woodpecker/vendor/honnef.co/go/tools/simple/lint.go

1940 lines
54 KiB
Go
Raw Normal View History

// Package simple contains a linter for Go source code.
package simple
import (
"fmt"
"go/ast"
"go/constant"
"go/token"
"go/types"
"path/filepath"
"reflect"
"sort"
"strings"
"honnef.co/go/tools/analysis/code"
"honnef.co/go/tools/analysis/edit"
"honnef.co/go/tools/analysis/lint"
"honnef.co/go/tools/analysis/report"
"honnef.co/go/tools/go/ast/astutil"
"honnef.co/go/tools/go/types/typeutil"
"honnef.co/go/tools/internal/passes/buildir"
"honnef.co/go/tools/internal/sharedcheck"
"honnef.co/go/tools/knowledge"
"honnef.co/go/tools/pattern"
"golang.org/x/tools/go/analysis"
)
var (
checkSingleCaseSelectQ1 = pattern.MustParse(`
(ForStmt
nil nil nil
select@(SelectStmt
(CommClause
(Or
(UnaryExpr "<-" _)
(AssignStmt _ _ (UnaryExpr "<-" _)))
_)))`)
checkSingleCaseSelectQ2 = pattern.MustParse(`(SelectStmt (CommClause _ _))`)
)
func CheckSingleCaseSelect(pass *analysis.Pass) (interface{}, error) {
seen := map[ast.Node]struct{}{}
fn := func(node ast.Node) {
if m, ok := code.Match(pass, checkSingleCaseSelectQ1, node); ok {
seen[m.State["select"].(ast.Node)] = struct{}{}
report.Report(pass, node, "should use for range instead of for { select {} }", report.FilterGenerated())
} else if _, ok := code.Match(pass, checkSingleCaseSelectQ2, node); ok {
if _, ok := seen[node]; !ok {
report.Report(pass, node, "should use a simple channel send/receive instead of select with a single case",
report.ShortRange(),
report.FilterGenerated())
}
}
}
code.Preorder(pass, fn, (*ast.ForStmt)(nil), (*ast.SelectStmt)(nil))
return nil, nil
}
var (
checkLoopCopyQ = pattern.MustParse(`
(Or
(RangeStmt
key value ":=" src@(Ident _)
[(AssignStmt
(IndexExpr dst@(Ident _) key)
"="
value)])
(RangeStmt
key nil ":=" src@(Ident _)
[(AssignStmt
(IndexExpr dst@(Ident _) key)
"="
(IndexExpr src key))]))`)
checkLoopCopyR = pattern.MustParse(`(CallExpr (Ident "copy") [dst src])`)
)
func CheckLoopCopy(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
m, edits, ok := code.MatchAndEdit(pass, checkLoopCopyQ, checkLoopCopyR, node)
if !ok {
return
}
t1 := pass.TypesInfo.TypeOf(m.State["src"].(*ast.Ident))
t2 := pass.TypesInfo.TypeOf(m.State["dst"].(*ast.Ident))
if _, ok := t1.Underlying().(*types.Slice); !ok {
return
}
if !types.Identical(t1, t2) {
return
}
tv, err := types.Eval(pass.Fset, pass.Pkg, node.Pos(), "copy")
if err == nil && tv.IsBuiltin() {
report.Report(pass, node,
"should use copy() instead of a loop",
report.ShortRange(),
report.FilterGenerated(),
report.Fixes(edit.Fix("replace loop with call to copy()", edits...)))
} else {
report.Report(pass, node, "should use copy() instead of a loop", report.FilterGenerated())
}
}
code.Preorder(pass, fn, (*ast.RangeStmt)(nil))
return nil, nil
}
func CheckIfBoolCmp(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
if code.IsInTest(pass, node) {
return
}
expr := node.(*ast.BinaryExpr)
if expr.Op != token.EQL && expr.Op != token.NEQ {
return
}
x := code.IsBoolConst(pass, expr.X)
y := code.IsBoolConst(pass, expr.Y)
if !x && !y {
return
}
var other ast.Expr
var val bool
if x {
val = code.BoolConst(pass, expr.X)
other = expr.Y
} else {
val = code.BoolConst(pass, expr.Y)
other = expr.X
}
basic, ok := pass.TypesInfo.TypeOf(other).Underlying().(*types.Basic)
if !ok || basic.Kind() != types.Bool {
return
}
op := ""
if (expr.Op == token.EQL && !val) || (expr.Op == token.NEQ && val) {
op = "!"
