As a side effect this allows us also to handle errors more gracefully
and to reduce memory load by outputting decoded frames immediately.
Also the code was changed a bit to reduce the number of redundant mutex
lock/unlocks.
hrtfrender tests are now using a fake hrir configuration file which is
stripped of actual position coefficients. The generated config does not
work anymore.
This allows for faster rebuild avoiding to run the target when nothing
changed.
This approach is not ideal as we should find a way to actually know when
to rebuild based on information from cargo itself but there seem to be
no way to do it at this point.
Previous version relied on a plain loop / match / break because
I experimented different strategies. The while variant is better
for the final solution.
The function `enter` is executed in a blocking way from the caller's
point of view. This means that we can guaranty that the provided
function and its output will outlive the underlying Scheduler Task
execution. This requires an unsafe call to
`async_task::spawn_unchecked`. See:
https://docs.rs/async-task/latest/async_task/fn.spawn_unchecked.html
This advisory was ignored because we couldn't use a version for
the tokio fork that reflected that it was not vulnerable.
Also remove the tokio fork as an allowed git since we now use
our own executor for threadshare.
The threadshare executor was based on a modified version of tokio
which implemented the throttling strategy in the BasicScheduler.
Upstream tokio codebase has significantly diverged from what it
was when the throttling strategy was implemented making it hard
to follow. This means that we can hardly get updates from the
upstream project and when we cherry pick fixes, we can't reflect
the state of the project on our fork's version. As a consequence,
tools such as cargo-deny can't check for RUSTSEC fixes in our fork.
The smol ecosystem makes it quite easy to implement and maintain
a custom async executor. This MR imports the smol parts that
need modifications to comply with the threadshare model and implements
a throttling executor in place of the tokio fork.
Networking tokio specific types are replaced with Async wrappers
in the spirit of [smol-rs/async-io]. Note however that the Async
wrappers needed modifications in order to use the per thread
Reactor model. This means that higher level upstream networking
crates such as [async-net] can not be used with our Async
implementation.
Based on the example benchmark with ts-udpsrc, performances seem on par
with what we achieved using the tokio fork.
Fixes https://gitlab.freedesktop.org/gstreamer/gst-plugins-rs/-/issues/118
Related to https://gitlab.freedesktop.org/gstreamer/gst-plugins-rs/-/merge_requests/604