gstreamer-rs/examples/src/bin/gtkvideooverlay.rs

271 lines
11 KiB
Rust

// This example demonstrates another type of combination of gtk and gstreamer,
// in comparision to the gtksink example.
// This example uses regions that are managed by the window system, and uses
// the window system's api to insert a videostream into these regions.
// So essentially, the window system of the system overlays our gui with
// the video frames - within the region that we tell it to use.
// Disadvantage of this method is, that it's highly platform specific, since
// the big platforms all have their own window system. Thus, this example
// has special code to handle differences between platforms.
// Windows could theoretically be supported by this example, but is not yet implemented.
// One of the very few (if not the single one) platform, that can not provide the API
// needed for this are Linux desktops using Wayland.
// TODO: Add Windows support
// In this case, a testvideo is displayed within our gui, using the
// following pipeline:
// {videotestsrc} - {xvimagesink(on linux)}
// {videotestsrc} - {glimagesink(on mac)}
use gst::prelude::*;
use gst_video::prelude::*;
use gio::prelude::*;
use gtk::prelude::*;
use std::os::raw::c_void;
use std::cell::RefCell;
use std::process;
#[cfg(all(target_os = "linux", feature = "gtkvideooverlay-x11"))]
fn create_video_sink() -> gst::Element {
// When we are on linux with the Xorg display server, we use the
// X11 protocol's XV extension, which allows to overlay regions
// with video streams. For this, we use the xvimagesink element.
gst::ElementFactory::make("xvimagesink", None).unwrap()
}
#[cfg(all(target_os = "linux", feature = "gtkvideooverlay-x11"))]
fn set_window_handle(video_overlay: &gst_video::VideoOverlay, gdk_window: &gdk::Window) {
let display_type_name = gdk_window.get_display().get_type().name();
// Check if we're using X11 or ...
if display_type_name == "GdkX11Display" {
extern "C" {
pub fn gdk_x11_window_get_xid(window: *mut glib::object::GObject) -> *mut c_void;
}
// This is unsafe because the "window handle" we pass here is basically like a raw pointer.
// If a wrong value were to be passed here (and you can pass any integer), then the window
// system will most likely cause the application to crash.
#[allow(clippy::cast_ptr_alignment)]
unsafe {
// Here we ask gdk what native window handle we got assigned for
// our video region from the window system, and then we will
// pass this unique identifier to the overlay provided by our
// sink - so the sink can then arrange the overlay.
let xid = gdk_x11_window_get_xid(gdk_window.as_ptr() as *mut _);
video_overlay.set_window_handle(xid as usize);
}
} else {
println!("Add support for display type '{}'", display_type_name);
process::exit(-1);
}
}
#[cfg(all(target_os = "macos", feature = "gtkvideooverlay-quartz"))]
fn create_video_sink() -> gst::Element {
// On Mac, this is done by overlaying a window region with an
// OpenGL-texture, using the glimagesink element.
gst::ElementFactory::make("glimagesink", None).unwrap()
}
#[cfg(all(target_os = "macos", feature = "gtkvideooverlay-quartz"))]
fn set_window_handle(video_overlay: &gst_video::VideoOverlay, gdk_window: &gdk::Window) {
let display_type_name = gdk_window.get_display().get_type().name();
if display_type_name == "GdkQuartzDisplay" {
extern "C" {
pub fn gdk_quartz_window_get_nsview(window: *mut glib::object::GObject) -> *mut c_void;
}
// This is unsafe because the "window handle" we pass here is basically like a raw pointer.
// If a wrong value were to be passed here (and you can pass any integer), then the window
// system will most likely cause the application to crash.
#[allow(clippy::cast_ptr_alignment)]
unsafe {
// Here we ask gdk what native window handle we got assigned for
// our video region from the windowing system, and then we will
// pass this unique identifier to the overlay provided by our
// sink - so the sink can then arrange the overlay.
let window = gdk_quartz_window_get_nsview(gdk_window.as_ptr() as *mut _);
video_overlay.set_window_handle(window as usize);
}
} else {
println!("Unsupported display type '{}", display_type_name);
process::exit(-1);
}
}
fn create_ui(app: &gtk::Application) {
let pipeline = gst::Pipeline::new(None);
let src = gst::ElementFactory::make("videotestsrc", None).unwrap();
// Since using the window system to overlay our gui window is making
// direct contact with the windowing system, this is highly platform-
// specific. This example supports Linux and Mac (using X11 and Quartz).
let sink = create_video_sink();
pipeline.add_many(&[&src, &sink]).unwrap();
src.link(&sink).unwrap();
// First, we create our gtk window - which will contain a region where
// our overlayed video will be displayed in.
let window = gtk::Window::new(gtk::WindowType::Toplevel);
window.set_default_size(320, 240);
let vbox = gtk::Box::new(gtk::Orientation::Vertical, 0);
// This creates the widget we will display our overlay in.
