gstreamer-rs/gstreamer/src/clock.rs

570 lines
16 KiB
Rust
Raw Normal View History

2020-12-15 10:53:31 +00:00
// Take a look at the license at the top of the repository in the LICENSE file.
use crate::Clock;
use crate::ClockEntryType;
use crate::ClockError;
use crate::ClockFlags;
use crate::ClockReturn;
use crate::ClockSuccess;
use crate::ClockTime;
use crate::ClockTimeDiff;
use glib::ffi::{gboolean, gpointer};
use glib::prelude::*;
2018-04-01 08:30:03 +00:00
use glib::translate::*;
use libc::c_void;
2018-04-01 08:30:03 +00:00
use std::cmp;
use std::convert;
2018-04-01 08:30:03 +00:00
use std::ptr;
use futures_core::{Future, Stream};
use std::marker::Unpin;
use std::pin::Pin;
use std::sync::atomic;
use std::sync::atomic::AtomicI32;
glib::wrapper! {
#[derive(Debug, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct ClockId(Shared<c_void>);
match fn {
ref => |ptr| ffi::gst_clock_id_ref(ptr),
unref => |ptr| ffi::gst_clock_id_unref(ptr),
}
}
impl ClockId {
#[doc(alias = "get_time")]
2021-04-11 19:39:50 +00:00
pub fn time(&self) -> ClockTime {
unsafe { from_glib(ffi::gst_clock_id_get_time(self.to_glib_none().0)) }
}
pub fn unschedule(&self) {
unsafe { ffi::gst_clock_id_unschedule(self.to_glib_none().0) }
}
pub fn wait(&self) -> (Result<ClockSuccess, ClockError>, ClockTimeDiff) {
unsafe {
let mut jitter = 0;
let res: ClockReturn =
from_glib(ffi::gst_clock_id_wait(self.to_glib_none().0, &mut jitter));
(res.into_result(), jitter)
}
}
pub fn compare_by_time(&self, other: &Self) -> cmp::Ordering {
unsafe {
let res = ffi::gst_clock_id_compare_func(self.to_glib_none().0, other.to_glib_none().0);
res.cmp(&0)
}
}
#[cfg(any(feature = "v1_16", feature = "dox"))]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v1_16")))]
#[doc(alias = "get_clock")]
2021-04-11 19:39:50 +00:00
pub fn clock(&self) -> Option<Clock> {
unsafe { from_glib_full(ffi::gst_clock_id_get_clock(self.to_glib_none().0)) }
}
#[cfg(any(feature = "v1_16", feature = "dox"))]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v1_16")))]
pub fn uses_clock<P: IsA<Clock>>(&self, clock: &P) -> bool {
unsafe {
from_glib(ffi::gst_clock_id_uses_clock(
self.to_glib_none().0,
clock.as_ref().as_ptr(),
))
}
}
#[doc(alias = "get_type")]
2021-04-11 19:39:50 +00:00
pub fn type_(&self) -> ClockEntryType {
unsafe {
let ptr: *mut ffi::GstClockEntry = self.to_glib_none().0 as *mut _;
from_glib((*ptr).type_)
}
}
#[doc(alias = "get_status")]
2021-04-11 19:39:50 +00:00
pub fn status(&self) -> &AtomicClockReturn {
unsafe {
let ptr: *mut ffi::GstClockEntry = self.to_glib_none().0 as *mut _;
&*((&(*ptr).status) as *const i32 as *const AtomicClockReturn)
}
}
}
#[derive(Clone, Debug, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct SingleShotClockId(ClockId);
impl std::ops::Deref for SingleShotClockId {
type Target = ClockId;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl From<SingleShotClockId> for ClockId {
fn from(id: SingleShotClockId) -> ClockId {
skip_assert_initialized!();
id.0
}
}
impl convert::TryFrom<ClockId> for SingleShotClockId {
type Error = glib::BoolError;
fn try_from(id: ClockId) -> Result<SingleShotClockId, glib::BoolError> {
skip_assert_initialized!();
2021-04-11 19:39:50 +00:00
match id.type_() {
ClockEntryType::Single => Ok(SingleShotClockId(id)),
_ => Err(glib::bool_error!("Not a single-shot clock id")),
