The functions to get the next fragment, next fragment timestamp and to advance
to the next fragment need to work differently when stream->segments is NULL.
Use logic similar to that introduced by commit 2105a310 to perform these
functions.
https://bugzilla.gnome.org/show_bug.cgi?id=749684
Simple implementation split from GstGLWindowWayland
Can now have multiple glimagesink elements all displaying output
linked via GL or otherwise (barring GL platform limitations).
The intel driver is racy and can crash setting up the two glimagesink contexts.
e.g.
videotestsrc ! tee name=t ! queue ! glupload ! glimagesinkelement
t. ! queue ! gleffects_blur ! glimagesinkelement
videotestsrc ! glupload ! glfiltercube ! tee name=t ! queue ! glimagesinkelement
t. ! queue ! gleffects_blur ! glimagesinkelement
Otherwise we could end up being mistaken for the diference between a
gl3 and a gl2 context resulting in a failure getting the list of
extensions from the wrapped context due to the difference between
glGetString and glGetStringi for the GL_EXTENSIONS token.
https://bugzilla.gnome.org/show_bug.cgi?id=749728
When called from gst_gl_window_win32_close(), internal window
could not exist, and if it does it's going to be destroyed just
after that anyway. Also it causes window_proc() to be called
and crash because it gets a NULL context.
When called from gst_gl_window_win32_set_window_handle() we are
going to set another parent anyway, and it's probably better to
reparent directly instead of passing by a NULL parent which could
cause the internal window to popup briefly.
https://bugzilla.gnome.org/show_bug.cgi?id=749601
gst_gl_context_finalize() is calling gst_gl_window_win32_quit()
which was posting a message. But then window_proc takes window's
context and get a NULL.
Now that we've got a GMainLoop we can do like other backends and
simply call g_main_loop_quit().
This also remove duplicated code to release the parent window and
potential crash there because parent_proc could be NULL if we never
created the internal window. That could happen for example if setting
state to READY then setting a window_handle, and go back to NULL state.
https://bugzilla.gnome.org/show_bug.cgi?id=749601
gst_gl_window_win32_send_message_async() could be called before the
internal window is created so we cannot use PostMessage there.
x11 and wayland backends both create a custom GSource for this,
so there is no reason to not do that for win32.
https://bugzilla.gnome.org/show_bug.cgi?id=749601
Like SPS/PPS they do contain information which will be needed to
decode the following data (as per definition of the flag)
Also ensures that the series of SPS/PPS/SEI NALU before a keyframe
can be considered as one contiguous header
In the same way we do it for the DELTA_UNIT flag
This allows downstream elements to know whether a given mpeg-ts
packet contains a corresponding HEADER elementary unit
Previously the VPS unit was detected and all next packets where copied
into the header buffer assuming only SPS and PPS would follow. This is
not always true, also other types of NAL units follow the VPS unit and
where copied to the header buffer. Now the VPS/SPS/PPS are explicitely
detected and copied in the header buffer.
1. Set the sync point after the (possible) upload has occured
2. Wait in the correct GL context (the draw context)
Note: We don't add the GL sync meta to the input buffer as it's not
writable and a copy would be expensive.
Similar to the change with the same name for glimagesink
1. Set the sync point after the (possible) upload has occured
2. Wait in the correct GL context (the draw context)
Note: We don't add the GL sync meta to the input buffer as it's not
writable and a copy would be expensive.
Otherwise it could stay client side without being submitted to the GL
server resulting in another context waiting on a Fence that will never
become signalled causing a deadlock.
The property level has a minimum value of 0. But when we set the level as 0,
it gets an assertion error. The function icvPyrSegmentation8uC3R returns false
if level is set as 0, since the minimum level cant be 0 and thus results in error.
Hence changing the minimum value to 1.
https://bugzilla.gnome.org/show_bug.cgi?id=749525
Timestamps should start at the segment start, rather than 0, so
we need to not subtract the first timestamp. This makes the sink
correctly account for running time when switching PMTs where a
stream starts not quite at zero, causing timing offsets that can
become noticeable and causing dropped frames after a few times.