mirror of
https://github.com/woodpecker-ci/woodpecker.git
synced 2025-01-26 00:58:24 +00:00
c28f7cb29f
Initial part of #435
216 lines
4.4 KiB
Go
216 lines
4.4 KiB
Go
package suffixtree
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"math"
|
|
"strings"
|
|
)
|
|
|
|
const infinity = math.MaxInt32
|
|
|
|
// Pos denotes position in data slice.
|
|
type Pos int32
|
|
|
|
type Token interface {
|
|
Val() int
|
|
}
|
|
|
|
// STree is a struct representing a suffix tree.
|
|
type STree struct {
|
|
data []Token
|
|
root *state
|
|
auxState *state // auxiliary state
|
|
|
|
// active point
|
|
s *state
|
|
start, end Pos
|
|
}
|
|
|
|
// New creates new suffix tree.
|
|
func New() *STree {
|
|
t := new(STree)
|
|
t.data = make([]Token, 0, 50)
|
|
t.root = newState(t)
|
|
t.auxState = newState(t)
|
|
t.root.linkState = t.auxState
|
|
t.s = t.root
|
|
return t
|
|
}
|
|
|
|
// Update refreshes the suffix tree to by new data.
|
|
func (t *STree) Update(data ...Token) {
|
|
t.data = append(t.data, data...)
|
|
for _ = range data {
|
|
t.update()
|
|
t.s, t.start = t.canonize(t.s, t.start, t.end)
|
|
t.end++
|
|
}
|
|
}
|
|
|
|
// update transforms suffix tree T(n) to T(n+1).
|
|
func (t *STree) update() {
|
|
oldr := t.root
|
|
|
|
// (s, (start, end)) is the canonical reference pair for the active point
|
|
s := t.s
|
|
start, end := t.start, t.end
|
|
var r *state
|
|
for {
|
|
var endPoint bool
|
|
r, endPoint = t.testAndSplit(s, start, end-1)
|
|
if endPoint {
|
|
break
|
|
}
|
|
r.fork(end)
|
|
if oldr != t.root {
|
|
oldr.linkState = r
|
|
}
|
|
oldr = r
|
|
s, start = t.canonize(s.linkState, start, end-1)
|
|
}
|
|
if oldr != t.root {
|
|
oldr.linkState = r
|
|
}
|
|
|
|
// update active point
|
|
t.s = s
|
|
t.start = start
|
|
}
|
|
|
|
// testAndSplit tests whether a state with canonical ref. pair
|
|
// (s, (start, end)) is the end point, that is, a state that have
|
|
// a c-transition. If not, then state (exs, (start, end)) is made
|
|
// explicit (if not already so).
|
|
func (t *STree) testAndSplit(s *state, start, end Pos) (exs *state, endPoint bool) {
|
|
c := t.data[t.end]
|
|
if start <= end {
|
|
tr := s.findTran(t.data[start])
|
|
splitPoint := tr.start + end - start + 1
|
|
if t.data[splitPoint].Val() == c.Val() {
|
|
return s, true
|
|
}
|
|
// make the (s, (start, end)) state explicit
|
|
newSt := newState(s.tree)
|
|
newSt.addTran(splitPoint, tr.end, tr.state)
|
|
tr.end = splitPoint - 1
|
|
tr.state = newSt
|
|
return newSt, false
|
|
}
|
|
if s == t.auxState || s.findTran(c) != nil {
|
|
return s, true
|
|
}
|
|
return s, false
|
|
}
|
|
|
|
// canonize returns updated state and start position for ref. pair
|
|
// (s, (start, end)) of state r so the new ref. pair is canonical,
|
|
// that is, referenced from the closest explicit ancestor of r.
|
|
func (t *STree) canonize(s *state, start, end Pos) (*state, Pos) {
|
|
if s == t.auxState {
|
|
s, start = t.root, start+1
|
|
}
|
|
if start > end {
|
|
return s, start
|
|
}
|
|
|
|
var tr *tran
|
|
for {
|
|
if start <= end {
|
|
tr = s.findTran(t.data[start])
|
|
if tr == nil {
|
|
panic(fmt.Sprintf("there should be some transition for '%d' at %d",
|
|
t.data[start].Val(), start))
|
|
}
|
|
}
|
|
if tr.end-tr.start > end-start {
|
|
break
|
|
}
|
|
start += tr.end - tr.start + 1
|
|
s = tr.state
|
|
}
|
|
if s == nil {
|
|
panic("there should always be some suffix link resolution")
|
|
}
|
|
return s, start
|
|
}
|
|
|
|
func (t *STree) At(p Pos) Token {
|
|
if p < 0 || p >= Pos(len(t.data)) {
|
|
panic("position out of bounds")
|
|
}
|
|
return t.data[p]
|
|
}
|
|
|
|
func (t *STree) String() string {
|
|
buf := new(bytes.Buffer)
|
|
printState(buf, t.root, 0)
|
|
return buf.String()
|
|
}
|
|
|
|
func printState(buf *bytes.Buffer, s *state, ident int) {
|
|
for _, tr := range s.trans {
|
|
fmt.Fprint(buf, strings.Repeat(" ", ident))
|
|
fmt.Fprintf(buf, "* (%d, %d)\n", tr.start, tr.ActEnd())
|
|
printState(buf, tr.state, ident+1)
|
|
}
|
|
}
|
|
|
|
// state is an explicit state of the suffix tree.
|
|
type state struct {
|
|
tree *STree
|
|
trans []*tran
|
|
linkState *state
|
|
}
|
|
|
|
func newState(t *STree) *state {
|
|
return &state{
|
|
tree: t,
|
|
trans: make([]*tran, 0),
|
|
linkState: nil,
|
|
}
|
|
}
|
|
|
|
func (s *state) addTran(start, end Pos, r *state) {
|
|
s.trans = append(s.trans, newTran(start, end, r))
|
|
}
|
|
|
|
// fork creates a new branch from the state s.
|
|
func (s *state) fork(i Pos) *state {
|
|
r := newState(s.tree)
|
|
s.addTran(i, infinity, r)
|
|
return r
|
|
}
|
|
|
|
// findTran finds c-transition.
|
|
func (s *state) findTran(c Token) *tran {
|
|
for _, tran := range s.trans {
|
|
if s.tree.data[tran.start].Val() == c.Val() {
|
|
return tran
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// tran represents a state's transition.
|
|
type tran struct {
|
|
start, end Pos
|
|
state *state
|
|
}
|
|
|
|
func newTran(start, end Pos, s *state) *tran {
|
|
return &tran{start, end, s}
|
|
}
|
|
|
|
func (t *tran) len() int {
|
|
return int(t.end - t.start + 1)
|
|
}
|
|
|
|
// ActEnd returns actual end position as consistent with
|
|
// the actual length of the data in the STree.
|
|
func (t *tran) ActEnd() Pos {
|
|
if t.end == infinity {
|
|
return Pos(len(t.state.tree.data)) - 1
|
|
}
|
|
return t.end
|
|
}
|