MFX_FOURCC_BGR4 is mapped to VA_FOURCC_ABGR and JPEG encoder needs a
MFX_FOURCC_BGR4 frame for internal usage when the input format is
MFX_FOURCC_RGB4
This is a preparation for supporting native formats of JPEG encoder
Instead of using a proxy of `is_packetized` flag this patch
replaces it with the accessor to that flag in decoder base class,
avoiding probable mismatches.
commit 55c0d720 added the capability to handle non-packetized bitstream,
and there is a loop to handle multiple frames in a non-packetized buffer
in gst_msdkdec_handle_frame. However it is possible that a
non-packetized buffer still contains valid data but there is no long any
pending unfinished frame. Currently gst_video_decoder_decode_frame is
invoked to send a new frame with new input data, the situaltion is
repeated till an EOS is received. An application has to exit when
receiving an EOS, however there is still valid data in a
non-packetezied input buffer, hence some frames are dropped.
This fix adds a parse callback for non-packeteized input, a new frame
will be sent to the subclass as soon as the input buffer has valid data
This fixes https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/665
Upon bitrate change, make sure to close the encoder otherwise
the encoder is not re-initialized and the target bitrate is
never reached, and the encoder was flushed at each frame
from this moment.
Regression introduced in f2b35abcab which replaced the call
that was closing the encoder by an early return to avoid
re-initialization.
The first channel in memory for MFX_FOURCC_RGB4 (VA_FOURCC_ARGB or
GST_VIDEO_FORMAT_BGRA) is B, not A. In MSDK, channle B is used to access
data for RGB4 surface. In addition, the returned pointers for
MFX_FOURCC_AYUV and MFX_FOURCC_Y410 in gst_msdk_video_memory_map_full
were wrong too before this fix.
When the bitrate is changed in playing state the encoder issues a reconfig
that drains and recreates the underlaying hw encoder instance.
With this set of changes we ensure that all this work is only made when
the bitrate did actually change. It also tries to reuse the vpp buffer
pool and fixes the pool leak spotted when testing this feature.
When postpone_free_surface is TRUE, the output buffer is not writable,
however the base decoder needs a writable buffer as output buffer,
otherwise it will make a copy of the output buffer. As the underlying
memory is always lockable, so we may set the LOCKABLE flag for this buffer
to avoid buffer copy in the base class.
The refcount of the output buffer is 1 when postpone_free_surface is
FALSE, so needn't set the LOCKABLE flag for this case.
Both MSDK and this plugin use mfxFrameAllocResponse for video and DMABuf
memory, it is possible that some GST buffers are still in use when calling
gst_msdk_frame_free, so add a reference count in the wrapper of
mfxFrameAllocResponse (GstMsdkAllocResponse) to make sure the underlying
mfx resources are still available if the corresponding buffer pool is in
use.
In addtion, currently all allocators for input or output share the same
mfxFrameAllocResponse pointer in an element, so it is possible that
the content of mfxFrameAllocResponse is updated for a new caps then all
GST buffers allocated from an old allocator will use this new content of
mfxFrameAllocResponse, which will result in unexpected behavior. In this
fix, we save the the content of mfxFrameAllocResponse in the corresponding
tructure to avoid such issue
Sample pipeline:
gst-launch-1.0 filesrc location=vp9_multi_resolutions.ivf ! ivfparse ! msdkvp9dec !
msdkvpp ! video/x-raw\(memory:DMABuf\),format=NV12 ! glimagesink
Otherwise it is possible that different wrappers share the same
mfxFrameAllocResponse pointer, so instead of caching the pointer, we may
cache the content of mfxFrameAllocResponse
For a skipped frame in VC1, MSDK returns the mfx surface of the reference
frame, so we have to make sure the corresponding surface for the
reference frame is not freed. In this fix, we postpone surface free because
we don't know whether a surface is referenced
Before this fix, the error is like as below:
New clock: GstSystemClock
0:00:00.181793130 23098 0x55f8a9d622d0 ERROR msdkdec
gstmsdkdec.c:622:gst_msdkdec_finish_task:<msdkvc1dec0> Couldn't find the
cached MSDK surface
Sample pipeline:
gst-launch-1.0 filesrc location=input_has_skipped_frame.wmv ! asfdemux !
vc1parse ! msdkvc1dec ! glimagesink
If the surface is not in use, we may release it even if GST_FLOW_OK is going
to be returned, which may avoid the issue of failing to get surface
available
This fixes the regression caused by commit c05acf4
GstAllocationParams::align is set to 31 in msdkdec/msdken/msdkvpp, hence
the stride align should be greater than or equal to 31, otherwise it
will result in issue
https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/861
(msdk: "GStreamer-CRITICAL: gst_buffer_resize_range failed" SPAM),
In addition, the stride should match the pitch alignment in the media driver,
otherwise it will result in some issues when a buffer is shared between
different elements, e.g. the NV12 issue mentioned in commit 3f2314a, which
can be reproduced by `gst-launch-1.0 vidoetestsrc ! msdkvpp !
video/x-raw\(memory:DMABuf\),format=NV12 ! glimagesink`
Fixed https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/861
For some hevc 10bit 4K encoding cases, the encoding process may be
slow, and MediaSDK surface can't be released in time before one other
available surface is needed. So add an extra surface for hevc encoding
to avoid this issue.
