There is nothing in the spec that state that framerate is not valid in
that case. This aligns GStreamer with FFMPEG behaviour for similar
streams.
https://bugzilla.gnome.org/show_bug.cgi?id=793284
add_global_arguments() can't be used in subprojects. It's
entirely possible that -bad is a subproject but gstreamer
is picked up from an installed location, so we should
really use add_project_arguments() in both cases.
This is a wrapper around fakesink that will advertise GstVideoMeta
and other meta API in order to achieve zero-copy whenever possible.
his new element is useful when doing performance testing with
video stream and don't want the sink capability to change the
upstream behaviour.
https://bugzilla.gnome.org/show_bug.cgi?id=793624
Since there is already an "adaptive-B" option, just
use boolean property for B-pyramid enabling.
Fixme: Not sure whether this can be supported in vp8 and vp9.
It could be possible through GPB (b without backward ref) but
can't verify currently. We can move this as common property
once verified with vp8 and vp9 without breaking any backward
compatibility.
https://bugzilla.gnome.org/show_bug.cgi?id=791637
Add a new property "trellis" to enable trellis quantization.
Keeping trellis as a flag value (which is boolean for gst x264 enc element)
since it is possible to enable/disable this seperately for
I,P and B frames through MediaSDK ext option headers.
The subclass implementations always need to inform base-encoder
if it requires the inclusion of Extend Header buffers (mfxExtCodingOption2
and mfxExtCodingOption3).
https://bugzilla.gnome.org/show_bug.cgi?id=791637
This option controls down sampling in look ahead bitrate
control mode. According to spec it is only supported in AVC.
Fixme: Probably HEVC also have support for this in recent
MSDK versions. We could move the enumeration types to common
header usable for multiple codecs.
https://bugzilla.gnome.org/show_bug.cgi?id=791637
MediaSDK has support for a number of rate control algorithms.
Adding all possible options to the property rate-control.
Fixme1: In case of failure, currently we don't have a proper method
to show which rate-control has been failed. It could be better
to add some extensive validation on EncQuery output in case of error.
Unfortunately, not all ratecontrol methods are supported by every codecs
and we don't have the dynamic detection of supported ratecontrol methods yet.
https://bugzilla.gnome.org/show_bug.cgi?id=791637
We have the property "i-frames" to set the IDR interval in a
gop. Unfortunately MSDK HEVC encoder behaves bit differently
for IdrInterval field, IdrInteval == 1 indicate every
I-frame should be an IDR (which is IdrInterval == 0 for other codecs),
IdrInteval == 2 means every other I-frame is an IDR
(which is IdrInterval == 1 for other codecs) etc.
So we generalize the behaviour of property "i-frames" by
incrementing the value by one in each case (only for HEVC).
https://bugzilla.gnome.org/show_bug.cgi?id=791637
The base encoder common properties are not valid for
mjpeg encoder where there is no motion compensation or rate control.
Delaying the property installation on the base gobject
untill the subclass class_init get invoked.
https://bugzilla.gnome.org/show_bug.cgi?id=791637
The pnmenc was not mapping the input buffers as video buffers. Because
of this, the video frame stride was not being set based on frame but
based on the caps, which make the assumption that the strides are a
power of 4. For input that is not a power of 4, this would lead to a
SIGSEGV.
https://bugzilla.gnome.org/show_bug.cgi?id=793419
The gst-msdk decoders prefer packetized streams as input
and in this case we can avoid unnecessary input bitstream copy
to mfxBitstream. This works fine for codecs like h264 where
we only support byte-stream with au alignment. Other format
conversions should be done thorugh parsers. But this won't work
for codecs like vc1 where we don't have an autoplugged parser.
Even the parser is not capable to do format conversions.
Packetizing through base decoders parse() routine will bring a
lot of uncecessary of complexities and codecparser libraray dependency.
So we just use an interal gst_adaper to keep track of bitstream
which is not consumed by msdk durig AsynchronusDecoding.
This adapter will get used only if subclass implementations
set the "is_packetized" to FALSE for msdk base encoder.
https://bugzilla.gnome.org/show_bug.cgi?id=792589
Adding Simple and Main profiles decode support.
Currently msdkvc1dec is not capable to handle the codec_data,
only instream headers are supported. Also msdk vc1 decoder
expecting instream with Sequence header as per SMPTE 421M Annex L.
Most of the decdoebin/playbin pipeline won't work with the above
constraints
because vc1parse is still not an autoplug element.
Only way to make mskdvc1dec work is by connecting a vc1parse
as an upstream element.
https://bugzilla.gnome.org/show_bug.cgi?id=792589
Use drm render node as the first choice of device node file.
Fall backs to use drm primary (/dev/dri/card[0-9])
if there is no render node available
Basic logic is inherited from gstreamer-vaapi, but using
gudev API rather than libudev directly.
Added gudev library as dependency for msdk.
https://bugzilla.gnome.org/show_bug.cgi?id=791599
1\ If downstream's pool is MSDK bufferpool,
2\ If there's shared GstMsdkContext in the pipeline,
a decoder decides to use video memory.
This policy should be improved to handle more cases.
https://bugzilla.gnome.org/show_bug.cgi?id=790752
In case that pipeline is like ".. ! decoder ! encoder ! ..." with using
video memory,
decoder needs to know the async depth of the following msdk element so
that it could
allocate the correct number of video memory.
Otherwise, decoder's memory is exhausted while processing.
https://bugzilla.gnome.org/show_bug.cgi?id=790752