}
r := op + report.Render(pass, other)
l1 := len(r)
r = strings.TrimLeft(r, "!")
if (l1-len(r))%2 == 1 {
r = "!" + r
}
report.Report(pass, expr, fmt.Sprintf("should omit comparison to bool constant, can be simplified to %s", r),
report.FilterGenerated(),
report.Fixes(edit.Fix("simplify bool comparison", edit.ReplaceWithString(pass.Fset, expr, r))))
}
code.Preorder(pass, fn, (*ast.BinaryExpr)(nil))
return nil, nil
}
var (
checkBytesBufferConversionsQ = pattern.MustParse(`(CallExpr _ [(CallExpr sel@(SelectorExpr recv _) [])])`)
checkBytesBufferConversionsRs = pattern.MustParse(`(CallExpr (SelectorExpr recv (Ident "String")) [])`)
checkBytesBufferConversionsRb = pattern.MustParse(`(CallExpr (SelectorExpr recv (Ident "Bytes")) [])`)
)
func CheckBytesBufferConversions(pass *analysis.Pass) (interface{}, error) {
if pass.Pkg.Path() == "bytes" || pass.Pkg.Path() == "bytes_test" {
// The bytes package can use itself however it wants
return nil, nil
}
fn := func(node ast.Node, stack []ast.Node) {
m, ok := code.Match(pass, checkBytesBufferConversionsQ, node)
if !ok {
return
}
call := node.(*ast.CallExpr)
sel := m.State["sel"].(*ast.SelectorExpr)
typ := pass.TypesInfo.TypeOf(call.Fun)
if typ == types.Universe.Lookup("string").Type() && code.IsCallTo(pass, call.Args[0], "(*bytes.Buffer).Bytes") {
if _, ok := stack[len(stack)-2].(*ast.IndexExpr); ok {
// Don't flag m[string(buf.Bytes())] thanks to a
// compiler optimization, this is actually faster than
// m[buf.String()]
return
}
report.Report(pass, call, fmt.Sprintf("should use %v.String() instead of %v", report.Render(pass, sel.X), report.Render(pass, call)),
report.FilterGenerated(),
report.Fixes(edit.Fix("simplify conversion", edit.ReplaceWithPattern(pass, checkBytesBufferConversionsRs, m.State, node))))
} else if typ, ok := typ.(*types.Slice); ok && typ.Elem() == types.Universe.Lookup("byte").Type() && code.IsCallTo(pass, call.Args[0], "(*bytes.Buffer).String") {
report.Report(pass, call, fmt.Sprintf("should use %v.Bytes() instead of %v", report.Render(pass, sel.X), report.Render(pass, call)),
report.FilterGenerated(),
report.Fixes(edit.Fix("simplify conversion", edit.ReplaceWithPattern(pass, checkBytesBufferConversionsRb, m.State, node))))
}
}
code.PreorderStack(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
func CheckStringsContains(pass *analysis.Pass) (interface{}, error) {
// map of value to token to bool value
allowed := map[int64]map[token.Token]bool{
-1: {token.GTR: true, token.NEQ: true, token.EQL: false},
0: {token.GEQ: true, token.LSS: false},
}
fn := func(node ast.Node) {
expr := node.(*ast.BinaryExpr)
switch expr.Op {
case token.GEQ, token.GTR, token.NEQ, token.LSS, token.EQL:
default:
return
}
value, ok := code.ExprToInt(pass, expr.Y)
if !ok {
return
}
allowedOps, ok := allowed[value]
if !ok {
return
}
b, ok := allowedOps[expr.Op]
if !ok {
return
}
call, ok := expr.X.(*ast.CallExpr)
if !ok {
return
}
sel, ok := call.Fun.(*ast.SelectorExpr)
if !ok {
return
}
pkgIdent, ok := sel.X.(*ast.Ident)
if !ok {
return
}
funIdent := sel.Sel
if pkgIdent.Name != "strings" && pkgIdent.Name != "bytes" {
return
}
var r ast.Expr
switch funIdent.Name {
case "IndexRune":
r = &ast.SelectorExpr{
X: pkgIdent,
Sel: &ast.Ident{Name: "ContainsRune"},
}
case "IndexAny":
r = &ast.SelectorExpr{
X: pkgIdent,
Sel: &ast.Ident{Name: "ContainsAny"},
}
case "Index":
r = &ast.SelectorExpr{
X: pkgIdent,
Sel: &ast.Ident{Name: "Contains"},
}
default:
return
}
r = &ast.CallExpr{
Fun: r,
Args: call.Args,
}
if !b {