Add new macro for sink/src pad template to ensure no DMABuf caps
features are exposed on Windows. Some DMABuf caps features
were not handled by the commit 9ec62418c3
gst_buffer_make_writable() requires exclusive reference to the
GstMemory so the _make_writable() for the msdk buffer will result
to fallback system memory copy, because the msdk memory were initialized
with GST_MEMORY_FLAG_NO_SHARE flag.
Note that, disable sharing GstMemory brings high overhead but actually
the msdk memory objects can be shared over multiple buffers.
If the memory is not shareable, newly added GstAllocator::mem_copy will
create copied msdk memory.
Sometimes a HEVC/H265 stream doesn't have a valid profile but MSDK can
handle this stream. Like vaapih265dec, msdkh265dec may advertise the sink
caps without profile
DecodedOrder was deprecated in msdk-2017 version, but some customers
still use this for low-latency streaming of non-b-frame encoded streams,
which needs to output the frame at once
Both g_list_delete_link and g_list_remove remove an element and free it,
so l->next is invalid (catched by valgrind) after calling g_list_delete_link
or g_list_remove
Returning MFX_WRN_INCOMPATIBLE_VIDEO_PARAM means MSDK detects some
incompatible parameters but it is resolved, and we may not regard
MFX_WRN_INCOMPATIBLE_VIDEO_PARAM as a fatal error. In this fix,
GST_FLOW_OK is returned but with a warning message so that a pipeline
may run to the end.
video-direction property is common property in gstreamer. In addition,
both mirroring & rotation properties are marked as deprecated,
video-direction will override mirroring & rotation properties when they
are set explicitly
Fix https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/1058
gst_msdkdec_finish_task() may release all frames in
GstVideoDecoder object. In this case, allocate_output_buffer()
cannot get the oldest frame to allocate buffer.
So gst_msdkdec_handle_frame() should return GST_FLOW_OK for
letting gst_video_decoder_decode_frame() to send a new frame
for decoding.
Fixes#664.
Fixes#665.
When vpp rotation is 90 or 270, the output frame
should be rotated, too.
Example:
gst-launch-1.0 -vf videotestsrc \
! video/x-raw,width=720,height=480 \
! msdkvpp rotation=90 ! vaapisink
Currently h264parser produces a field or a frame for
alignment=au for interlaced streams, but the flag
MFX_BITSTREAM_COMPLETE_FRAME needs a complete frame
or complementary field pair of data, this results in
broken images being output.
Some patches have been sent out to fix h264parser,
but they are pending on some unfinished work. In
order to make gstreamer-msdk decoding work properly
for interlaced streams before h264parser is fixed,
this flag will be removed temporarily and will be
added back once h264parser if fixed.
Related to:
https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/merge_requests/399https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/merge_requests/228
It is possible that the output region size (e.g. 192x144) is different
from the coded picture size (e.g. 192x256). We may adjust the alignment
parameters so that the padding is respected in GstVideoInfo and use
GstVideoInfo to calculate mfx frame width and height
This fixes the error below when decoding a stream which has different
output region size and coded picture size
0:00:00.057726900 28634 0x55df6c3220a0 ERROR msdkdec
gstmsdkdec.c:1065:gst_msdkdec_handle_frame:<msdkh265dec0>
DecodeFrameAsync failed (failed to allocate memory)
Sample pipeline:
gst-launch-1.0 filesrc location=output.h265 ! h265parse ! msdkh265dec !
glimagesink
MFX_FOURCC_VP9_SEGMAP surface in MSDK is an internal surface however
MSDK still call the external allocator for this surface, so this plugin
has to return UNSUPPORTED and force MSDK allocates surface using the
internal allocator.
See https://github.com/Intel-Media-SDK/MediaSDK/issues/762 for details
The call of MFXVideoENCODE_EncodeFrameAsync may not generate output and
the function returns MFX_ERR_MORE_DATA with NULL sync point, the input
frame is cached in this case, so it is possible that all allocated
frames go into the surfaces_used list after calling
MFXVideoENCODE_EncodeFrameAsync a few times, then the encoder will fail
to get an available surface before releasing used frames
This patch adds a new field of num_extra_frames to GstMsdkEnc and allows
encode element requires extra frames, the default value is 0.
