There was not handling the end of encoding sequence in encoder.
This patch does drain any remaining internal streams while decoder
already does this.
Document says:
"To mark the end of the encoding sequence, call this function with a
NULL surface
pointer. Repeat the call to drain any remaining internally cached
bitstreams—one
frame at a time—until MFX_ERR_MORE_DATA is returned."
https://bugzilla.gnome.org/show_bug.cgi?id=793236
Sometimes parent context is released before its children get released.
In this case MFXClose of parent session fails.
To make sure that child sessions are closed before closing a parent
session,
Parent context needs to manage child sessions and close them first when
it's released.
https://bugzilla.gnome.org/show_bug.cgi?id=793412
Currently a gst buffer has one mfxFrameSurface when it's allocated and
can't be changed.
This is based on that the life of gst buffer and mfxFrameSurface would
be same.
But it's not true. Sometimes even if a gst buffer of a frame is finished
on downstream,
mfxFramesurface coupled with the gst buffer is still locked, which means
it's still being used in the driver.
So this patch does this.
Every time a gst buffer is acquired from the pool, it confirms if the
surface coupled with the buffer is unlocked.
If not, replace it with new unlocked one.
In this way, user(decoder or encoder) doesn't need to manage gst buffers
including locked surface.
To do that, this patch includes the following:
1. GstMsdkContext
- Manages MSDK surfaces available, used, locked respectively as the
following:
1\ surfaces_avail : surfaces which are free and unused anywhere
2\ surfaces_used : surfaces coupled with a gst buffer and being used
now.
3\ surfaces_locked : surfaces still locked even after the gst buffer
is released.
- Provide an api to get MSDK surface available.
- Provide an api to release MSDK surface.
2. GstMsdkVideoMemory
- Gets a surface available when it's allocated.
- Provide an api to get an available surface with new unlocked one.
- Provide an api to release surface in the msdk video memory.
3. GstMsdkBufferPool
- In acquire_buffer, every time a gst buffer is acquired, get new
available surface from the list.
- In release_buffer, it confirms if the buffer's surface is unlocked or
not.
- If unlocked, it is put to the available list.
- If still locked, it is put to the locked list.
This also fixes bug #793525.
https://bugzilla.gnome.org/show_bug.cgi?id=793413https://bugzilla.gnome.org/show_bug.cgi?id=793525
Directsoundsrc/sink have multiple issues, most of which cannot be
fixed at all because the API is deprecated and is implemented as a
compatibility wrapper around WASAPI since Vista.
Users and developers should now use the wasapisrc/sink elements, and
future development efforts should go towards that.
The low-latency property is *always* safe to enable, so applications
that do realtime communication should set it, and the elements will
automatically configure WASAPI to use the lowest possible device
period, and the audioringbuffer in audiobasesink will also be
configured accordingly.
Applications can also use exclusive mode during capture and playback
for the lowest possible latency if they know that the device will not
be used by any other application.
In this mode, the latency-time and buffer-time properties will be
completely ignored.
The AudioClient3 API is only available on Windows 10, and we will
automatically detect when it is available and use it.
However, using it for capturing audio with low latency and without
glitches seems to require setting the realtime priority of the entire
pipeline to "critical", which we cannot do from inside the element.
Hence, we can only enable that by default for wasapisink since
apps should be able to safely set the low-latency property to TRUE if
they need low-latency capture or playback.
This allows us to request ultra-low-latency device periods even in
shared mode. However, this requires good drivers and Windows 10, so
we only enable this when we detect that we are running on Windows 10
at runtime.
You can forcibly disable this feature on Windows 10 by setting
GST_WASAPI_DISABLE_AUDIOCLIENT3=1 in the environment.
Since there is already an "adaptive-B" option, just
use boolean property for B-pyramid enabling.
Fixme: Not sure whether this can be supported in vp8 and vp9.
It could be possible through GPB (b without backward ref) but
can't verify currently. We can move this as common property
once verified with vp8 and vp9 without breaking any backward
compatibility.
https://bugzilla.gnome.org/show_bug.cgi?id=791637
Add a new property "trellis" to enable trellis quantization.
Keeping trellis as a flag value (which is boolean for gst x264 enc element)
since it is possible to enable/disable this seperately for
I,P and B frames through MediaSDK ext option headers.
The subclass implementations always need to inform base-encoder
if it requires the inclusion of Extend Header buffers (mfxExtCodingOption2
and mfxExtCodingOption3).
https://bugzilla.gnome.org/show_bug.cgi?id=791637
This option controls down sampling in look ahead bitrate
control mode. According to spec it is only supported in AVC.
Fixme: Probably HEVC also have support for this in recent
MSDK versions. We could move the enumeration types to common
header usable for multiple codecs.
https://bugzilla.gnome.org/show_bug.cgi?id=791637
MediaSDK has support for a number of rate control algorithms.
Adding all possible options to the property rate-control.
Fixme1: In case of failure, currently we don't have a proper method
to show which rate-control has been failed. It could be better
to add some extensive validation on EncQuery output in case of error.
Unfortunately, not all ratecontrol methods are supported by every codecs
and we don't have the dynamic detection of supported ratecontrol methods yet.
https://bugzilla.gnome.org/show_bug.cgi?id=791637
We have the property "i-frames" to set the IDR interval in a
gop. Unfortunately MSDK HEVC encoder behaves bit differently
for IdrInterval field, IdrInteval == 1 indicate every
I-frame should be an IDR (which is IdrInterval == 0 for other codecs),
IdrInteval == 2 means every other I-frame is an IDR
(which is IdrInterval == 1 for other codecs) etc.
So we generalize the behaviour of property "i-frames" by
incrementing the value by one in each case (only for HEVC).
https://bugzilla.gnome.org/show_bug.cgi?id=791637
The base encoder common properties are not valid for
mjpeg encoder where there is no motion compensation or rate control.
Delaying the property installation on the base gobject
untill the subclass class_init get invoked.
https://bugzilla.gnome.org/show_bug.cgi?id=791637
The gst-msdk decoders prefer packetized streams as input
and in this case we can avoid unnecessary input bitstream copy
to mfxBitstream. This works fine for codecs like h264 where
we only support byte-stream with au alignment. Other format
conversions should be done thorugh parsers. But this won't work
for codecs like vc1 where we don't have an autoplugged parser.
Even the parser is not capable to do format conversions.
Packetizing through base decoders parse() routine will bring a
lot of uncecessary of complexities and codecparser libraray dependency.
