gstreamer-rs/examples/src/bin/decodebin.rs
Otavio Salvador 2022890766 examples: Move out from 'failure' crate as it is deprecated
The 'failure' crate has been stale for quite some time and better
alternatives has been developed since its introduction. We choose the
'anyhow' and 'derive_more' to replace it.
2020-05-04 11:16:50 -03:00

315 lines
14 KiB
Rust

// This example demonstrates the use of the decodebin element
// The decodebin element tries to automatically detect the incoming
// format and to autoplug the appropriate demuxers / decoders to handle it.
// and decode it to raw audio, video or subtitles.
// Before the pipeline hasn't been prerolled, the decodebin can't possibly know what
// format it gets as its input. So at first, the pipeline looks like this:
// {filesrc} - {decodebin}
// As soon as the decodebin has detected the stream format, it will try to decode every
// contained stream to its raw format.
// The application connects a signal-handler to decodebin's pad-added signal, which tells us
// whenever the decodebin provided us with another contained (raw) stream from the input file.
// This application supports audio and video streams. Video streams are
// displayed using an autovideosink, and audiostreams are played back using autoaudiosink.
// So for a file that contains one audio and one video stream,
// the pipeline looks like the following:
// /-[audio]-{audioconvert}-{audioresample}-{autoaudiosink}
// {filesrc}-{decodebin}-|
// \-[video]-{viceoconvert}-{videoscale}-{autovideosink}
// Both auto-sinks at the end automatically select the best available (actual) sink. Since the
// selection of available actual sinks is platform specific
// (like using pulseaudio for audio output on linux, e.g.),
// we need to add the audioconvert and audioresample elements before handing the stream to the
// autoaudiosink, because we need to make sure, that the stream is always supported by the actual sink.
// Especially Windows APIs tend to be quite picky about samplerate and sample-format.
// The same applies to videostreams.
extern crate gstreamer as gst;
use gst::gst_element_error;
use gst::gst_element_warning;
use gst::prelude::*;
#[cfg(feature = "v1_10")]
use glib::subclass::prelude::*;
#[cfg(feature = "v1_10")]
use glib::GBoxed;
use std::env;
#[cfg(feature = "v1_10")]
use std::sync::{Arc, Mutex};
use anyhow::Error;
use derive_more::{Display, Error};
#[path = "../examples-common.rs"]
mod examples_common;
#[derive(Debug, Display, Error)]
#[display(fmt = "Missing element {}", _0)]
struct MissingElement(#[error(not(source))] &'static str);
#[derive(Debug, Display, Error)]
#[display(fmt = "Received error from {}: {} (debug: {:?})", src, error, debug)]
struct ErrorMessage {
src: String,
error: String,
debug: Option<String>,
source: glib::Error,
}
#[cfg(feature = "v1_10")]
#[derive(Clone, Debug, GBoxed)]
#[gboxed(type_name = "ErrorValue")]
struct ErrorValue(Arc<Mutex<Option<Error>>>);
fn example_main() -> Result<(), Error> {
gst::init()?;
let args: Vec<_> = env::args().collect();
let uri: &str = if args.len() == 2 {
args[1].as_ref()
} else {
println!("Usage: decodebin file_path");
std::process::exit(-1)
};
let pipeline = gst::Pipeline::new(None);
let src = gst::ElementFactory::make("filesrc", None).map_err(|_| MissingElement("filesrc"))?;
let decodebin =
gst::ElementFactory::make("decodebin", None).map_err(|_| MissingElement("decodebin"))?;
// Tell the filesrc what file to load
src.set_property("location", &uri)?;
pipeline.add_many(&[&src, &decodebin])?;
gst::Element::link_many(&[&src, &decodebin])?;
// Need to move a new reference into the closure.
// !!ATTENTION!!:
// It might seem appealing to use pipeline.clone() here, because that greatly
// simplifies the code within the callback. What this actually does, however, is creating
// a memory leak. The clone of a pipeline is a new strong reference on the pipeline.
// Storing this strong reference of the pipeline within the callback (we are moving it in!),
// which is in turn stored in another strong reference on the pipeline is creating a
// reference cycle.
// DO NOT USE pipeline.clone() TO USE THE PIPELINE WITHIN A CALLBACK
let pipeline_weak = pipeline.downgrade();
// Connect to decodebin's pad-added signal, that is emitted whenever
// it found another stream from the input file and found a way to decode it to its raw format.
// decodebin automatically adds a src-pad for this raw stream, which
// we can use to build the follow-up pipeline.
decodebin.connect_pad_added(move |dbin, src_pad| {
// Here we temporarily retrieve a strong reference on the pipeline from the weak one
// we moved into this callback.
let pipeline = match pipeline_weak.upgrade() {
Some(pipeline) => pipeline,
None => return,
};
// Try to detect whether the raw stream decodebin provided us with
// just now is either audio or video (or none of both, e.g. subtitles).
let (is_audio, is_video) = {
let media_type = src_pad.get_current_caps().and_then(|caps| {
caps.get_structure(0).map(|s| {
let name = s.get_name();
(name.starts_with("audio/"), name.starts_with("video/"))
})
});
match media_type {
None => {
gst_element_warning!(
dbin,
gst::CoreError::Negotiation,
("Failed to get media type from pad {}", src_pad.get_name())
);
return;
}
Some(media_type) => media_type,
}
};
// We create a closure here, calling it directly below it, because this greatly
// improves readability for error-handling. Like this, we can simply use the
// ?-operator within the closure, and handle the actual error down below where
// we call the insert_sink(..) closure.
let insert_sink = |is_audio, is_video| -> Result<(), Error> {
if is_audio {
// decodebin found a raw audiostream, so we build the follow-up pipeline to
// play it on the default audio playback device (using autoaudiosink).
let queue = gst::ElementFactory::make("queue", None)
.map_err(|_| MissingElement("queue"))?;
let convert = gst::ElementFactory::make("audioconvert", None)
.map_err(|_| MissingElement("audioconvert"))?;
let resample = gst::ElementFactory::make("audioresample", None)
.map_err(|_| MissingElement("audioresample"))?;
let sink = gst::ElementFactory::make("autoaudiosink", None)
.map_err(|_| MissingElement("autoaudiosink"))?;
let elements = &[&queue, &convert, &resample, &sink];
pipeline.add_many(elements)?;
gst::Element::link_many(elements)?;
// !!ATTENTION!!:
// This is quite important and people forget it often. Without making sure that
// the new elements have the same state as the pipeline, things will fail later.