This patch is the preparation for msdkvp9enc element.
msdkenc supports CSC implicitly, so it is possible that two VPP
processes are required when a pipeline contains msdkvpp and msdkenc.
Before this fix, msdkvpp and msdkenc may share the same context, hence
the same mfx session, which results in MFX_ERR_UNDEFINED_BEHAVIOR
in MSDK because a mfx session has at most one VPP process only
This fixes the broken pipelines below:
gst-launch-1.0 videotestsrc ! video/x-raw,format=I420 ! msdkh264enc ! \
msdkh264dec ! msdkvpp ! video/x-raw,format=YUY2 ! fakesink
gst-launch-1.0 videotestsrc ! msdkvpp ! video/x-raw,format=YUY2 ! \
msdkh264enc ! fakesink
MSDK supports JPEG YUY2 (422 chroma) output color
format. The color format of input bitstream is
described by JPEGChromaFormat and JPEGColorFormat
fields in the mfxInfoMFX structure which is filled
in by the MFXVideoDECODE_DecodeHeader function.
To obtain lossless decoded output from 422 encoded
JPEGs, we must set the output color format in the
FourCC and ChromaFormat fields in the mfxFrameInfo
structure to the appropriate values at post_configure
so that they are propagated through to the srcpad
caps accordingly.
A post_configure virtual method is added to allow
codec subclasses to adjust the initialized parameters
after MFXVideoDECODE_DecodeHeader is called from the
gstmsdkdec::gst_msdkdec_handle_frame function.
This is useful if codecs want to adjust the output
parameters based on the codec-specific decoding
options that are present in the mfxInfoMFX structure
after MFXVideoDECODE_DecodeHeader initializes them.
The workaround for https://github.com/Intel-Media-SDK/MediaSDK/issues/1139
is required for vp8 only, so move this workaround to the corresponding
postinit_decoder function
The pipeline below works with this change
gst-launch-1.0 filesrc location=SA10104.vc1 ! \
'video/x-wmv,profile=(string)advanced',width=720,height=480,framerate=14/1 ! \
msdkvc1dec ! fakesink
MFXVideoDECODE_DecodeHeader only parses the sequence layer for VC1, so
the structure is unknown for a stream with interlace flag set in the
sequence layer. If forcing the struct to progressive in this plugin,
MediaSDK will fail to decode such streams.
It is possible MFXVideoDECODE_DecodeFrameAsync returns MFX_ERR_INCOMPATIBLE_VIDEO_PARAM
and this error can't be recovered by retrying MFXVideoDECODE_DecodeFrameAsync
in some cases, so we need to limit the number of retries to avoid infinite loop.
This fixes https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/909
../subprojects/gst-plugins-bad/sys/msdk/msdk.c(61): error C2065: 'MFX_FOURCC_RGB565'
The minimum required version for the format seems to MFX_VERSION >= 1028
Returning MFX_ERR_INCOMPATIBLE_VIDEO_PARAM from
MFXVideoDECODE_DecodeFrameAsync means the allocated mfx surface is not
suitable for the current frame, we need a new mfx surface and try
MFXVideoDECODE_DecodeFrameAsync again.
When MFXVideoDECODE_DecodeFrameAsync () returns MFX_WRN_DEVICE_BUSY with
an output surface, a new input surface is required when retrying
MFXVideoDECODE_DecodeFrameAsync ().
This fixes the out-of-surface issue mentioned in
https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/890
This gets rid of annoying message in the log, e.g. run the pipeline
below:
gst-launch-1.0 videotestsrc num-buffers=100 ! \
video/x-raw,format=NV12,width=352,height=288 ! msdkh264enc ! filesink \
location=test.h264
[LIBVA]:CRITICAL - DdiMedia_DestroyImage:4357: Invalid image
This make the pipeline below works:
gst-launch-1.0 videotestsrc num-buffers=1 ! msdkvpp ! \
video/x-raw,format=UYVY ! filesink location=a.yuv
Once https://github.com/intel/media-driver/pull/526 in the media-driver
is merged, the pipeline below also works:
gst-launch-1.0 videotestsrc num-buffers=1 ! msdkvpp ! \
video/x-raw\(memory:DMABuf\),format=UYVY ! filesink location=a.yuv
An output surface is returned but without sync point when when
MFXVideoDECODE_DecodeFrameAsync () returns MFX_ERR_MORE_DATA, this
surface should be released too, otherwise the surface is occupied
and it is easy to exhaust all pre-allocated mfx surfaces.
Example pipeline (input_vp8.webm contains lots of frame with show_frame
set to 0):
gst-launch-1.0 filesrc location=input_vp8.webm ! matroskademux !
msdkvp8dec ! msdkvpp ! fakesink
0:00:05.995959693 19866 0x563f30f14590 ERROR default
gstmsdkvideomemory.c:77:gst_msdk_video_allocator_get_surface: failed to
get surface available
ERROR: from element
/GstPipeline:pipeline0/GstMatroskaDemux:matroskademux0: Internal data
stream error.