So we just use an interal gst_adaper to keep track of bitstream
which is not consumed by msdk durig AsynchronusDecoding.
This adapter will get used only if subclass implementations
set the "is_packetized" to FALSE for msdk base encoder.
https://bugzilla.gnome.org/show_bug.cgi?id=792589
Adding Simple and Main profiles decode support.
Currently msdkvc1dec is not capable to handle the codec_data,
only instream headers are supported. Also msdk vc1 decoder
expecting instream with Sequence header as per SMPTE 421M Annex L.
Most of the decdoebin/playbin pipeline won't work with the above
constraints
because vc1parse is still not an autoplug element.
Only way to make mskdvc1dec work is by connecting a vc1parse
as an upstream element.
https://bugzilla.gnome.org/show_bug.cgi?id=792589
Use drm render node as the first choice of device node file.
Fall backs to use drm primary (/dev/dri/card[0-9])
if there is no render node available
Basic logic is inherited from gstreamer-vaapi, but using
gudev API rather than libudev directly.
Added gudev library as dependency for msdk.
https://bugzilla.gnome.org/show_bug.cgi?id=791599
1\ If downstream's pool is MSDK bufferpool,
2\ If there's shared GstMsdkContext in the pipeline,
a decoder decides to use video memory.
This policy should be improved to handle more cases.
https://bugzilla.gnome.org/show_bug.cgi?id=790752
In case that pipeline is like ".. ! decoder ! encoder ! ..." with using
video memory,
decoder needs to know the async depth of the following msdk element so
that it could
allocate the correct number of video memory.
Otherwise, decoder's memory is exhausted while processing.
https://bugzilla.gnome.org/show_bug.cgi?id=790752
How to share/create GstMsdkcontext is the following:
- Search GstMsdkContext if there's in the pipeline.
- If found, check if it's decoder, encoder or vpp by job type.
- If it's same job type, it creates another instance of
GstMsdkContext
with joined-session.
- Otherwise just use the shared GstMsdkContext.
- If not found, just creates new instance of GstMsdkContext.
https://bugzilla.gnome.org/show_bug.cgi?id=790752
According to the driver's instruction, if there are two or more encoders
or decoders in a process, the session should be joined by
MFXJoinSession.
To achieve this successfully by GstContext, this patch adds job type
specified if it's encoder, decoder or vpp.
If a msdk element gets to know if joining session is needed by the
shared context,
it should create another instance of GstContext with joined session,
which
is not shared.
https://bugzilla.gnome.org/show_bug.cgi?id=790752
1\ In decide_allocation, it makes its own msdk bufferpool.
- If downstream supports video meta, it just replace it with the msdk
bufferpool.
- If not, it uses the msdk bufferpool as a side pool, which will be
decoded into.
and will copy it to downstream's bufferpool.
2\ Decide if using video memory or system memory.
- This is not completed in this patch.
- It might be decided in update_src_caps.
- But tested for both system memory and video memory cases.
https://bugzilla.gnome.org/show_bug.cgi?id=790752
1\ Proposes msdk bufferpool to upstream.
- If upstream has accepted the proposed msdk bufferpool,
encoder can get msdk surface from the buffer directly.
- If not, encoder get msdk surface its own msdk bufferpool
and copy from upstream's frame to the surface.
2\ Replace arrays of surfaces with msdk bufferpool.
3\ In case of using VPP, there should be another msdk bufferpool
with NV12 info so that it could convert first and encode.
Calls gst_msdk_set_frame_allocator and uses video memory only on linux.
and uses system memory on Windows until d3d allocator is implemented.
https://bugzilla.gnome.org/show_bug.cgi?id=790752
Implements 2 memory allocators:
1\ GstMsdkSystemAllocator: This will allocate system memory.
2\ GstMsdkVideoAllocator: This will allocate device memory depending
on the platform. (eg. VASurface)
Currently GstMsdkBufferPool uses video allocator currently by default
only on linux. On Windows, we should use system memory until d3d
allocator
is implemented.
https://bugzilla.gnome.org/show_bug.cgi?id=790752
Implements msdk frame allocator which is required from the driver.
Also makes these functions global so that GstMsdkAllocator could use
the allocated video memory later and couple with GstMsdkMemory.
GstMsdkContext keeps allocation information such as mfxFrameAllocRequest
and mfxFrameAllocResponse after allocation.
https://bugzilla.gnome.org/show_bug.cgi?id=790752
Makes GstMsdkContext to be a descendant of GstObject so that
we could track the life-cycle of the session of the driver.
Also replaces MsdkContext with this one.
Keeps msdk_d3d.c alive for the future.
https://bugzilla.gnome.org/show_bug.cgi?id=790752
Same changes as done for wasapisink in cbe2fc40a. Turns out this is
sometimes also needed for capture. Reported by Mathieu_Du.
Also improve logging in that case for easier debugging.
Sometimes the minimum period advertised by a card results in an
unaligned buffer size error during initialization in exclusive mode.
In that case, we can fetch the actual buffer size in frames and
calculate the period from that.
We can't do this pre-emptively because we can't call GetBufferSize
till Initialize has been called at least once.
https://bugzilla.gnome.org/show_bug.cgi?id=793289
This reduces the chances of startup glitches, and also reduces the
chances that we'll get garbled output due to driver bugs.
Recommended by the WASAPI documentation.
https://bugzilla.gnome.org/show_bug.cgi?id=793289
So far, we have been completely discarding the values of latency-time
and buffer-time and trying to always open the device in the lowest
latency mode possible. However, sometimes this is a bad idea:
1. When we want to save power/CPU and don't want low latency
2. When the lowest latency setting causes glitches
3. Other audio-driver bugs
Now we will try to follow the user-set values of latency-time and
buffer-time in shared mode, and only latency-time in exclusive mode (we
have no control over the hardware buffer size, and there is no use in
setting GstAudioRingBuffer size to something larger).
The elements will still try to open the devices in the lowest latency
mode possible if you set the "low-latency" property to "true".
https://bugzilla.gnome.org/show_bug.cgi?id=793289
This requires using allocated strings, but it's the best option. For
instance, a call could fail because CoInitialize() wasn't called, or
because some other thing in the stack failed.
https://bugzilla.gnome.org/show_bug.cgi?id=793289
This is particularly important when running in exclusive mode because
any delays will immediately cause glitching.
The MinGW version in Cerbero is too old, so we can only enable this when
building with MSVC or when people build GStreamer for MSYS2 or other
MinGW-based distributions.