r = &ast.UnaryExpr{
Op: token.NOT,
X: r,
}
}
report.Report(pass, node, fmt.Sprintf("should use %s instead", report.Render(pass, r)),
report.FilterGenerated(),
report.Fixes(edit.Fix(fmt.Sprintf("simplify use of %s", report.Render(pass, call.Fun)), edit.ReplaceWithNode(pass.Fset, node, r))))
}
code.Preorder(pass, fn, (*ast.BinaryExpr)(nil))
return nil, nil
}
var (
checkBytesCompareQ = pattern.MustParse(`(BinaryExpr (CallExpr (Function "bytes.Compare") args) op@(Or "==" "!=") (BasicLit "INT" "0"))`)
checkBytesCompareRe = pattern.MustParse(`(CallExpr (SelectorExpr (Ident "bytes") (Ident "Equal")) args)`)
checkBytesCompareRn = pattern.MustParse(`(UnaryExpr "!" (CallExpr (SelectorExpr (Ident "bytes") (Ident "Equal")) args))`)
)
func CheckBytesCompare(pass *analysis.Pass) (interface{}, error) {
if pass.Pkg.Path() == "bytes" || pass.Pkg.Path() == "bytes_test" {
// the bytes package is free to use bytes.Compare as it sees fit
return nil, nil
}
fn := func(node ast.Node) {
m, ok := code.Match(pass, checkBytesCompareQ, node)
if !ok {
return
}
args := report.RenderArgs(pass, m.State["args"].([]ast.Expr))
prefix := ""
if m.State["op"].(token.Token) == token.NEQ {
prefix = "!"
}
var fix analysis.SuggestedFix
switch tok := m.State["op"].(token.Token); tok {
case token.EQL:
fix = edit.Fix("simplify use of bytes.Compare", edit.ReplaceWithPattern(pass, checkBytesCompareRe, m.State, node))
case token.NEQ:
fix = edit.Fix("simplify use of bytes.Compare", edit.ReplaceWithPattern(pass, checkBytesCompareRn, m.State, node))
default:
panic(fmt.Sprintf("unexpected token %v", tok))
}
report.Report(pass, node, fmt.Sprintf("should use %sbytes.Equal(%s) instead", prefix, args), report.FilterGenerated(), report.Fixes(fix))
}
code.Preorder(pass, fn, (*ast.BinaryExpr)(nil))
return nil, nil
}
func CheckForTrue(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
loop := node.(*ast.ForStmt)
if loop.Init != nil || loop.Post != nil {
return
}
if !code.IsBoolConst(pass, loop.Cond) || !code.BoolConst(pass, loop.Cond) {
return
}
report.Report(pass, loop, "should use for {} instead of for true {}",
report.ShortRange(),
report.FilterGenerated())
}
code.Preorder(pass, fn, (*ast.ForStmt)(nil))
return nil, nil
}
func CheckRegexpRaw(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
call := node.(*ast.CallExpr)
if !code.IsCallToAny(pass, call, "regexp.MustCompile", "regexp.Compile") {
return
}
sel, ok := call.Fun.(*ast.SelectorExpr)
if !ok {
return
}
lit, ok := call.Args[knowledge.Arg("regexp.Compile.expr")].(*ast.BasicLit)
if !ok {
// TODO(dominikh): support string concat, maybe support constants
return
}
if lit.Kind != token.STRING {
// invalid function call
return
}
if lit.Value[0] != '"' {
// already a raw string
return
}
val := lit.Value
if !strings.Contains(val, `\\`) {
return
}
if strings.Contains(val, "`") {
return
}
bs := false
for _, c := range val {
if !bs && c == '\\' {
bs = true
continue
}
if bs && c == '\\' {
bs = false
continue
}
if bs {
// backslash followed by non-backslash -> escape sequence
return
}
}
report.Report(pass, call, fmt.Sprintf("should use raw string (`...`) with regexp.%s to avoid having to escape twice", sel.Sel.Name), report.FilterGenerated())
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
var (
checkIfReturnQIf = pattern.MustParse(`(IfStmt nil cond [(ReturnStmt [ret@(Ident _)])] nil)`)
checkIfReturnQRet = pattern.MustParse(`(ReturnStmt [ret@(Ident _)])`)
)
func CheckIfReturn(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
block := node.(*ast.BlockStmt)