The input buffer is released in gst_msdkdec_finish_task () when decoding
some special clips however this buffer is still in use, so ref the input
buffer before gst_msdkdec_finish_task () and unref it at the end of
gst_msdkdec_handle_frame ().
Fixes https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/862
The picture structure in the output parameters from
MFXVideoDECODE_Query is set to MFX_PICSTRUCT_UNKNOWN for some codecs, so
the structure of the corresponding mfx surfaces created for decoding are
unknown. The pipeline will be broken when these surfaces are used as the
input for msdkvpp.
Example pipeline:
gst-launch-1.0 filesrc location=input_vp8.webm ! matroskademux !
msdkvp8dec ! msdkvpp ! fakesink
Error message:
0:00:00.031568911 14259 0x55b79dc684a0 ERROR msdkvpp
gstmsdkvpp.c:728:gst_msdkvpp_transform:<msdkvpp0> MSDK Failed to do VPP
ERROR: from element
/GstPipeline:pipeline0/GstMatroskaDemux:matroskademux0: Internal data
stream error.
This is a workaround for the above issue
The memory type was used as bitwise enum, but the enum was not
defined in that way.
Nonetheless, most of the usage of the memory type was as mutually
exclusive options, rather than option composition.
This patch refactor how the memory type is defined, so it is kept
the mutual exclusion among options.
When building the msdk plugin even if libmfx is found, unless the
plugin is explicitly enabled we should not error out if msdk
dependencies are not found.
Also give an error message when we don't build the plugin on Windows
because we're not building with MSVC.
BRCParamMultiplier in mfxInfoMFX is a parameter which specifies a
multiplier for bitrate control parameters [1], it impacts TargetKbps,
MaxKbps, BufferSizeInKB and InitialDelayInKB.
[1]: https://software.intel.com/en-us/node/628473
According to the MSDK documation[1], MFXCloneSession is a light-weight
equivalent of MFXJoinSession after MFXInit, so MFXJoinSession call isn't
needed in the msdk plugin, otherwise the cloned session is joined to the
parent session twice, and we will get a MFX error when closing the
parent session
example pipeline:
gst-launch-1.0 videotestsrc num-buffers=100 ! \
video/x-raw,format=NV12,width=352,height=288 ! msdkh264enc ! msdkh264dec ! \
msdkh264enc ! fakesink
Error message:
0:00:00.211948518 21733 0x5586ee741c60 ERROR msdk
msdk.c:148:msdk_close_session: Close failed (undefined behavior)
[1]: https://software.intel.com/en-us/node/628429#MFXCloneSession
In gst-msdk, a mfx session may be shared between different gst
elements, each element tries to set the frame allocator. However, per
the MSDK documation[1], the behavior is undefined if reset the frame
allocator while the previous allocator is in use. Fortunately all
elements use the same frame allocator, so we can avoid to call
MFXVideoCORE_SetFrameAllocator again.
[1]: https://software.intel.com/en-us/node/628430#MFXVideoCORE3
If so, BGRA is the preferred output format hence BGRA will be selected
as input format by default, e.g. in the pipleline below, BGRA instead of
NV12 is selected without renegotiation, so we can avoid the NV12 issue
(see commit 3f2314a) by default.
gst-launch-1.0 videotestsrc ! msdkvpp ! glimagesink
Otherwise MFXVideoVPP_Init will fail because it is called twice without
a close.
Example pipeline:
gst-launch-1.0 videotestsrc ! msdkvpp ! glimagesink
Sometimes glimagesink emits GST_EVENT_RECONFIGURE event which results
in that MFXVideoVPP_Init is called twice, then get the negotiation
failure below:
0:00:00.093715518 21218 0x558ef56231e0 ERROR msdkvpp
gstmsdkvpp.c:995:gst_msdkvpp_initialize:<msdkvpp0> Init failed
(undefined behavior)
WARNING: from element /GstPipeline:pipeline0/GstMsdkVPP:msdkvpp0: not
negotiated
After applying this commit, the pipeline above may run without
negotiation failure, however NV12 layout in dmabuf mode is selected in
renegotiation, the display image is corrupted due to the NV12 issue which
was mentioned in commit 3f2314a. Some other fixes are needed to avoid
renegotiation by default
In general, we should assume any unhandled error is
non-recoverable.
In the flush frames loop, some error states can cause us
to never increment the task and therefore we get stuck
in an infinite loop and generate GST_ELEMENT_ERROR
over and over again. This eventually consumes all
system memory and triggers OOM. Thus, assume the worst
and break out of the loop upon the first "unhandled" error.
https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/859