To force-enable this code when building with MinGW, build with
CFLAGS="-DGST_FORCE_WIN_AVRT -lavrt".
https://bugzilla.gnome.org/show_bug.cgi?id=793289
This provides much lower latency compared to opening in shared mode,
but it also means that the device cannot be opened by any other
application. The advantage is that the achievable latency is much
lower.
In shared mode, WASAPI's engine period is 10ms, and so that is the
lowest latency achievable.
In exclusive mode, the limit is the device period itself, which in my
testing with USB DACs, on-board PCI sound-cards, and HDMI cards is
between 2ms and 3.33ms.
We set our audioringbuffer limits to match the device, so the
achievable sink latency is 6-9ms. Further improvements can be made if
needed.
https://bugzilla.gnome.org/show_bug.cgi?id=793289
We will use ->device for storing a pointer to the IMMDevice structure
which is needed for fetching the caps supported by devices in
exclusive mode.
https://bugzilla.gnome.org/show_bug.cgi?id=793289
This will set the actual-latency-time and actual-buffer-time of the sink
and source.
We completely ignore the latency-time/buffer-time values set
on the element because WASAPI is happiest when it is reading/writing at
the default period. Improving this will likely require the use of the
IAudioClient3 interfaces which are not available in MinGW yet.
https://bugzilla.gnome.org/show_bug.cgi?id=792897
Currently only does probing and does not handle messages from
endpoints/devices. In the future we want to do proper monitoring which
is well-supported in WASAPI.
https://bugzilla.gnome.org/show_bug.cgi?id=792897
We need to parse the WAVEFORMATEXTENSIBLE structure, figure out what
positions the channels have (if they are positional), and reorder them
as necessary.
https://bugzilla.gnome.org/show_bug.cgi?id=792897
There is no fixed limitation for the number of devices on the
decklink API side according to BlackMagic. Many PC motherboards
are able support 6 decklink cards each with up to 8 inputs so
a limit of 16 might well be too low.
https://bugzilla.gnome.org/show_bug.cgi?id=777239
Both the source and the sink elements were broken in a number of ways:
* prepare() was assuming that the format was always S16LE 2ch 44.1KHz.
We now probe the preferred format with GetMixFormat().
* Device initialization was done with the wrong buffer size
(buffer_time is in microseconds, not nanoseconds).
* sink_write() and src_read() were just plain wrong and would never
write or read anything useful.
* Some functions in prepare() were always returning FALSE which meant
trying to use the elements would *always* fail.
* get_caps() and delay() were not implemented at all.
TODO: support for >2 channels
TODO: pro-audio low-latency
TODO: SPDIF and other encoded passthroughs
Three new properties are now implemented: role, mute, and device.
* 'role' designates the stream role of the initialized device, see:
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370842(v=vs.85).aspx
* 'device' is a system-wide GUIDesque string for a specific device.
* 'mute' is a sink property and simply mutes it.
On my Windows 8.1 system, the lowest latency that works is:
wasapisrc buffer-time=20000
wasapisink buffer-time=10000
aka, 20ms and 10ms respectively. These values are close to the lowest
possible with the IAudioClient interface. Further improvements require
porting to IAudioClient2 or IAudioClient3.
https://docs.microsoft.com/en-us/windows-hardware/drivers/audio/low-latency-audio
Sometimes we might get an audio packet without a corresponding video
frame. In these cases, the stream and hardware reference timestamps
would be missing, because they're called on the video frame. Instead of
potentially breaking stuff downstream that might depend on these, we now
extrapolate them.
https://bugzilla.gnome.org/show_bug.cgi?id=792042
When we receive a video or audio buffer, we calculate the next stream
time based on the current stream time + buffer duration. If the next
buffer's stream time is after that, we issue a warning.
This happens because the stream time incoming from Decklink should be
really constant and without gaps. If there is a gap, it means that
something went wrong, e.g. the internal buffer pool is empty (too many
buffers queued up downstream).
https://bugzilla.gnome.org/show_bug.cgi?id=781776
Sometimes we might get an audio packet without a corresponding video
frame. In these cases, the stream and hardware reference timestamps
would be missing, because they're called on the video frame. Instead of
potentially breaking stuff downstream that might depend on these, we now
extrapolate them.
https://bugzilla.gnome.org/show_bug.cgi?id=792042
The correct behaviour of anything stuck in the ->render() function
between ->unlock() and ->unlock_stop() is to call
gst_base_sink_wait_preroll() and only return an error if this returns an
error, otherwise, it must continue where it left off!
https://bugzilla.gnome.org/show_bug.cgi?id=774950
Not only if the video sink is set to PLAYING so far. Also give more
useful debug output about why we don't start, and don't start if already
started.
Also refactor the function to early-return instead of having a huge
if-else block over the whole function.
https://bugzilla.gnome.org/show_bug.cgi?id=790114
The Decklink and GstAudioBaseSink APIs don't fit very well together,
which causes various problems due to inaccuracies in the clock
calculations and the actual ringbuffer and GStreamer's copy getting of
sync.
Problems are audio drop-outs and A/V sync getting wrong after
pausing/seeking.
https://bugzilla.gnome.org/show_bug.cgi?id=790114
When we cannot scale, we need to enforce the pixel aspect ratio.
This was partly implemented in the previous patch. Doing this
simplify some of the code.
https://bugzilla.gnome.org/show_bug.cgi?id=784599
1. Similar to 880f3d8, don't consider not getting an output buffer as
an error during flushing. I've seen the following sometimes when
encoding:
W GStreamer+amcvideoenc: java.lang.IllegalStateException
W GStreamer+amcvideoenc: at android.media.MediaCodec.getBuffer(Native Method)
W GStreamer+amcvideoenc: at android.media.MediaCodec.getOutputBuffer(MediaCodec.java:2886)
2. For amcvideodec/enc, call _find_nearest_frame (which grabs a fresh
reference on a GstVideoCodecFrame) after we have an output buffer,
so as to not leak the reference, in case getting an output buffer
fails.