// Later, we will try to tell our window system about this region, so
// it can overlay it with our video stream.
let video_window = gtk::DrawingArea::new();
video_window.set_size_request(320, 240);
// Use the platform-specific sink to create our overlay.
// Since we only use the video_overlay in the closure below, we need a weak reference.
// !!ATTENTION!!:
// It might seem appealing to use .clone() here, because that greatly
// simplifies the code within the callback. What this actually does, however, is creating
// a memory leak.
let video_overlay = sink
.dynamic_cast::<gst_video::VideoOverlay>()
.unwrap()
.downgrade();
// Connect to this widget's realize signal, which will be emitted
// after its display has been initialized. This is neccessary, because
// the window system doesn't know about our region until it was initialized.
video_window.connect_realize(move |video_window| {
// Here we temporarily retrieve a strong reference on the video-overlay from the
// weak reference that we moved into the closure.
let video_overlay = match video_overlay.upgrade() {
Some(video_overlay) => video_overlay,
None => return,
};
// Gtk uses gdk under the hood, to handle its drawing. Drawing regions are
// called gdk windows. We request this underlying drawing region from the
// widget we will overlay with our video.
let gdk_window = video_window.get_window().unwrap();
// This is where we tell our window system about the drawing-region we
// want it to overlay. Most often, the window system would only know
// about our most outer region (or: our window).
if !gdk_window.ensure_native() {
println!("Can't create native window for widget");
process::exit(-1);
}
set_window_handle(&video_overlay, &gdk_window);
});
vbox.pack_start(&video_window, true, true, 0);
let label = gtk::Label::new(Some("Position: 00:00:00"));
vbox.pack_start(&label, true, true, 5);
window.add(&vbox);
window.show_all();
app.add_window(&window);
// Need to move a new reference into the closure.
// !!ATTENTION!!:
// It might seem appealing to use pipeline.clone() here, because that greatly
// simplifies the code within the callback. What this actually does, however, is creating
// a memory leak. The clone of a pipeline is a new strong reference on the pipeline.
// Storing this strong reference of the pipeline within the callback (we are moving it in!),
// which is in turn stored in another strong reference on the pipeline is creating a
// reference cycle.
// DO NOT USE pipeline.clone() TO USE THE PIPELINE WITHIN A CALLBACK
let pipeline_weak = pipeline.downgrade();
// Add a timeout to the main loop that will periodically (every 500ms) be
// executed. This will query the current position within the stream from
// the underlying pipeline, and display it in our gui.
// Since this closure is called by the mainloop thread, we are allowed
// to modify the gui widgets here.
let timeout_id = glib::timeout_add_local(std::time::Duration::from_millis(500), move || {
// Here we temporarily retrieve a strong reference on the pipeline from the weak one
// we moved into this callback.
let pipeline = match pipeline_weak.upgrade() {
Some(pipeline) => pipeline,
None => return glib::Continue(false),
};
// Query the current playing position from the underlying pipeline.
let position = pipeline
.query_position::<gst::ClockTime>()
.unwrap_or_else(|| 0.into());
// Display the playing position in the gui.
label.set_text(&format!("Position: {:.0}", position));
// Tell the timeout to continue calling this callback.
glib::Continue(true)
});
let bus = pipeline.get_bus().unwrap();
pipeline
.set_state(gst::State::Playing)
.expect("Unable to set the pipeline to the `Playing` state");
let app_weak = app.downgrade();
bus.add_watch_local(move |_, msg| {
use gst::MessageView;
let app = match app_weak.upgrade() {
Some(app) => app,
None => return glib::Continue(false),
};
match msg.view() {
MessageView::Eos(..) => gtk::main_quit(),
MessageView::Error(err) => {
println!(
"Error from {:?}: {} ({:?})",
err.get_src().map(|s| s.get_path_string()),
err.get_error(),
err.get_debug()
);
app.quit();
}
_ => (),
};
glib::Continue(true)
})
.expect("Failed to add bus watch");
// Pipeline reference is owned by the closure below, so will be
// destroyed once the app is destroyed
let timeout_id = RefCell::new(Some(timeout_id));
app.connect_shutdown(move |_| {
pipeline
.set_state(gst::State::Null)
.expect("Unable to set the pipeline to the `Null` state");
bus.remove_watch().unwrap();
if let Some(timeout_id) = timeout_id.borrow_mut().take() {
glib::source_remove(timeout_id);
}
});
}
fn main() {
#[cfg(not(unix))]
{
println!("Add support for target platform");
process::exit(-1);
}
// Initialize gstreamer and the gtk widget toolkit libraries.
gst::init().unwrap();
gtk::init().unwrap();
let app = gtk::Application::new(None, gio::ApplicationFlags::FLAGS_NONE).unwrap();
app.connect_activate(create_ui);
app.run();
}