l := len(block.List)
if l < 2 {
return
}
n1, n2 := block.List[l-2], block.List[l-1]
if len(block.List) >= 3 {
if _, ok := block.List[l-3].(*ast.IfStmt); ok {
// Do not flag a series of if statements
return
}
}
m1, ok := code.Match(pass, checkIfReturnQIf, n1)
if !ok {
return
}
m2, ok := code.Match(pass, checkIfReturnQRet, n2)
if !ok {
return
}
if op, ok := m1.State["cond"].(*ast.BinaryExpr); ok {
switch op.Op {
case token.EQL, token.LSS, token.GTR, token.NEQ, token.LEQ, token.GEQ:
default:
return
}
}
ret1 := m1.State["ret"].(*ast.Ident)
if !code.IsBoolConst(pass, ret1) {
return
}
ret2 := m2.State["ret"].(*ast.Ident)
if !code.IsBoolConst(pass, ret2) {
return
}
if ret1.Name == ret2.Name {
// we want the function to return true and false, not the
// same value both times.
return
}
cond := m1.State["cond"].(ast.Expr)
origCond := cond
if ret1.Name == "false" {
cond = negate(cond)
}
report.Report(pass, n1,
fmt.Sprintf("should use 'return %s' instead of 'if %s { return %s }; return %s'",
report.Render(pass, cond),
report.Render(pass, origCond), report.Render(pass, ret1), report.Render(pass, ret2)),
report.FilterGenerated())
}
code.Preorder(pass, fn, (*ast.BlockStmt)(nil))
return nil, nil
}
func negate(expr ast.Expr) ast.Expr {
switch expr := expr.(type) {
case *ast.BinaryExpr:
out := *expr
switch expr.Op {
case token.EQL:
out.Op = token.NEQ
case token.LSS:
out.Op = token.GEQ
case token.GTR:
out.Op = token.LEQ
case token.NEQ:
out.Op = token.EQL
case token.LEQ:
out.Op = token.GTR
case token.GEQ:
out.Op = token.LSS
}
return &out
case *ast.Ident, *ast.CallExpr, *ast.IndexExpr, *ast.StarExpr:
return &ast.UnaryExpr{
Op: token.NOT,
X: expr,
}
case *ast.UnaryExpr:
if expr.Op == token.NOT {
return expr.X
}
return &ast.UnaryExpr{
Op: token.NOT,
X: expr,
}
default:
return &ast.UnaryExpr{
Op: token.NOT,
X: &ast.ParenExpr{
X: expr,
},
}
}
}
// CheckRedundantNilCheckWithLen checks for the following redundant nil-checks:
//
// if x == nil || len(x) == 0 {}
// if x != nil && len(x) != 0 {}
// if x != nil && len(x) == N {} (where N != 0)
// if x != nil && len(x) > N {}
// if x != nil && len(x) >= N {} (where N != 0)
//
func CheckRedundantNilCheckWithLen(pass *analysis.Pass) (interface{}, error) {
isConstZero := func(expr ast.Expr) (isConst bool, isZero bool) {
_, ok := expr.(*ast.BasicLit)
if ok {
return true, astutil.IsIntLiteral(expr, "0")
}
id, ok := expr.(*ast.Ident)
if !ok {
return false, false
}
c, ok := pass.TypesInfo.ObjectOf(id).(*types.Const)
if !ok {
return false, false
}
return true, c.Val().Kind() == constant.Int && c.Val().String() == "0"
}
fn := func(node ast.Node) {
// check that expr is "x || y" or "x && y"
expr := node.(*ast.BinaryExpr)
if expr.Op != token.LOR && expr.Op != token.LAND {
return
}
eqNil := expr.Op == token.LOR
// check that x is "xx == nil" or "xx != nil"
x, ok := expr.X.(*ast.BinaryExpr)
if !ok {
return
}
if eqNil && x.Op != token.EQL {
return
}
if !eqNil && x.Op != token.NEQ {
return
}
xx, ok := x.X.(*ast.Ident)
if !ok {
return
}
if !code.IsNil(pass, x.Y) {
return
}
// check that y is "len(xx) == 0" or "len(xx) ... "
y, ok := expr.Y.(*ast.BinaryExpr)
if !ok {
return
}
if eqNil && y.Op != token.EQL { // must be len(xx) *==* 0
return
}
yx, ok := y.X.(*ast.CallExpr)
if !ok {
return
}
yxFun, ok := yx.Fun.(*ast.Ident)
if !ok || yxFun.Name != "len" || len(yx.Args) != 1 {
return
}
yxArg, ok := yx.Args[knowledge.Arg("len.v")].(*ast.Ident)
if !ok {
return
}
if yxArg.Name != xx.Name {
return
}
if eqNil && !astutil.IsIntLiteral(y.Y, "0") { // must be len(x) == *0*
