Add preserve_update_caps_result boolean on the class to allow
sub-classes to disable videoaggregator removing sizes and framerate
from the update_caps() return result.
A return value of GST_FLOW_OK with a NULL buffer from get_output_buffer()
means the sub-class doesn't want to produce an output buffer, so
skip it.
If gst_videoaggregator_do_aggregate() generates an error, make sure
to propagate it - don't just ignore and discard the error by
over-writing it with the gst_pad_push() result.
Previously when compiling GstGL with both GL and GLES2,
GL_RGBA8 was picked from GL/gl.h. But a clash may happen at
runtime when one is selecting GLES2.
gst_gl_internal_format_rgba allows to check at runtime
if it should use GL_RGBA or GL_RGBA8.
Simple implementation split from GstGLWindowWayland
Can now have multiple glimagesink elements all displaying output
linked via GL or otherwise (barring GL platform limitations).
The intel driver is racy and can crash setting up the two glimagesink contexts.
e.g.
videotestsrc ! tee name=t ! queue ! glupload ! glimagesinkelement
t. ! queue ! gleffects_blur ! glimagesinkelement
videotestsrc ! glupload ! glfiltercube ! tee name=t ! queue ! glimagesinkelement
t. ! queue ! gleffects_blur ! glimagesinkelement
Otherwise we could end up being mistaken for the diference between a
gl3 and a gl2 context resulting in a failure getting the list of
extensions from the wrapped context due to the difference between
glGetString and glGetStringi for the GL_EXTENSIONS token.
https://bugzilla.gnome.org/show_bug.cgi?id=749728
When called from gst_gl_window_win32_close(), internal window
could not exist, and if it does it's going to be destroyed just
after that anyway. Also it causes window_proc() to be called
and crash because it gets a NULL context.
When called from gst_gl_window_win32_set_window_handle() we are
going to set another parent anyway, and it's probably better to
reparent directly instead of passing by a NULL parent which could
cause the internal window to popup briefly.
https://bugzilla.gnome.org/show_bug.cgi?id=749601
gst_gl_context_finalize() is calling gst_gl_window_win32_quit()
which was posting a message. But then window_proc takes window's
context and get a NULL.
Now that we've got a GMainLoop we can do like other backends and
simply call g_main_loop_quit().
This also remove duplicated code to release the parent window and
potential crash there because parent_proc could be NULL if we never
created the internal window. That could happen for example if setting
state to READY then setting a window_handle, and go back to NULL state.
https://bugzilla.gnome.org/show_bug.cgi?id=749601
gst_gl_window_win32_send_message_async() could be called before the
internal window is created so we cannot use PostMessage there.
x11 and wayland backends both create a custom GSource for this,
so there is no reason to not do that for win32.
https://bugzilla.gnome.org/show_bug.cgi?id=749601
Otherwise it could stay client side without being submitted to the GL
server resulting in another context waiting on a Fence that will never
become signalled causing a deadlock.
Make the passthrough check contingent on only the fields we
can modify being unchanged, and pre-compute it when caps
change instead of checking on each buffer. Makes the passthrough
more lenient if consumers are lax about making input and output
caps complete.
The EOS and EOB nals have the size 2 which is the size of
nal unit header itself. The gst_h265_parser_identify_nalu()
is not required to scan start code again in this case.
In other cases, for a valid nalunit the minimum required size
is 3 bytes (2 byte header and at least 1 byte RBSP payload)
Skip the byte alignment bits as per the logic of byte_alignment()
provided in hevc specification. This will fix the calculation of
slice header size.
https://bugzilla.gnome.org/show_bug.cgi?id=747613
Even for "live" streams we are not live in the GStreamer meaning of the word.
We don't produce buffers that are timestamped based on their "capture time"
and our clock, but just based on whatever timestamps the stream might contain.
Also even if we wanted to claim to be live, that wouldn't work well as we
would have to return GST_STATE_CHANGE_NO_PREROLL when going from READY to
PAUSED, which we can't. We first need data to know if we are "live" or not.
It will deadlocks as we will then join() the update task from itself. Instead
just post an actual error message on the bus and only stop the update task.
The application is then responsible for shutting down the element, and thus
all the other tasks and everything, based on the error message it gets.
This would've also triggered if for some reason the segment was updated
in such a way that PTS went backwards, but the running time increased. Like
what happens when non-flushing seeks are done.
We're doing a proper buffer-from-the-past check a few lines below based on the
running time, which is the only time we should care about here.
And keep on querying upstream until we get a reply.
Also, the _get_latency_unlocked() method required being calld
with a private lock, so removed the _unlocked() variant from the API.
And it now returns GST_CLOCK_TIME_NONE when the element is not live as
we think that 0 upstream latency is possible.
https://bugzilla.gnome.org/show_bug.cgi?id=745768
It might return OK from subclasses and it could cause a bitrate
renegotiation. For DASH and MSS that is ok as they won't expose
new pads as part of this but it can cause issues for HLS as
it will expose new pads, leading to pads that will only have EOS
that cause decodebin to fail
https://bugzilla.gnome.org/show_bug.cgi?id=745905
Show the DispmanX window only if there's no shared external GL context
set up. When a window is required by the context a transparent
DispmanX element is created and later on made visible by the ::show
method.
https://bugzilla.gnome.org/show_bug.cgi?id=746632