Otherwise, if we get an error grabbing the output buffer, we leak
the reference to the frame. This can cause issues with a
v4l2bufferpool feeding the encoder not being able to clean itself
up properly due to buffers still being marked as in-use.
https://bugzilla.gnome.org/show_bug.cgi?id=791258
This is to be used with gst_video_overlay_set_render_rectangle()
so the application can calculate a rectangle that fits inside
the display. The property changes are notify in a way that you
can watch either notify::display-width or notify::display-height
and both will be up-to-data when this is called back. Before the
element is started, the size will be 0x0.
https://bugzilla.gnome.org/show_bug.cgi?id=784599
Implement videooverlay interface in kmssink, divided into two cases:
when driver supports scale, then we do refresh in show_frame(); if
not, send a reconfigure event to upstream and re-negotiate, using the
new size.
https://bugzilla.gnome.org/show_bug.cgi?id=784599
If the driver requires more data, just unref the frame at the moment
then retreive/finish the frame after encoding is finished.
This also fixes a memory leak.
https://bugzilla.gnome.org/show_bug.cgi?id=790312
Fixes outputted frame sequence when performing a seek
i.e. when seeking backwards, the first frame after the seek was a frame
from the future. This would result in GstVideoDecoder essentially
marking all the timestamps as essentially bogus and the base class would
attempt to compensate. A visible indication of this was 'decreasing timestamp'
warning after a seek.
https://bugzilla.gnome.org/show_bug.cgi?id=790478
The "fields" flag is ignored because currently GStreamer doesn't support
having only top or only bottom fields inside a frame. The "drop frame"
flag is ignored because some occurrences have been spotted where it
wasn't set while it should have been. In practice, when we have 29.97 or
59.94 FPS, it's always drop-frame.
https://bugzilla.gnome.org/show_bug.cgi?id=790112
When we receive a video or audio buffer, we calculate the next stream
time based on the current stream time + buffer duration. If the next
buffer's stream time is after that, we issue a warning.
This happens because the stream time incoming from Decklink should be
really constant and without gaps. If there is a gap, it means that
something went wrong, e.g. the internal buffer pool is empty (too many
buffers queued up downstream).
https://bugzilla.gnome.org/show_bug.cgi?id=781776
If we drop many frames at once, printing one message per video frame and
one per audio packet would cause a lot of disk IO. Just print a total at
the end.
https://bugzilla.gnome.org/show_bug.cgi?id=788780
Now that we are doing lazy allocation, we may endup calling _stop()
before the allocator was created. As a side effect, we need to nul-check
the pointer before calling it's method (_clear_cache()).
https://bugzilla.gnome.org/show_bug.cgi?id=787593
DRM_RDWR was not defined until libdrm 2.4.68. However,
in configure.ac we only require libdrm >= 2.4.55.
Seems silly to to bump minimum libdrm version for a simple
define. Thus, define DRM_RDWR if it's not defined.
This fixes compilation error introduced in:
commit 922031b0f9
Author: Nicolas Dufresne <nicolas.dufresne@collabora.com>
Date: Tue Sep 12 12:07:13 2017 -0400
kms: Export DMABuf from Dumb buffer when possible
https://bugzilla.gnome.org/show_bug.cgi?id=787593
Signed-off-by: U. Artie Eoff <ullysses.a.eoff@intel.com>
When we guess the strides, we need to also update the GstVideoInfo.size
otherwise the memory size will be set to something smaller then needed.
This was causing crash with the DMABuf exportation, since we would not
mmap() a large enough buffer.
https://bugzilla.gnome.org/show_bug.cgi?id=787593
The buffer itself is 128 bytes into the allocated memory area, to be
able to store the size and other metadata before it. Freeing the buffer
directly will make malloc moderately unhappy.
If bo allocation failed we destroy the buffer and return GST_FLOW_ERROR,
but the @buffer pointer was still pointing to the address of the
destroyed buffer. gst_kms_sink_copy_to_dumb_buffer() was then trying to
unref it when bailing out causing a crash.
Leave @buffer untouched if allocation failed to fix the crash.
Also remove the check on *buffer being not NULL as gst_buffer_new()
will abort if it failed.
https://bugzilla.gnome.org/show_bug.cgi?id=787442
Implement videooverlay interface in kmssink, divided into two cases:
when driver supports scale, then we do refresh in show_frame(); if
not, send a reconfigure event to upstream and re-negotiate, using the
new size.
https://bugzilla.gnome.org/show_bug.cgi?id=784599
We used to to handle the driver pitch only for single plan video format.
Add support for multi planes format by re-using the extrapolate function
from the v4l2 element.
Also use this pitch to calculate the proper offsets.
Prevent DRM drivers to pick a slow path if the pitches/offsets don't
match the ones it reported.
https://bugzilla.gnome.org/show_bug.cgi?id=785029
No semantic change, just renamed the 'tmp' variable to a more meaningful
name and to use the same structure as in gst_kms_allocator_bo_alloc().
Needed as I'm going to move the gst_memory_init() call after the
allocation of the DUMB buffer.
https://bugzilla.gnome.org/show_bug.cgi?id=785029
HRESULT is unsigned long on Windows, but the Decklink headers define
it to 'int' on Linux. Confusingly, the defines that talk about the
possible return values for it use long constants. The easy fix would
be to change the linux/LinuxCOM.h header, but that's copied from the
decklink SDK.
Change the logging to always upcast to unsigned long while printing
HRESULT for consistency across platforms.
gstdecklinkvideosrc.cpp:425:7: warning: format '%x' expects argument of type 'unsigned int', but argument 8 has type 'HRESULT {aka long int}' [-Wformat]
[and so on]
gstdecklinkaudiosink.cpp:155:19: error: conflicting type attributes specified for 'virtual HRESULT GStreamerAudioOutputCallback::QueryInterface(const IID&, void**)'
In file included from /var/lib/jenkins/workspace/cerbero-cross-mingw32/workdir/mingw/w32/bin/../lib/gcc/i686-w64-mingw32/4.7.3/../../../../i686-w64-mingw32/include/objbase.h:153:0,
from /var/lib/jenkins/workspace/cerbero-cross-mingw32/workdir/mingw/w32/bin/../lib/gcc/i686-w64-mingw32/4.7.3/../../../../i686-w64-mingw32/include/ole2.h:16,
from /var/lib/jenkins/workspace/cerbero-cross-mingw32/workdir/mingw/w32/bin/../lib/gcc/i686-w64-mingw32/4.7.3/../../../../i686-w64-mingw32/include/windows.h:94,
from /var/lib/jenkins/workspace/cerbero-cross-mingw32/workdir/mingw/w32/bin/../lib/gcc/i686-w64-mingw32/4.7.3/../../../../i686-w64-mingw32/include/rpc.h:16,
from win/DeckLinkAPI.h:27,
from gstdecklink.h:35,
from gstdecklinkaudiosink.h:27,
from gstdecklinkaudiosink.cpp:25:
/var/lib/jenkins/workspace/cerbero-cross-mingw32/workdir/mingw/w32/bin/../lib/gcc/i686-w64-mingw32/4.7.3/../../../../i686-w64-mingw32/include/unknwn.h:67:25: error: overriding 'virtual HRESULT IUnknown::QueryInterface(const IID&, void**)'
(and many more)
https://ci.gstreamer.net/job/cerbero-cross-mingw32/6407/console
The default memory allocator of the decklink library allocates
a fixed pool of buffers, and the number of buffers is unknown.
