All subclasses are retrieving list to get target output frame, which
can be done by baseclass. And pass the ownership of the GstH264Picture
to subclass so that subclass can clear implementation dependent resources
before finishing the frame.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1449>
With the asynchronous slice decoding, we only queue up to 2 slices
per frames. That side effect is that now we are dequeuing bitstream
buffers in both decoding and presentation order. This would lead to
a bitstream buffer from a previous frame being dequeued instead of
the expected last slice buffer and lead to us trying to queue an
already queued bitstream buffer.
We now fix this by tracking pending requests. As request are executed
in decoding order, we marking a request done, we can effectively
dequeue bitstream buffer from all previous request, as they have been
executed already.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1395>
The decoder is not being access from multiple threads, instead it is
always protected by the streaming lock. For this reason, a
GstAtomicQueue for the request pool is overkill and may even introduce
unneeded overhead. Use a GstQueueArray in replacement, the
GstQueueArray is a good fit since the number of item is predictable and
unlikely to vary at run-time.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1395>
In slice mode, we'll do one request per slice. In order to recycle
bitstream buffer, and not run-out, wait for the last pending
request to complete and mark it done.
We only wait after having queued the current slice in order to reduce
that potential driver starvation and maintain performance (using dual
buffering).
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1395>
There was a missing break for the 4:4:4 case which would break the sizeimage
calculation. We don't currently have hardware that supports 4:4:4, so this
code wasn't tested. This was detected by Coverity.
CID 1463592 1463591
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1283>
The Cedrus driver would otherwise choose 1KB buffer, which is too small.
This follows what some drivers do, which is simply to use the size a
packed raw image would have. Specifications do not really guaranty any minimum
compression ratio.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1268>
This adds support for slice based decoder like the Allwinner/Cedrus driver. In
order to keep things efficient, we hold the sink buffer until we reach the end
of the picture. Note that as we don't know which one is last, we lazy queue the
slices. This effectively introduces one slice latency.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1268>
This commit does the following things to fix compilation on FreeBSD:
1. Add required typedefs to linux/types-compat.h.
2. Remove unnecessary include linux/ioctl.h and replace linux/types.h
with linux/types-compat.h. Both files do not exist on FreeBSD.
3. Check the header including makedev macro. FreeBSD does not have
sys/sysmacros.h, and including it unconditionally causes error.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1259>
In section 9.3.4 a), segment_feature_mode have 0 for absolute and 1 for delta,
while in 19.2, it says the opposite. But the reference code, which usually
rules over the text state that 1 means absolute:
if (hdr->update_data)
{
hdr->abs = bool_get_bit(bool);
And uses it with that meaning to decide weither to override the existing value
or just add the detla. This fixes multiple decoding issues.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1245>
This code add required mechanism to try and allocate (not implemented yet)
otherwise wait for more buffers. This also comes with mechanism to terminate
the wait on flush or PAUSED_TO_READY transitions.
Use a goto to ensure that for all cases we cleanup the current picture state.
And move the src buffer allocation higher, so we don't queue a bitstream
buffer if we don't have a picture buffer to decode into.
This allow negotiating the output format through caps. Some drivers can
pipeline the decoder buffer through an image processor. This only support
colorspace conversion for now.