// They would still be in Null state and can't process data.
for e in elements {
e.sync_state_with_parent()?;
}
// Get the queue element's sink pad and link the decodebin's newly created
// src pad for the audio stream to it.
let sink_pad = queue.get_static_pad("sink").expect("queue has no sinkpad");
src_pad.link(&sink_pad)?;
} else if is_video {
// decodebin found a raw videostream, so we build the follow-up pipeline to
// display it using the autovideosink.
let queue = gst::ElementFactory::make("queue", None)
.map_err(|_| MissingElement("queue"))?;
let convert = gst::ElementFactory::make("videoconvert", None)
.map_err(|_| MissingElement("videoconvert"))?;
let scale = gst::ElementFactory::make("videoscale", None)
.map_err(|_| MissingElement("videoscale"))?;
let sink = gst::ElementFactory::make("autovideosink", None)
.map_err(|_| MissingElement("autovideosink"))?;
let elements = &[&queue, &convert, &scale, &sink];
pipeline.add_many(elements)?;
gst::Element::link_many(elements)?;
for e in elements {
e.sync_state_with_parent()?
}
// Get the queue element's sink pad and link the decodebin's newly created
// src pad for the video stream to it.
let sink_pad = queue.get_static_pad("sink").expect("queue has no sinkpad");
src_pad.link(&sink_pad)?;
}
Ok(())
};
// When adding and linking new elements in a callback fails, error information is often sparse.
// GStreamer's built-in debugging can be hard to link back to the exact position within the code
// that failed. Since callbacks are called from random threads within the pipeline, it can get hard
// to get good error information. The macros used in the following can solve that. With the use
// of those, one can send arbitrary rust types (using the pipeline's bus) into the mainloop.
// What we send here is unpacked down below, in the iteration-code over sent bus-messages.
// Because we are using the failure crate for error details here, we even get a backtrace for
// where the error was constructed. (If RUST_BACKTRACE=1 is set)
if let Err(err) = insert_sink(is_audio, is_video) {
// The following sends a message of type Error on the bus, containing our detailed
// error information.
#[cfg(feature = "v1_10")]
gst_element_error!(
dbin,
gst::LibraryError::Failed,
("Failed to insert sink"),
details: gst::Structure::builder("error-details")
.field("error",
&ErrorValue(Arc::new(Mutex::new(Some(err)))))
.build()
);
#[cfg(not(feature = "v1_10"))]
gst_element_error!(
dbin,
gst::LibraryError::Failed,
("Failed to insert sink"),
["{}", err]
);
}
});
pipeline.set_state(gst::State::Playing)?;
let bus = pipeline
.get_bus()
.expect("Pipeline without bus. Shouldn't happen!");
// This code iterates over all messages that are sent across our pipeline's bus.
// In the callback ("pad-added" on the decodebin), we sent better error information
// using a bus message. This is the position where we get those messages and log
// the contained information.
for msg in bus.iter_timed(gst::CLOCK_TIME_NONE) {
use gst::MessageView;
match msg.view() {
MessageView::Eos(..) => break,
MessageView::Error(err) => {
pipeline.set_state(gst::State::Null)?;
#[cfg(feature = "v1_10")]
{
match err.get_details() {
// This bus-message of type error contained our custom error-details struct
// that we sent in the pad-added callback above. So we unpack it and log
// the detailed error information here. details contains a glib::SendValue.
// The unpacked error is the converted to a Result::Err, stopping the
// application's execution.
Some(details) if details.get_name() == "error-details" => details
.get::<&ErrorValue>("error")
.unwrap()
.and_then(|v| v.0.lock().unwrap().take())
.map(Result::Err)
.expect("error-details message without actual error"),
_ => Err(ErrorMessage {
src: msg
.get_src()
.map(|s| String::from(s.get_path_string()))
.unwrap_or_else(|| String::from("None")),
error: err.get_error().to_string(),
debug: err.get_debug(),
source: err.get_error(),
}
.into()),
}?;
}
#[cfg(not(feature = "v1_10"))]
{
return Err(ErrorMessage {
src: msg
.get_src()
.map(|s| String::from(s.get_path_string()))
.unwrap_or_else(|| String::from("None")),
error: err.get_error().to_string(),
debug: err.get_debug(),
source: err.get_error(),
}
.into());
}
}
MessageView::StateChanged(s) => {
println!(
"State changed from {:?}: {:?} -> {:?} ({:?})",
s.get_src().map(|s| s.get_path_string()),
s.get_old(),
s.get_current(),
s.get_pending()
);
}
_ => (),
}
}
pipeline.set_state(gst::State::Null)?;
Ok(())
}
fn main() {
// tutorials_common::run is only required to set up the application environent on macOS
// (but not necessary in normal Cocoa applications where this is set up autmatically)
match examples_common::run(example_main) {
Ok(r) => r,
Err(e) => eprintln!("Error! {}", e),
}
}