This makes it impossible do useful queuing downstream. The new
memory allocator can create an unlimited number of buffers,
giving all queuing features one would expect from a live source.
https://bugzilla.gnome.org/show_bug.cgi?id=782556
In this patch we keep track of the cached kmsmem in a way
that we can clear the cache during the drain process. This
release the framebuffer before waiting for the next vblank,
hence add support for DRM driver (like Intel one) that release
the associated DMABuf reference asynchronously.
https://bugzilla.gnome.org/show_bug.cgi?id=782774
kmssink keeps a reference on the last rendered buffer. If this buffer
refers to an upstream buffer, it should be should be released on DRAIN
and ALLOCATION queries so all upstream buffers can be returned to the
pool if needed. As the buffer may be used for scanout, we copy this
buffer into a dumb buffer prior to let it go.
Based on patch from Guillaume Desmottes <guillaume.desmottes@collabora.com>
https://bugzilla.gnome.org/show_bug.cgi?id=782774
This otherwise breaks DMABuf reclaiming. This is not visible from
userspace, but inside the kernel, the DRM driver will hold a ref to the
DMABuf object. With a V4L2 driver allocating those DMABuf, it then
prevent changing the resolution and re-allocation new buffers.
https://bugzilla.gnome.org/show_bug.cgi?id=782774
Milliseconds was wrong and made use of this timeout quite
confusing. The code uses the value as microsenconds so
any meaningful number was off by orders of magnitude.
Set the pts and dts on the frame that we receive from the msdk.
Also fix the inverted logic in setting sync points, previously we
were marking all frames as sync points except IDRs.
https://bugzilla.gnome.org/show_bug.cgi?id=782801
When extracting an aux buffer from an MJPG carrier, at
*least* put the original timestamp on it, even if we
fail to apply any other timestamp (which we always do
at the moment, because the timestamp calculating code
was never finished). Apply a DTS using the camera
supplied delay value as well, assuming that there's
no re-ordering going on (there isn't in the C920,
which is really the only extant camera doing this
stuff) and a warning if that turns out not to be true.
This is basically a frame counter provided by the driver and it's
advancing at the speed of the HDMI/SDI input. Having this available on
each buffer allows to know what constant-framerate-based timestamp each
frame is corresponding to and can be used e.g. to write out files
accordingly without having the local pipeline clock timestamps used.
https://bugzilla.gnome.org/show_bug.cgi?id=779213
The main advantage is that our sleeps can be interrupted in case of
an src_reset(). Earlier, we would need to wait for a read to complete
before we could do a reset, which could take a long time.
https://bugzilla.gnome.org/show_bug.cgi?id=781249
The audio packet times can be completely unrelated to the video stream
time, depending on the card. While this looks like a bug in the driver,
just always using the video stream time (which is correct) works as a
workaround for now.
Earlier, the plugin was ignoring those settings and blindly setting
buffer-time to 2 seconds and latency-time to 200ms, which forced all
pipelines to have a minimum latency of 200ms + sink latency.
The values of segsize and segtotal were also not derived correctly.
Now we obey these values, and you can get close to the previous
behaviour by setting buffer-time and latency-time manually. Note that
they are set in microseconds.
As a consequence, when we haven't received enough data from the
device, we now sleep for a time proportional to the data remaining.
However, Directsound is a deprecated API so it maintains its own
software ringbuffer which updates at arbitrary intervals. Hence we
might have to wait a full segsize to get the last 10% of data. To
avoid tight loops, we clamp our sleep floor at 10ms.
In my testing, this keeps the wakeups not-too-high (proportional to
the latency-time set on the source). Further improvements should be
made by fixing the WASAPI audio source plugin instead of this.
Directsound is deprecated and as the comments explain, it is
impossible to get low latency, decent quality, or good performance
from it.
Based on a patch by Sebastian Dröge <sebastian@centricular.com>
https://bugzilla.gnome.org/show_bug.cgi?id=781249
This reverts commit 845832263b.
The commit broke cross-mingw CI:
https://ci.gstreamer.net/job/GStreamer-master/8659/console
It seems that cross-mingw on Autotools and native-mingw on Meson
disagree about the size of HRESULT. Revert for now till I can
investigate the Meson side of things some more.
MinGW does not provide comsupp.lib, so there's no implementation of
_com_util::ConvertBSTRToString. Use a fallback implementation that
uses wcstombs() instead.
On MinGW we also truncate the name to 100 chars which should be fine.
The QTKit framework had been deprecated for long in favour of AVFundation
framework and we already have avfvideosrc that provides the same
functionality.
https://bugzilla.gnome.org/show_bug.cgi?id=782078
MediaCodec gives us a presentation timestamp of 0 if it does not know
anything, but GStreamer gives us GST_CLOCK_TIME_NONE. Don't mix up these
two.
https://bugzilla.gnome.org/show_bug.cgi?id=780190
This is basically a frame counter provided by the driver and it's
advancing at the speed of the HDMI/SDI input. Having this available on
each buffer allows to know what constant-framerate-based timestamp each
frame is corresponding to and can be used e.g. to write out files
accordingly without having the local pipeline clock timestamps used.
https://bugzilla.gnome.org/show_bug.cgi?id=779213
This reverts commit 6d256d9908.
It was configuring the period/buffer size in a way that often causes
drop-outs or complete underruns. Needs further investigation.
"meson encountered an error in file
sys/decklink/meson.build, line 33, column 2:
Invalid use of addition: must be str, not list"
Also remove nonsensical linker flags on windows.
https://bugzilla.gnome.org/show_bug.cgi?id=781156
segsize should be based on latency-time, and must be a multiple of the
frame size. segtotal should be based on buffer-time and segsize.
