A strong handle reference was held in the `block_on_priv` `Result`
handler in the thread for the `Scheduler::start` code path, which
lead to the `Handler` strong count not dropping to 0 when it
should, leading to the shutdown request not being triggered.
Use an Arc<AtomicBool> instead of a oneshot channel for shutdown.
The main Future is always polled and never relies on a waker, a
`poll_fn` is cheap and does the job.
Unpark the scheduler after posting a request to shutdown.
Subtasks are used when current async processing needs to execute
a `Future` via a sync function (eg. a call to a C function).
In this case `Context::block_on` would block the whole `Context`,
leading to a deadlock.
The main use case for this is the `Pad{Src,Sink}` functions:
when we `PadSrc::push` and the peer pad is a `PadSink`, we want
`PadSrc::push` to complete after the async function on the
`PadSink` completes. In this case the `PadSink` async function
is added as a subtask of current scheduler task and
`PadSrc::push` only returns when the subtask is executed.
In `runtime::Task` (`Task` here is the execution Task with a
state machine, not a scheduler task), we used to spawn state
transition actions and iteration loop (leading to a new
scheduler Task). At the time, it seemed convenient for the user
to automatically drain sub tasks after a state transition action
or an iteration. User wouldn't have to worry about this, similarly
to the `Pad{Src,Sink}` case.
In current implementation, the `Task` state machine now operates
directly on the target `Context`. State transtions actions and
the iteration loop are no longer spawned. It seems now useless to
abstract the subtasks draining from the user. Either they
transitively use a mechanism such as `Pad{Src,Sink}` which already
handles this automatically, or they add substasks on purpose, in
which case they know better when subtasks must be drained.
... so that it can be reused on current thread for subsequent
Scheduler instantiations (e.g. block_on) without the need to
reallocate internal data structures.
This commit improves threadshare timers predictability
by better making use of current time slice.
Added a dedicate timer BTreeMap for after timers (those
that are guaranteed to fire no sooner than the expected
instant) so as to avoid previous workaround which added
half the max throttling duration. These timers can now
be checked against the reactor processing instant.
Oneshot timers only need to be polled as `Future`s when
intervals are `Stream`s. This also reduces the size for
oneshot timers and make user call `next` on intervals.
Intervals can also implement `FusedStream`, which can help
when used in features such as `select!`.
Also drop the `time` module, which was kepts for
compatibility when the `executor` was migrated from tokio
based to smol-like.
Add a `tuning` feature which adds counters that help with performance
evaluation. The only counter added so far accumulates the duration a
Scheduler has been parked, which is pretty accurate an indication of
CPU usage of the Scheduler.
- Reworked buffer push.
- Reworked stats.
- Make first elements logs stand out. This make it possible to
follow what's going on with pipelines containing 1000s of
elements.
- Actually handle EOS.
- Use more significant defaults.
- Allow building without `clap` feature.
jitterbuffer tests crash on Windows CI sometimes. Activating logs
showed time values which are probably not expected in a regular
environment, but which can happen there. Adding extra robustness
to `next_wakeup` computation seems to fix the problem judging by
the few runs I triggered.
Instead of having a matrix of jobs, use a single job running
all the tests like the linux jobs do.
This helps with improved cache hits as most of the deps are shared
between the builds.
In gst-rs we build each crate on its own, since not all
crates share the same features and some conflict with each other.
However currently, that isn't the case in plugins-rs and instead
we can be building all the crates with the same flags and simplify
the the script.
Close#241
There are 2 gst-inspect-1.0 executables, one in root builddir and
another one in subprojects/gstreamer/tools/. The latter does not link on
gst-full, meson devenv is supposed to set the former first in PATH, but
it seems to be flicky.
Fixes https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/issues/1410
Created a new plugin 'webrtchttp' to implement all the
WebRTC HTTP protocols under /net/webrtc-http directory.
WhipSink wraps around 'webrtcbin' with HTTP capabilites
to exchange SDP offer/answer so an ICE/DTLS session can
be established between the encoder/media producer (WHIP client)
and the broadcasting ingestion endpoint (Media Server).
Once the ICE/DTLS session is set up, the media will
flow unidirectionally from the WHIP client to the
broadcasting ingestion endpoint (Media Server).
Spec:
https://www.ietf.org/archive/id/draft-ietf-wish-whip-04.html