline. The changes force stopping
and joining of any prepared streams too.
https://bugzilla.gnome.org/show_bug.cgi?id=785987
Crossfading is a bit more complex than just having two pads with the
right keyframes as the blending is not exactly the same.
The difference is in the way we compute the alpha channel, in the case
of crossfading, we have to compute an additive operation between
the destination and the source (factored by the alpha property of both
the input pad alpha property and the crossfading ratio) basically so
that the crossfade result of 2 opaque frames is also fully opaque at any
time in the crossfading process, avoid bleeding through the layer
blending.
Some rationnal can be found in https://phabricator.freedesktop.org/T7773.
https://bugzilla.gnome.org/show_bug.cgi?id=784827
Found on rpi when gpu_mem is too low so there is not enough memory to
create the eglimage. But still gst_buffer_pool_acquire_buffer succeeded.
And it leads to a CRITICAL assert:
gst_egl_image_get_image: assertion 'GST_IS_EGL_IMAGE (image)' failed
https://bugzilla.gnome.org/show_bug.cgi?id=785518
Otherwise check_events() will not remove the GAP event (as the queue
tail is not the event anymore but the GAP buffer), then the GAP buffer
is handled, then the GAP event is handled again, ... forever.