This prevents errors caused by outputting buffers that are not a
multiple of the frame size, and actually makes the buffer-time and
latency-time properties do what they're supposed to do.
gstkmssink.c: In function ‘gst_kms_sink_get_input_buffer’:
gstkmssink.c:1102:29: error: ‘mems[0]’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
kmsmem = (GstKMSMemory *) get_cached_kmsmem (mems[0]);
^~~~~~~~~~~~~~~~~~~~~~~~~~~
cc1: all warnings being treated as errors
Avfvideosrc represents an iphone camera or, on mac, a screencapture session.
The old API allowed you to select an input device by device index only. The new
API adds the ability to select the position (front or back facing) and
device-type (wide angle, telephoto, etc.). Furthermore, you can now specify
the orientation (portrait, landscape, etc.) of the videostream.
https://bugzilla.gnome.org/show_bug.cgi?id=778333
All code interacting with Objective-C objects should now use Automated
Reference Counting rather than manual memory management or Garbage
Collection. Because ARC prohibits C-structs from containing
references to Objective-C objects, all such fields are now typed
'gpointer'. Setting and gettings Objective-C fields on such a
struct now uses explicit __bridge_* calls to tell ARC about
object lifetimes.
https://bugzilla.gnome.org/show_bug.cgi?id=777847
It was previously possible for videotexturecache to be finalized before all of
its textures. Finalizing outstanding textures in this circumstance leads
to a crash. This patch ensure resources are freed in the proper order.
https://bugzilla.gnome.org/show_bug.cgi?id=779247
This seems to happen sometimes on some hardware, and is not really
critical as long as the scheduling of the normal frames works fine.
Only post a warning message for this case.
Overriding the pad query function completely overrides all the default
query handling implemented in basesrc, including caps etc. The correct
thing to do is just override the basesrc query vfunc and then chain up
for the queries we don't handle.
The cached texture was treated as user_data passed to GstGLBaseMemory
and freed with a GDestroyNotify function. However, this data must
be treated specially: it must be destroyed in the GL thread.
https://bugzilla.gnome.org/show_bug.cgi?id=778434
Enforce exactly the same raw video format on both sides, include a
videoconvert and queue before the video sink and make the shm area a
little bit bigger so that things don't get stuck.
and error out here already otherwise. We currently don't support
reconfiguration here and it can't happen really either unless the auto
mode is selected.
15:18:47 gstdecklinkaudiosrc.cpp:745:45: error: cannot initialize a parameter of type 'int64_t *' (aka 'long long *') with an rvalue of type 'gint64 *' (aka 'long *')
15:18:47 (BMDDeckLinkMaximumAudioChannels, &self->channels_found);
15:18:47 ^~~~~~~~~~~~~~~~~~~~~
15:18:47 ./linux/DeckLinkAPI.h:970:87: note: passing argument to parameter 'value' here
15:18:47 virtual HRESULT GetInt (/* in */ BMDDeckLinkAttributeID cfgID, /* out */ int64_t *value) = 0;
15:18:47 ^
gstdecklink.cpp:821:11: warning: variable 'dtc' is used uninitialized whenever 'if' condition is false [-Wsometimes-uninitialized]
if (m_input->videosrc) {
^~~~~~~~~~~~~~~~~
gstdecklink.cpp:837:41: note: uninitialized use occurs here
stream_time, stream_duration, dtc, no_signal);
^~~
gstdecklink.cpp:821:7: note: remove the 'if' if its condition is always true
if (m_input->videosrc) {
^~~~~~~~~~~~~~~~~~~~~~~
gstdecklink.cpp:810:29: note: initialize the variable 'dtc' to silence this warning
IDeckLinkTimecode *dtc;
^
= NULL
In some places a GST_FLOW_FLUSHING result was return as a FALSE
gboolean and then returned from a parent function as
GST_FLOW_ERROR. This prevented seeking from working.
https://bugzilla.gnome.org/show_bug.cgi?id=776360
gstamcvideodec.c: In function 'gst_amc_video_dec_src_query':
gstamcvideodec.c:2412:55: error: 'self' undeclared (first use in this function)
if (gst_gl_handle_context_query ((GstElement *) self, query,
This logic did not belong to the channel configuration
parser (only used by dvbbasebin) but to dvbsrc, which
is the element directly using this value and honoring
the "adapter" property.
Allows previously non-working cases like this to work:
GST_DVB_ADAPTER=1 gst-launch-1.0 dvbsrc delsys=11 modulation=7 frequency=689000000 ! fakesink
If they were not ported after 4+ years it seems unlikely that anybody is
ever going to need them again. They're still in the GIT history if
needed.
https://bugzilla.gnome.org/show_bug.cgi?id=774530
Configure the display mode when setting the negotiated caps instead of
during showing the first frame.
A framebuffer is required to set the mode. Allocate a buffer object
according to the negotiated caps and use it to set the mode. This buffer
object cannot be freed until another page flip happened on the crtc
(i.e., until the first frame is rendered).
https://bugzilla.gnome.org/show_bug.cgi?id=773473
Signed-off-by: Víctor Manuel Jáquez Leal <vjaquez@igalia.com>
The force-modesetting parameter forces the kmssink to ignore already
configured display modes, to configure the display mode itself and use
the base plane for output.
https://bugzilla.gnome.org/show_bug.cgi?id=773473
If the input buffers have a different size than the display, the frames
would have to be scaled or positioned on the display. The kmssink cannot
decide which behaviour would be appropriate for which use case.
In order to avoid scaling or positioning of the input stream, allow only
the supported connector resolutions in the sink caps.
https://bugzilla.gnome.org/show_bug.cgi?id=773473
Signed-off-by: Víctor Manuel Jáquez Leal <vjaquez@igalia.com>
Displays usually support multiple modes. Therefore, the kmssink should
not only support the preferred mode, but any mode that is supported by
the display.
https://bugzilla.gnome.org/show_bug.cgi?id=773473
The kmssink assumed that the mode was already set by another application
and used an overlay plane for displaying the frames.
Use the preferred mode of the monitor and render to the base plane if
the crtc does not have a valid mode.
https://bugzilla.gnome.org/show_bug.cgi?id=773473
Signed-off-by: Víctor Manuel Jáquez Leal <vjaquez@igalia.com>
gstdecklink.cpp: In member function ‘virtual HRESULT GStreamerDecklinkInputCallback::VideoInputFrameArrived(IDeckLinkVideoInputFrame*, IDeckLinkAudioInputPacket*)’:
gstdecklink.cpp:766:34: error: ‘base_time’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
capture_time -= base_time;
^
First of all, all the HD and UHD modes should be top-field-first, as
also returned by the Decklink mode iterator API.
