gst_buffer_map () results in memcopying when a GstBuffer contains
more than one GstMemory and when AVC (length-prefixed) alignment is used.
This has quite an impact on performance on systems with limited amount of
resources. With this patch the whole GstBuffer will not be mapped at once,
instead each individual GstMemory will be iterated and mapped separately.
When calling gst_rtp_jitter_buffer_reset you pass in a seqnum.
This is considered the starting-point for a new stream.
However, the old behavior would unref this buffer, basically lying to
the thread that is pushing out buffers saying that it can expect
this buffer, when it would never arrive. The resulting effect being no
more buffer pushed out of the jitterbuffer, and it would buffer
incoming data indefinitely.
By instead inserting the buffer in the gap_packets queue, the _reset()
function will take responsibility for using that as the first buffer
of the new stream.
Fixes#703
In order to concatenate fragments, splitmuxsrc offsets
the start of each fragment PTS to 0 to align it with the
previous file. This means that DTS can go negative for
the first fragment, with really bad results.
Add a fixed offset to outgoing timestamp ranges to
avoid that.
When using the testclock for determining clock in test, it is sometimes observed
that the clock entry is not registered in time by the aggregator. So deadlock occurs
between the aggregator and the test thread.
* Organize GstRtpFunnelPad and GstRtpFunnel separately
* Use G_GNUC_UNUSED instead of (void) casts
* Don't call an event "caps"
* Use semicolons after GST_END_TEST (helps gst-indent)
When used for processing bundled media streams within rtpbin the rtpssrcdemux element may
receive bad RTP and RTCP packets, these should not be treated as a fatal error.
The property is useful against atacks when the sender changes SSRC for
every RTP packet. The property with the same name introduced in rtpbin
was not enough, because we still can end up with thousands of pads
allocated in rtpssrcdemux.
When connected to an upstream rtpfunnel element, payload-type,
ssrc and clock-rate will not be present in the received caps.
rtprtxsend can already deal with only the clock rate being
present there, a new property is exposed to allow users to
provide a payload-type -> clock-rate map, this enables the
use of the max-size-time property for bundled streams.
The key is to make sure the jitterbuffer is set to NULL *before* the
ptdemux.
The race that existed would basically happen when ptdemux had reached
READY, and the jitterbuffer would then push a buffer, triggering a new
pad with a new payloadtype being added and ghosted to the rtpbin itself.
However, the srcpad of the ptdemux would now be inactive, and all the
sticky-event pushed on it would be swallowed, not allowing any to reach
the ghost-pad. Then the buffer in-flight would come to the ghostpad,
and we would assert that a buffer arrived before the necessary
events.
By simply re-ordering the state-changes, we ensure that there will be
no buffer racing into the ptdemux while its state is being changed,
and the problem disappears completely.
Notice also that there is not point in disconnecting the signals on the
ptdemux before this point, since we need the push-thread to settle
down before we can do this in a non-racy way.
One of the jitterbuffers functions is to try and make sense of weird
network behavior.
It is quite unhelpful for the jitterbuffer to start dropping packets
itself when what you are trying to achieve is better network resilience.
In the case of a skew, this could often mean the sender has restarted
in some fashion, and then dropping the very first buffer of this "new"
stream could often mean missing valuable information, like in the case
of video and I-frames.
This patch simply reverts back to the old behavior, prior to 8d955fc32b
and includes the simplest test I could write to demonstrate the behavior,
where a single packet arrives "perfectly", then a 50ms gap happens,
and then two more packets arrive in perfect order after that.
# Conflicts:
# tests/check/elements/rtpjitterbuffer.c
This commit adds custom element messages for when gstrtpjitterbuffer
drops an incoming rtp packets due to for example arriving too late.
Applications can listen to these messages on the bus which enables
actions to be taken when packets are dropped due to for example high
network jitter.
Two properties has been added, one to enable posting drop messages and
one to set a minimum time between each message to enable throttling the
posting of messages as high drop rates.
When the queue is full (and adding more packets would risk a seqnum
roll-over), the best approach is to just start pushing out packets
from the other side. Just pushing out the packets results in the
timers being left hanging with old seqnums, so it's safer to just
execute them immediately in this case. It does limit the timer space
to the time it takes to receiver about 32k packets, but without
extended sequence number, this is the best RTP can do.
This also results in the test no longer needed to have timeouts or
timers as pushing packets in drives everything.
Fixes#619
If the jitterbuffer head change, there is no need to systematically
wakeup the timer thread. The timer thread will be waken up on if
an earlier timeout has been pushed. This prevent some more spurious
wakeup when the system is loaded. As a side effect, cranking the clock
may set the clock at an earlier position.
Implement a single timer queue for all timers. The goal is to always use
ordered queues for storing timers. This way, extracting timers for
execution becomes O(1). This also allow separating the clock wait
scheduling from the timer itself and ensure that we only wake up the
timer thread when strictly needed.
The knew data structure is still O(n) on insertions and reschedule,
but we now use proximity optimization so that normal cases should be
really fast. The GList structure is also embeded intot he RtpTimer
structure to reduce the number of allocations.
Add a property which explicitly maps splitmuxsink pads to the
muxer pads they should connect to, overriding the implicit logic
that tries to match pads but yields arbitrary names.
RTP and RTCP packets can be muxed together on the same channel (see
RFC5761) and can arrive in the same buffer list.
The GStreamer rtpsession element support RFC5761, so add a test to cover
this case for buffer lists too.
Buffers with different timestamps (e.g. packets belonging to different
frames) can arrive together in the same buffer list,
Add a test to cover this case.
When a new source fails to pass the probation period (i.e. new packets
have non-consecutive sequence numbers), then no buffer shall be pushed
downstream. Add a test to validate this case.
Add a test to verify that stats about received packets are correct when
using buffer lists in the rtpsession receive path.
Split get_session_source_stats() in two to be able to get stats from
a GstRtpSession object directly.