return
}
if !eqNil {
isConst, isZero := isConstZero(y.Y)
if !isConst {
return
}
switch y.Op {
case token.EQL:
// avoid false positive for "xx != nil && len(xx) == 0"
if isZero {
return
}
case token.GEQ:
// avoid false positive for "xx != nil && len(xx) >= 0"
if isZero {
return
}
case token.NEQ:
// avoid false positive for "xx != nil && len(xx) != <non-zero>"
if !isZero {
return
}
case token.GTR:
// ok
default:
return
}
}
// finally check that xx type is one of array, slice, map or chan
// this is to prevent false positive in case if xx is a pointer to an array
var nilType string
switch pass.TypesInfo.TypeOf(xx).(type) {
case *types.Slice:
nilType = "nil slices"
case *types.Map:
nilType = "nil maps"
case *types.Chan:
nilType = "nil channels"
default:
return
}
report.Report(pass, expr, fmt.Sprintf("should omit nil check; len() for %s is defined as zero", nilType), report.FilterGenerated())
}
code.Preorder(pass, fn, (*ast.BinaryExpr)(nil))
return nil, nil
}
var checkSlicingQ = pattern.MustParse(`(SliceExpr x@(Object _) low (CallExpr (Builtin "len") [x]) nil)`)
func CheckSlicing(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
if _, ok := code.Match(pass, checkSlicingQ, node); ok {
expr := node.(*ast.SliceExpr)
report.Report(pass, expr.High,
"should omit second index in slice, s[a:len(s)] is identical to s[a:]",
report.FilterGenerated(),
report.Fixes(edit.Fix("simplify slice expression", edit.Delete(expr.High))))
}
}
code.Preorder(pass, fn, (*ast.SliceExpr)(nil))
return nil, nil
}
func refersTo(pass *analysis.Pass, expr ast.Expr, ident types.Object) bool {
found := false
fn := func(node ast.Node) bool {
ident2, ok := node.(*ast.Ident)
if !ok {
return true
}
if ident == pass.TypesInfo.ObjectOf(ident2) {
found = true
return false
}
return true
}
ast.Inspect(expr, fn)
return found
}
var checkLoopAppendQ = pattern.MustParse(`
(RangeStmt
(Ident "_")
val@(Object _)
_
x
[(AssignStmt [lhs] "=" [(CallExpr (Builtin "append") [lhs val])])]) `)
func CheckLoopAppend(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
m, ok := code.Match(pass, checkLoopAppendQ, node)
if !ok {
return
}
val := m.State["val"].(types.Object)
if refersTo(pass, m.State["lhs"].(ast.Expr), val) {
return
}
src := pass.TypesInfo.TypeOf(m.State["x"].(ast.Expr))
dst := pass.TypesInfo.TypeOf(m.State["lhs"].(ast.Expr))
if !types.Identical(src, dst) {
return
}
r := &ast.AssignStmt{
Lhs: []ast.Expr{m.State["lhs"].(ast.Expr)},
Tok: token.ASSIGN,
Rhs: []ast.Expr{
&ast.CallExpr{
Fun: &ast.Ident{Name: "append"},
Args: []ast.Expr{
m.State["lhs"].(ast.Expr),
m.State["x"].(ast.Expr),
},
Ellipsis: 1,
},
},
}
report.Report(pass, node, fmt.Sprintf("should replace loop with %s", report.Render(pass, r)),
report.ShortRange(),
report.FilterGenerated(),
report.Fixes(edit.Fix("replace loop with call to append", edit.ReplaceWithNode(pass.Fset, node, r))))
}
code.Preorder(pass, fn, (*ast.RangeStmt)(nil))
return nil, nil
}
var (
checkTimeSinceQ = pattern.MustParse(`(CallExpr (SelectorExpr (CallExpr (Function "time.Now") []) (Function "(time.Time).Sub")) [arg])`)
checkTimeSinceR = pattern.MustParse(`(CallExpr (SelectorExpr (Ident "time") (Ident "Since")) [arg])`)
)
func CheckTimeSince(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
if _, edits, ok := code.MatchAndEdit(pass, checkTimeSinceQ, checkTimeSinceR, node); ok {
report.Report(pass, node, "should use time.Since instead of time.Now().Sub",
report.FilterGenerated(),
report.Fixes(edit.Fix("replace with call to time.Since", edits...)))