Then we should include the caps field "field-order" in the caps of the
source (not the sink due to negotiation problems with optional fields).
And finally we should set the TFF flag on interlaced buffers that are
top-field-first.
On some hardware the first few frames are bogus and not very useful.
Their timestamps are off, they have no timecodes, or there are spurious
black frames / no-signal frames. After a few frames this stabilizes
though.
https://bugzilla.gnome.org/show_bug.cgi?id=774850
Based on this we calculate the actual capture time, which should get us
rid of any capturing jitter by averaging it out.
Also add a output-stream-time property which forces the elements to
output the stream time directly instead of doing any conversion to the
pipeline clock. Use with care.
https://bugzilla.gnome.org/show_bug.cgi?id=774850
The hardware timestamps have no relation to when frames were produced,
only when frames arrived somewhere in the hardware. Especially there is
no guarantee that audio and video will have the same hardware timestamps
although they belong together, and even more important: the rate with
which the hardware timestamps increase is completely unrelated to the
rate with which the frames are captured!
As such we can as well use the pipeline clock directly and stop doing
complicated calculations. Also as a side effect this allows now running
without any pipeline clock, by directly making use of the stream times
as reported by the driver.
https://bugzilla.gnome.org/show_bug.cgi?id=774850
libkms should not be used, because it imposes limitations on the DRM
API, especially regarding bpp and stride. Instead the DRM IOCTL should
be used directly.
Switch from libkms to the IOCTL interface. Set bpp and height for
framebuffer allocation to properly handle planar video formats.
https://bugzilla.gnome.org/show_bug.cgi?id=773473
Signed-off-by: Víctor Jáquez <vjaquez@igalia.com>
When a frame is found to not have an associated input source (cable
unplugged, wrong mode selected), an element warning will be issued. When
the next frame in the stream is found to have an input source selected
(e.g. cable replugged), an element info will be issued.
https://bugzilla.gnome.org/show_bug.cgi?id=774629
Fixes:
Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: '*** +[NSString stringWithUTF8String:]: NULL cString
in the state change test.
The default get_times() function of the base sink is just fine.
Remove the custom get_times() function, because the default function
already reads the timestamps from the buffers.
Signed-off-by: Michael Tretter <m.tretter@pengutronix.de>
https://bugzilla.gnome.org/show_bug.cgi?id=773473
Unfortunately this does not go through the normal state change
machinery, so we don't get notified about this in change_state().
However we need to stop scheduled playback, so that once PLAYING is
reached again we can start scheduled playback with the correct time.
Without this, flushing seeks in PLAYING will not work correctly:
decklinkvideosink will wait before showing the new frames for the amount
of time the pipeline was in PLAYING before.
Drawing is done via the GDI drawing functions. The cursor is
converted to a monochrome version before drawing. This is because
the GDI drawing functions seem to have undefined behavior with
cursor images including an alpha channel.
I could not find any other reliable way to draw these alpha
channel cursors without producing unwanted artifacts. These type
of cursors were introduced with Window Vista when run with it's
Aero theme.
Also adjust the cursor coordinates when capturing non-primary
screens via the "monitor" option.
https://bugzilla.gnome.org/show_bug.cgi?id=760172
* Rephrase tune error to be delsys-neutral
* Refer to the actual check in the 'missing sanity check' warnings
* Use "Delivery system" instead of 'delsys'. The
latter is OK as a shorthand in the code but not
even a real word
Currently dx9screencapsrc prints a verbose warning in case the screen
index is out of range for the current number of detected monitors. This
value is then dropped.
However there is no initial indication (beside the console print) if it
worked or not. This may result in capturing an unwanted screen as it
would capture the last set index that was not rejected.
This patch sets the index regardless. Instead, the element throws an
error when it tries to run or getting caps for an invalid index.
https://bugzilla.gnome.org/show_bug.cgi?id=771817
In most display sink, the logic is to use as much as possible
of the given window. In this case, the window is the screen,
hence it's logical to scale up.
https://bugzilla.gnome.org/show_bug.cgi?id=767422
The source region was scaled for display before being passed
to drmModeSetPlane, which resulted in a portion of the video
being cropped. While when crop meta was present, the rectangle
was not centered since we where using unscaled width/height.
https://bugzilla.gnome.org/show_bug.cgi?id=767422
Some kms drivers demands specific pitches over the ones calculated by
GstVideoInfo. For example, intel driver demands strides round up 64.
This patch queries the driver for the prefered pitch and overwrites it
in the pool's GstVideoInfo structure.
https://bugzilla.gnome.org/show_bug.cgi?id=768446
While gint64 and int64_t are always the same, clang does not agree with that.
/Applications/Xcode.app/Contents/Developer/usr/bin/make -C decklink
CXX libgstdecklink_la-gstdecklinkaudiosink.lo
gstdecklinkaudiosink.cpp:675:79: error: cannot initialize a parameter of type 'int64_t *' (aka 'long long *') with an rvalue of type 'gint64 *' (aka 'long *')
ret = buf->output->attributes->GetInt (BMDDeckLinkMaximumAudioChannels, &max_channels);
^~~~~~~~~~~~~
./linux/DeckLinkAPI.h:692:87: note: passing argument to parameter 'value' here
virtual HRESULT GetInt (/* in */ BMDDeckLinkAttributeID cfgID, /* out */ int64_t *value) = 0;
^
Scale down to milliseconds, otherwise at least some hardware has problems
scheduling the frames (or schedules them too slow) and we run out of available
frames.
https://bugzilla.gnome.org/show_bug.cgi?id=770282
This commit introduces IOSGLMemory which is a GLMemory that falls back to
GstAppleCoreVideoMemory for CPU access. This is a temporary solution until
IOSurface gets exposed as a public framework on iOS and so we can use
IOSurfaceMemory on both MacOS and iOS.
https://bugzilla.gnome.org/show_bug.cgi?id=769210
Add systemstream=false to caps, otherwise the decoder
may be picked for MPEG-PS files. Also parsed=true,
as video toolbox expects entire frame in
VTDecompressionSessionDecodeFrame.
https://bugzilla.gnome.org/show_bug.cgi?id=770049
https://github.com/mesonbuild/meson
With contributions from:
Tim-Philipp Müller <tim@centricular.com>
Matej Knopp <matej.knopp@gmail.com>
Jussi Pakkanen <jpakkane@gmail.com> (original port)
Highlights of the features provided are:
* Faster builds on Linux (~40-50% faster)
* The ability to build with MSVC on Windows
* Generate Visual Studio project files
* Generate XCode project files
* Much faster builds on Windows (on-par with Linux)
* Seriously fast configure and building on embedded
... and many more. For more details see:
http://blog.nirbheek.in/2016/05/gstreamer-and-meson-new-hope.htmlhttp://blog.nirbheek.in/2016/07/building-and-developing-gstreamer-using.html
Building with Meson should work on both Linux and Windows, but may
need a few more tweaks on other operating systems.