}
}
}
impl SingleShotClockId {
pub fn compare_by_time(&self, other: &Self) -> cmp::Ordering {
self.0.compare_by_time(&other.0)
}
pub fn wait_async<F>(&self, func: F) -> Result<ClockSuccess, ClockError>
where
F: FnOnce(&Clock, ClockTime, &ClockId) + Send + 'static,
{
unsafe extern "C" fn trampoline<F: FnOnce(&Clock, ClockTime, &ClockId) + Send + 'static>(
clock: *mut ffi::GstClock,
time: ffi::GstClockTime,
id: gpointer,
func: gpointer,
) -> gboolean {
let f: &mut Option<F> = &mut *(func as *mut Option<F>);
let f = f.take().unwrap();
f(
&from_glib_borrow(clock),
from_glib(time),
&from_glib_borrow(id),
);
glib::ffi::GTRUE
}
unsafe extern "C" fn destroy_notify<
F: FnOnce(&Clock, ClockTime, &ClockId) + Send + 'static,
>(
ptr: gpointer,
) {
Box::<Option<F>>::from_raw(ptr as *mut _);
}
let func: Box<Option<F>> = Box::new(Some(func));
let ret: ClockReturn = unsafe {
from_glib(ffi::gst_clock_id_wait_async(
self.to_glib_none().0,
Some(trampoline::<F>),
Box::into_raw(func) as gpointer,
Some(destroy_notify::<F>),
))
};
ret.into_result()
}
#[allow(clippy::type_complexity)]
pub fn wait_async_future(
&self,
) -> Result<
Pin<Box<dyn Future<Output = Result<(ClockTime, ClockId), ClockError>> + Send + 'static>>,
ClockError,
> {
use futures_channel::oneshot;
let (sender, receiver) = oneshot::channel();
self.wait_async(move |_clock, jitter, id| {
if sender.send((jitter, id.clone())).is_err() {
// Unschedule any future calls if the receiver end is disconnected
id.unschedule();
}
})?;
Ok(Box::pin(async move {
receiver.await.map_err(|_| ClockError::Unscheduled)
}))
}
}
#[derive(Debug, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct PeriodicClockId(ClockId);
impl std::ops::Deref for PeriodicClockId {
type Target = ClockId;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl From<PeriodicClockId> for ClockId {
fn from(id: PeriodicClockId) -> ClockId {
skip_assert_initialized!();
id.0
}
}
impl convert::TryFrom<ClockId> for PeriodicClockId {
type Error = glib::BoolError;
fn try_from(id: ClockId) -> Result<PeriodicClockId, glib::BoolError> {
skip_assert_initialized!();
2021-04-11 19:39:50 +00:00
match id.type_() {
ClockEntryType::Periodic => Ok(PeriodicClockId(id)),
_ => Err(glib::bool_error!("Not a periodic clock id")),
}
}
}
impl PeriodicClockId {
#[doc(alias = "get_interval")]
2021-04-11 19:39:50 +00:00
pub fn interval(&self) -> ClockTime {
unsafe {
let ptr: *mut ffi::GstClockEntry = self.to_glib_none().0 as *mut _;
from_glib((*ptr).interval)
}
}
pub fn compare_by_time(&self, other: &Self) -> cmp::Ordering {
self.0.compare_by_time(&other.0)
}
pub fn wait_async<F>(&self, func: F) -> Result<ClockSuccess, ClockError>
where
F: Fn(&Clock, ClockTime, &ClockId) + Send + 'static,
{
unsafe extern "C" fn trampoline<F: Fn(&Clock, ClockTime, &ClockId) + Send + 'static>(
clock: *mut ffi::GstClock,
time: ffi::GstClockTime,
id: gpointer,
func: gpointer,
) -> gboolean {
let f: &F = &*(func as *const F);
f(
&from_glib_borrow(clock),
from_glib(time),
&from_glib_borrow(id),
);
glib::ffi::GTRUE
}
unsafe extern "C" fn destroy_notify<F: Fn(&Clock, ClockTime, &ClockId) + Send + 'static>(
ptr: gpointer,
) {
Box::<F>::from_raw(ptr as *mut _);
}
let func: Box<F> = Box::new(func);
let ret: ClockReturn = unsafe {
from_glib(ffi::gst_clock_id_wait_async(
self.to_glib_none().0,