}
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
var (
checkTimeUntilQ = pattern.MustParse(`(CallExpr (Function "(time.Time).Sub") [(CallExpr (Function "time.Now") [])])`)
checkTimeUntilR = pattern.MustParse(`(CallExpr (SelectorExpr (Ident "time") (Ident "Until")) [arg])`)
)
func CheckTimeUntil(pass *analysis.Pass) (interface{}, error) {
if !code.IsGoVersion(pass, 8) {
return nil, nil
}
fn := func(node ast.Node) {
if _, ok := code.Match(pass, checkTimeUntilQ, node); ok {
if sel, ok := node.(*ast.CallExpr).Fun.(*ast.SelectorExpr); ok {
r := pattern.NodeToAST(checkTimeUntilR.Root, map[string]interface{}{"arg": sel.X}).(ast.Node)
report.Report(pass, node, "should use time.Until instead of t.Sub(time.Now())",
report.FilterGenerated(),
report.Fixes(edit.Fix("replace with call to time.Until", edit.ReplaceWithNode(pass.Fset, node, r))))
} else {
report.Report(pass, node, "should use time.Until instead of t.Sub(time.Now())", report.FilterGenerated())
}
}
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
var (
checkUnnecessaryBlankQ1 = pattern.MustParse(`
(AssignStmt
[_ (Ident "_")]
_
(Or
(IndexExpr _ _)
(UnaryExpr "<-" _))) `)
checkUnnecessaryBlankQ2 = pattern.MustParse(`
(AssignStmt
(Ident "_") _ recv@(UnaryExpr "<-" _))`)
)
func CheckUnnecessaryBlank(pass *analysis.Pass) (interface{}, error) {
fn1 := func(node ast.Node) {
if _, ok := code.Match(pass, checkUnnecessaryBlankQ1, node); ok {
r := *node.(*ast.AssignStmt)
r.Lhs = r.Lhs[0:1]
report.Report(pass, node, "unnecessary assignment to the blank identifier",
report.FilterGenerated(),
report.Fixes(edit.Fix("remove assignment to blank identifier", edit.ReplaceWithNode(pass.Fset, node, &r))))
} else if m, ok := code.Match(pass, checkUnnecessaryBlankQ2, node); ok {
report.Report(pass, node, "unnecessary assignment to the blank identifier",
report.FilterGenerated(),
report.Fixes(edit.Fix("simplify channel receive operation", edit.ReplaceWithNode(pass.Fset, node, m.State["recv"].(ast.Node)))))
}
}
fn3 := func(node ast.Node) {
rs := node.(*ast.RangeStmt)
// for _
if rs.Value == nil && astutil.IsBlank(rs.Key) {
report.Report(pass, rs.Key, "unnecessary assignment to the blank identifier",
report.FilterGenerated(),
report.Fixes(edit.Fix("remove assignment to blank identifier", edit.Delete(edit.Range{rs.Key.Pos(), rs.TokPos + 1}))))
}
// for _, _
if astutil.IsBlank(rs.Key) && astutil.IsBlank(rs.Value) {
// FIXME we should mark both key and value
report.Report(pass, rs.Key, "unnecessary assignment to the blank identifier",
report.FilterGenerated(),
report.Fixes(edit.Fix("remove assignment to blank identifier", edit.Delete(edit.Range{rs.Key.Pos(), rs.TokPos + 1}))))
}
// for x, _
if !astutil.IsBlank(rs.Key) && astutil.IsBlank(rs.Value) {
report.Report(pass, rs.Value, "unnecessary assignment to the blank identifier",
report.FilterGenerated(),
report.Fixes(edit.Fix("remove assignment to blank identifier", edit.Delete(edit.Range{rs.Key.End(), rs.Value.End()}))))
}
}
code.Preorder(pass, fn1, (*ast.AssignStmt)(nil))
if code.IsGoVersion(pass, 4) {
code.Preorder(pass, fn3, (*ast.RangeStmt)(nil))
}
return nil, nil