_stdint.h is generated by Autotools and we don't really need it. All
supported platforms now ship with stdint.h. The only stickler was MSVC,
and since Visual Studio 2015 it also ships stdint.h now.
Uncompressed RGB frames can be (usually are) bottom-up
layout in DirectShow, and the code to flip them wasn't
properly ported from 0.10. Fix it.
Fix post-processing of RGB buffers. We need a writable
buffer, but the requests pool is holding an extra ref.
This could use more fixing to use a buffer pool
On the ODroid C1+ the H265 and H264 have the same name but are listed as two
different codecs. We have to handle them as the same one that supports both,
as otherwise we will register the same GType name twice which fails and we
then only have H265 support and not H264 support.
ahssrc is a new plugin that enables Gstreamer to read from the
android.hardware.Sensor Android sensors. These sensors are treated as
buffers and can be passed through and manipulated by the pipeline.
https://bugzilla.gnome.org/show_bug.cgi?id=768110
The calculation of the offset table was done base on a plane size
estimation. This does not always work. Instead, use memory offset the
same we as it's implement in GstVideoMeta map functions.
Without setting the DRM_CLIENT_CAP_UNIVERSAL_PLANES capability bit, only
overlay planes are made available for compatibility with legacy clients.
But if a CRTC doesn't have an overlay plane associated, then kmssink is
not able to find a plane for the CRTC and the pipeline will fail, i.e:
ERROR kmssink gstkmssink.c:482:gst_kms_sink_start:<kmssink0> Could not find a plane for crtc
If no overlay planes were found for a given CRTC, fallback to universal
planes so DRM will also return primary planes that can be used instead.
https://bugzilla.gnome.org/show_bug.cgi?id=768183
Signed-off-by: Javier Martinez Canillas <javier@osg.samsung.com>
Without setting the DRM_CLIENT_CAP_UNIVERSAL_PLANES capability bit, only
overlay planes are made available for compatibility with legacy clients.
But if a CRTC doesn't have an overlay plane associated, then kmssink is
not able to find a plane for the CRTC and the pipeline will fail, i.e:
ERROR kmssink gstkmssink.c:482:gst_kms_sink_start:<kmssink0> Could not find a plane for crtc
This patch adds a plane-id property to the kmssink element so a specific
plane can be used in case that a CRTC has only a primary plane associated.
https://bugzilla.gnome.org/show_bug.cgi?id=768183
Rather than assuming something. e.g. zerocopy on iOS with GLES3 requires
the use of Luminance/Luminance Alpha formats and does not work with
Red/RG textures.
Some names were incorrect. Authoritative source for
the dvbv5 format taken from v4l-utils' lib/libdvbv5/dvb-v5.c
Aditionally, add the missing setter mapping for the
modulation param.
This change makes ATSC work.
https://bugzilla.gnome.org/show_bug.cgi?id=764957
The hardware decoder can become (temporarily) unavailable across
VTDecompressionSessionCreate/Destroy calls. During negotiation if the currently
configured caps are still accepted by downstream we keep using them so we don't
have to destroy and recreate the decoding session.
This indirectly fixes https://bugzilla.gnome.org/show_bug.cgi?id=767429, by
making vtdec stick to GLMemory.
strcasecmp is not defined on MSVC, so just use the glib wrapper. Also pretend to
be Windows XP explicitly since the API we use was deprecated and removed
(ifdef-ed) from the SDK after this version of Windows. This will be especially
relevant once we stop supporting Windows XP soon:
https://bugzilla.gnome.org/show_bug.cgi?id=756866
The URI must already be escaped by the caller, we don't support passing around
invalid (unescaped) URIs via the GstURIHandler interface.
Also it will escape too much of the URI in this case, e.g.
ipod-library://item/item.m4a?id=3143338395173862951
becomes
ipod-library://item/item.m4a%3Fid%3D3143338395173862951
https://bugzilla.gnome.org/show_bug.cgi?id=767492
Move calling gst_vtdec_push_frames_if_needed from ::set_format to ::negotiate so
that we always drain even when renegotiation is triggered by downstream.
vtdec specifies sysmem; GLMemory as template caps. When negotiating, we used to
call gst_pad_peer_query_caps (..., filter) with our template caps as filter. The
query does gst_caps_intersect (filter, peercaps) internally which gives
precedence to the order of the filter caps. While we want to output sysmem by
default, when negotiating with glimagesink which returns GLMemory; sysmem; we
do want to do GL, so we now query using a NULL filter and intersect the result
with our template caps giving precedence to downstream's caps.
tl;dr: make sure we end up negotiating GLMemory with glimagesink
If for some reason the avdtpsink element can't go READY then the
gsta2dpsink can't either and so should release the ressources it
allocates when trying to do so.
Fix a leak with the generic/states test.
https://bugzilla.gnome.org/show_bug.cgi?id=767161
Similar to vtdec_hw, this commit adds a vtenc_h264_hw element that fails
caps negotiation unless a hardware encoder could actually be acquired.
This is useful in situations where a fallback to a software encoder
other than the vtenc_h264 software encoder is desired (e.g. to x264enc).
https://bugzilla.gnome.org/show_bug.cgi?id=767104
When renegotiating mid stream - for example with variable bitrate
streams - and therefore destroying and recreating VTSessions, the
hw decoder might become temporarily unavailable.
To deal with this and avoid erroring out on bitrate changes,
vtdec_hw now falls back to using the software decoder if the hw
one was available at some point but isn't anymore. At
renegotiation/bitrate change time, it will still retry to open
the hardware one.
::negotiate can be called several times before the CAPS event is sent downstream
so use the currently configured output state caps instead of the pad current
caps when deciding whether to recreate the VTSession or not.
This leads to creating/destroying less VTSessions which makes renegotiation more
reliable especially when using hw decoding.
There's no need for an end-of-list marker in the filter
PIDs array if full, as the absolute maximum number of
elements (MAX_FILTERS) is known.
CID #1362441