forked from mirrors/bookwyrm
109 lines
3.6 KiB
Python
109 lines
3.6 KiB
Python
''' using a bookwyrm instance as a source of book data '''
|
|
from functools import reduce
|
|
import operator
|
|
|
|
from django.contrib.postgres.search import SearchRank, SearchVector
|
|
from django.db.models import Count, F, Q
|
|
|
|
from bookwyrm import models
|
|
from .abstract_connector import AbstractConnector, SearchResult
|
|
|
|
|
|
class Connector(AbstractConnector):
|
|
''' instantiate a connector '''
|
|
def search(self, query, min_confidence=0.1):
|
|
''' search your local database '''
|
|
if not query:
|
|
return []
|
|
# first, try searching unqiue identifiers
|
|
results = search_identifiers(query)
|
|
if not results:
|
|
# then try searching title/author
|
|
results = search_title_author(query, min_confidence)
|
|
search_results = []
|
|
for result in results:
|
|
search_results.append(self.format_search_result(result))
|
|
if len(search_results) >= 10:
|
|
break
|
|
search_results.sort(key=lambda r: r.confidence, reverse=True)
|
|
return search_results
|
|
|
|
|
|
def format_search_result(self, search_result):
|
|
return SearchResult(
|
|
title=search_result.title,
|
|
key=search_result.remote_id,
|
|
author=search_result.author_text,
|
|
year=search_result.published_date.year if \
|
|
search_result.published_date else None,
|
|
connector=self,
|
|
confidence=search_result.rank if \
|
|
hasattr(search_result, 'rank') else 1,
|
|
)
|
|
|
|
|
|
def is_work_data(self, data):
|
|
pass
|
|
|
|
def get_edition_from_work_data(self, data):
|
|
pass
|
|
|
|
def get_work_from_edition_data(self, data):
|
|
pass
|
|
|
|
def get_authors_from_data(self, data):
|
|
return None
|
|
|
|
def parse_search_data(self, data):
|
|
''' it's already in the right format, don't even worry about it '''
|
|
return data
|
|
|
|
def expand_book_data(self, book):
|
|
pass
|
|
|
|
|
|
def search_identifiers(query):
|
|
''' tries remote_id, isbn; defined as dedupe fields on the model '''
|
|
filters = [{f.name: query} for f in models.Edition._meta.get_fields() \
|
|
if hasattr(f, 'deduplication_field') and f.deduplication_field]
|
|
results = models.Edition.objects.filter(
|
|
reduce(operator.or_, (Q(**f) for f in filters))
|
|
).distinct()
|
|
|
|
# when there are multiple editions of the same work, pick the default.
|
|
# it would be odd for this to happen.
|
|
return results.filter(parent_work__default_edition__id=F('id')) \
|
|
or results
|
|
|
|
|
|
def search_title_author(query, min_confidence):
|
|
''' searches for title and author '''
|
|
vector = SearchVector('title', weight='A') +\
|
|
SearchVector('subtitle', weight='B') +\
|
|
SearchVector('authors__name', weight='C') +\
|
|
SearchVector('series', weight='D')
|
|
|
|
results = models.Edition.objects.annotate(
|
|
search=vector
|
|
).annotate(
|
|
rank=SearchRank(vector, query)
|
|
).filter(
|
|
rank__gt=min_confidence
|
|
).order_by('-rank')
|
|
|
|
# when there are multiple editions of the same work, pick the closest
|
|
editions_of_work = results.values(
|
|
'parent_work'
|
|
).annotate(
|
|
Count('parent_work')
|
|
).values_list('parent_work')
|
|
|
|
for work_id in set(editions_of_work):
|
|
editions = results.filter(parent_work=work_id)
|
|
default = editions.filter(parent_work__default_edition=F('id'))
|
|
default_rank = default.first().rank if default.exists() else 0
|
|
# if mutliple books have the top rank, pick the default edition
|
|
if default_rank == editions.first().rank:
|
|
yield default.first()
|
|
else:
|
|
yield editions.first()
|