}
func CheckSimplerStructConversion(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node, stack []ast.Node) {
if unary, ok := stack[len(stack)-2].(*ast.UnaryExpr); ok && unary.Op == token.AND {
// Do not suggest type conversion between pointers
return
}
lit := node.(*ast.CompositeLit)
typ1, _ := pass.TypesInfo.TypeOf(lit.Type).(*types.Named)
if typ1 == nil {
return
}
s1, ok := typ1.Underlying().(*types.Struct)
if !ok {
return
}
var typ2 *types.Named
var ident *ast.Ident
getSelType := func(expr ast.Expr) (types.Type, *ast.Ident, bool) {
sel, ok := expr.(*ast.SelectorExpr)
if !ok {
return nil, nil, false
}
ident, ok := sel.X.(*ast.Ident)
if !ok {
return nil, nil, false
}
typ := pass.TypesInfo.TypeOf(sel.X)
return typ, ident, typ != nil
}
if len(lit.Elts) == 0 {
return
}
if s1.NumFields() != len(lit.Elts) {
return
}
for i, elt := range lit.Elts {
var t types.Type
var id *ast.Ident
var ok bool
switch elt := elt.(type) {
case *ast.SelectorExpr:
t, id, ok = getSelType(elt)
if !ok {
return
}
if i >= s1.NumFields() || s1.Field(i).Name() != elt.Sel.Name {
return
}
case *ast.KeyValueExpr:
var sel *ast.SelectorExpr
sel, ok = elt.Value.(*ast.SelectorExpr)
if !ok {
return
}
if elt.Key.(*ast.Ident).Name != sel.Sel.Name {
return
}
t, id, ok = getSelType(elt.Value)
}
if !ok {
return
}
// All fields must be initialized from the same object
if ident != nil && ident.Obj != id.Obj {
return
}
typ2, _ = t.(*types.Named)
if typ2 == nil {
return
}
ident = id
}
if typ2 == nil {
return
}
if typ1.Obj().Pkg() != typ2.Obj().Pkg() {
// Do not suggest type conversions between different
// packages. Types in different packages might only match
// by coincidence. Furthermore, if the dependency ever
// adds more fields to its type, it could break the code
// that relies on the type conversion to work.
return
}
s2, ok := typ2.Underlying().(*types.Struct)
if !ok {
return
}
if typ1 == typ2 {
return
}
if code.IsGoVersion(pass, 8) {
if !types.IdenticalIgnoreTags(s1, s2) {
return
}
} else {
if !types.Identical(s1, s2) {
return
}
}
r := &ast.CallExpr{
Fun: lit.Type,
Args: []ast.Expr{ident},
}
report.Report(pass, node,
fmt.Sprintf("should convert %s (type %s) to %s instead of using struct literal", ident.Name, typ2.Obj().Name(), typ1.Obj().Name()),
report.FilterGenerated(),
report.Fixes(edit.Fix("use type conversion", edit.ReplaceWithNode(pass.Fset, node, r))))
}
code.PreorderStack(pass, fn, (*ast.CompositeLit)(nil))
return nil, nil
}
func CheckTrim(pass *analysis.Pass) (interface{}, error) {
sameNonDynamic := func(node1, node2 ast.Node) bool {
if reflect.TypeOf(node1) != reflect.TypeOf(node2) {
return false
}
switch node1 := node1.(type) {
case *ast.Ident:
return node1.Obj == node2.(*ast.Ident).Obj
case *ast.SelectorExpr, *ast.IndexExpr:
return astutil.Equal(node1, node2)
case *ast.BasicLit:
return astutil.Equal(node1, node2)
}
return false
}
isLenOnIdent := func(fn ast.Expr, ident ast.Expr) bool {
call, ok := fn.(*ast.CallExpr)
if !ok {
return false
}
if !code.IsCallTo(pass, call, "len") {
return false
}
if len(call.Args) != 1 {
return false
}