Some(trampoline::<F>),
Box::into_raw(func) as gpointer,
Some(destroy_notify::<F>),
))
};
ret.into_result()
}
#[allow(clippy::type_complexity)]
pub fn wait_async_stream(
&self,
) -> Result<
Pin<Box<dyn Stream<Item = (ClockTime, ClockId)> + Unpin + Send + 'static>>,
ClockError,
> {
use futures_channel::mpsc;
let (sender, receiver) = mpsc::unbounded();
self.wait_async(move |_clock, jitter, id| {
if sender.unbounded_send((jitter, id.clone())).is_err() {
// Unschedule any future calls if the receiver end is disconnected
id.unschedule();
}
})?;
Ok(Box::pin(receiver))
}
}
#[repr(transparent)]
#[derive(Debug)]
pub struct AtomicClockReturn(AtomicI32);
impl AtomicClockReturn {
pub fn load(&self) -> ClockReturn {
unsafe { from_glib(self.0.load(atomic::Ordering::SeqCst)) }
}
pub fn store(&self, val: ClockReturn) {
self.0.store(val.into_glib(), atomic::Ordering::SeqCst)
}
pub fn swap(&self, val: ClockReturn) -> ClockReturn {
unsafe { from_glib(self.0.swap(val.into_glib(), atomic::Ordering::SeqCst)) }
}
pub fn compare_exchange(
&self,
current: ClockReturn,
new: ClockReturn,
) -> Result<ClockReturn, ClockReturn> {
unsafe {
self.0
.compare_exchange(
current.into_glib(),
new.into_glib(),
atomic::Ordering::SeqCst,
atomic::Ordering::SeqCst,
)
.map(|v| from_glib(v))
.map_err(|v| from_glib(v))
}
}
}
unsafe impl Send for ClockId {}
unsafe impl Sync for ClockId {}
impl Clock {
pub fn adjust_with_calibration(
internal_target: ClockTime,
cinternal: ClockTime,
cexternal: ClockTime,
cnum: ClockTime,
cdenom: ClockTime,
) -> ClockTime {
2020-03-22 14:18:47 +00:00
skip_assert_initialized!();
unsafe {
from_glib(ffi::gst_clock_adjust_with_calibration(
ptr::null_mut(),
internal_target.into_glib(),
cinternal.into_glib(),
cexternal.into_glib(),
cnum.into_glib(),
cdenom.into_glib(),
))
}
}
pub fn unadjust_with_calibration(
external_target: ClockTime,
cinternal: ClockTime,
cexternal: ClockTime,
cnum: ClockTime,
cdenom: ClockTime,
) -> ClockTime {
2020-03-22 14:18:47 +00:00
skip_assert_initialized!();
unsafe {
from_glib(ffi::gst_clock_unadjust_with_calibration(
ptr::null_mut(),
external_target.into_glib(),
cinternal.into_glib(),
cexternal.into_glib(),
cnum.into_glib(),
cdenom.into_glib(),
))
}
}
}
pub trait ClockExtManual: 'static {
fn new_periodic_id(&self, start_time: ClockTime, interval: ClockTime) -> PeriodicClockId;
fn periodic_id_reinit(
&self,
id: &PeriodicClockId,
start_time: ClockTime,
interval: ClockTime,
) -> Result<(), glib::BoolError>;
fn new_single_shot_id(&self, time: ClockTime) -> SingleShotClockId;
fn single_shot_id_reinit(
&self,
id: &SingleShotClockId,
time: ClockTime,
) -> Result<(), glib::BoolError>;
fn set_clock_flags(&self, flags: ClockFlags);
fn unset_clock_flags(&self, flags: ClockFlags);
#[doc(alias = "get_clock_flags")]
2021-04-11 19:39:50 +00:00
fn clock_flags(&self) -> ClockFlags;
}
impl<O: IsA<Clock>> ClockExtManual for O {
fn new_periodic_id(&self, start_time: ClockTime, interval: ClockTime) -> PeriodicClockId {
assert!(start_time.is_some());
assert!(interval.is_some());
assert_ne!(interval, crate::ClockTime::from(0));
unsafe {
PeriodicClockId(from_glib_full(ffi::gst_clock_new_periodic_id(
self.as_ref().to_glib_none().0,
start_time.into_glib(),
interval.into_glib(),
)))
}
}
fn periodic_id_reinit(
&self,
id: &PeriodicClockId,
start_time: ClockTime,
interval: ClockTime,
) -> Result<(), glib::BoolError> {
2017-08-30 11:39:09 +00:00
skip_assert_initialized!();
unsafe {
let res: bool = from_glib(ffi::gst_clock_periodic_id_reinit(
self.as_ref().to_glib_none().0,
id.to_glib_none().0,
start_time.into_glib(),
interval.into_glib(),
));
if res {
Ok(())
} else {
Err(glib::bool_error!("Failed to reinit periodic clock id"))
}
}
}
fn new_single_shot_id(&self, time: ClockTime) -> SingleShotClockId {
assert!(time.is_some());
unsafe {
SingleShotClockId(from_glib_full(ffi::gst_clock_new_single_shot_id(
self.as_ref().to_glib_none().0,
time.into_glib(),
)))
}
}
fn single_shot_id_reinit(
&self,
id: &SingleShotClockId,
time: ClockTime,
) -> Result<(), glib::BoolError> {
unsafe {
let res: bool = from_glib(ffi::gst_clock_single_shot_id_reinit(
self.as_ref().to_glib_none().0,
id.to_glib_none().0,
time.into_glib(),
));
if res {
Ok(())
} else {
Err(glib::bool_error!("Failed to reinit single shot clock id"))
}
}
}
fn set_clock_flags(&self, flags: ClockFlags) {
unsafe {
let ptr: *mut ffi::GstObject = self.as_ptr() as *mut _;
let _guard = crate::utils::MutexGuard::lock(&(*ptr).lock);
(*ptr).flags |= flags.into_glib();
}
}
fn unset_clock_flags(&self, flags: ClockFlags) {
unsafe {
let ptr: *mut ffi::GstObject = self.as_ptr() as *mut _;
let _guard = crate::utils::MutexGuard::lock(&(*ptr).lock);
(*ptr).flags &= !flags.into_glib();
}
}
2021-04-11 19:39:50 +00:00
fn clock_flags(&self) -> ClockFlags {
unsafe {
let ptr: *mut ffi::GstObject = self.as_ptr() as *mut _;
let _guard = crate::utils::MutexGuard::lock(&(*ptr).lock);
from_glib((*ptr).flags)
}
}
}
#[cfg(test)]
mod tests {
use super::super::prelude::*;
use super::super::*;
2018-04-01 08:30:03 +00:00
use super::*;
use std::sync::mpsc::channel;
#[test]
fn test_wait() {
crate::init().unwrap();
let clock = SystemClock::obtain();
2021-04-11 19:39:50 +00:00
let now = clock.time();
let id = clock.new_single_shot_id(now + 20 * crate::MSECOND);
let (res, _) = id.wait();
assert!(res == Ok(ClockSuccess::Ok) || res == Err(ClockError::Early));
}
#[test]
fn test_wait_async() {
crate::init().unwrap();
let (sender, receiver) = channel();
let clock = SystemClock::obtain();
2021-04-11 19:39:50 +00:00
let now = clock.time();
let id = clock.new_single_shot_id(now + 20 * crate::MSECOND);
let res = id.wait_async(move |_, _, _| {
sender.send(()).unwrap();
});
assert!(res == Ok(ClockSuccess::Ok));
assert_eq!(receiver.recv(), Ok(()));
}
#[test]
fn test_wait_periodic() {
crate::init().unwrap();
let clock = SystemClock::obtain();
2021-04-11 19:39:50 +00:00
let now = clock.time();
let id = clock.new_periodic_id(now + 20 * crate::MSECOND, 20 * crate::MSECOND);
let (res, _) = id.wait();
assert!(res == Ok(ClockSuccess::Ok) || res == Err(ClockError::Early));
let (res, _) = id.wait();
assert!(res == Ok(ClockSuccess::Ok) || res == Err(ClockError::Early));
}
#[test]
fn test_wait_async_periodic() {
crate::init().unwrap();
let (sender, receiver) = channel();
let clock = SystemClock::obtain();
2021-04-11 19:39:50 +00:00
let now = clock.time();
let id = clock.new_periodic_id(now + 20 * crate::MSECOND, 20 * crate::MSECOND);
let res = id.wait_async(move |_, _, _| {
let _ = sender.send(());
});
assert!(res == Ok(ClockSuccess::Ok));
assert_eq!(receiver.recv(), Ok(()));
assert_eq!(receiver.recv(), Ok(()));
}
}