return sameNonDynamic(call.Args[knowledge.Arg("len.v")], ident)
}
fn := func(node ast.Node) {
var pkg string
var fun string
ifstmt := node.(*ast.IfStmt)
if ifstmt.Init != nil {
return
}
if ifstmt.Else != nil {
return
}
if len(ifstmt.Body.List) != 1 {
return
}
condCall, ok := ifstmt.Cond.(*ast.CallExpr)
if !ok {
return
}
condCallName := code.CallName(pass, condCall)
switch condCallName {
case "strings.HasPrefix":
pkg = "strings"
fun = "HasPrefix"
case "strings.HasSuffix":
pkg = "strings"
fun = "HasSuffix"
case "strings.Contains":
pkg = "strings"
fun = "Contains"
case "bytes.HasPrefix":
pkg = "bytes"
fun = "HasPrefix"
case "bytes.HasSuffix":
pkg = "bytes"
fun = "HasSuffix"
case "bytes.Contains":
pkg = "bytes"
fun = "Contains"
default:
return
}
assign, ok := ifstmt.Body.List[0].(*ast.AssignStmt)
if !ok {
return
}
if assign.Tok != token.ASSIGN {
return
}
if len(assign.Lhs) != 1 || len(assign.Rhs) != 1 {
return
}
if !sameNonDynamic(condCall.Args[0], assign.Lhs[0]) {
return
}
switch rhs := assign.Rhs[0].(type) {
case *ast.CallExpr:
if len(rhs.Args) < 2 || !sameNonDynamic(condCall.Args[0], rhs.Args[0]) || !sameNonDynamic(condCall.Args[1], rhs.Args[1]) {
return
}
rhsName := code.CallName(pass, rhs)
if condCallName == "strings.HasPrefix" && rhsName == "strings.TrimPrefix" ||
condCallName == "strings.HasSuffix" && rhsName == "strings.TrimSuffix" ||
condCallName == "strings.Contains" && rhsName == "strings.Replace" ||
condCallName == "bytes.HasPrefix" && rhsName == "bytes.TrimPrefix" ||
condCallName == "bytes.HasSuffix" && rhsName == "bytes.TrimSuffix" ||
condCallName == "bytes.Contains" && rhsName == "bytes.Replace" {
report.Report(pass, ifstmt, fmt.Sprintf("should replace this if statement with an unconditional %s", rhsName), report.FilterGenerated())
}
case *ast.SliceExpr:
slice := rhs
if !ok {
return
}
if slice.Slice3 {
return
}
if !sameNonDynamic(slice.X, condCall.Args[0]) {
return
}
validateOffset := func(off ast.Expr) bool {
switch off := off.(type) {
case *ast.CallExpr:
return isLenOnIdent(off, condCall.Args[1])
case *ast.BasicLit:
if pkg != "strings" {
return false
}
if _, ok := condCall.Args[1].(*ast.BasicLit); !ok {
// Only allow manual slicing with an integer
// literal if the second argument to HasPrefix
// was a string literal.
return false
}
s, ok1 := code.ExprToString(pass, condCall.Args[1])
n, ok2 := code.ExprToInt(pass, off)
if !ok1 || !ok2 || n != int64(len(s)) {
return false
}
return true
default:
return false
}
}
switch fun {
case "HasPrefix":
// TODO(dh) We could detect a High that is len(s), but another
// rule will already flag that, anyway.
if slice.High != nil {
return
}
if !validateOffset(slice.Low) {
return
}
case "HasSuffix":
if slice.Low != nil {
n, ok := code.ExprToInt(pass, slice.Low)
if !ok || n != 0 {
return
}
}
switch index := slice.High.(type) {
case *ast.BinaryExpr:
if index.Op != token.SUB {
return
}
if !isLenOnIdent(index.X, condCall.Args[0]) {
return
}
if !validateOffset(index.Y) {
return
}
default:
return
}
default:
return
}
var replacement string
switch fun {
case "HasPrefix":
replacement = "TrimPrefix"
case "HasSuffix":
replacement = "TrimSuffix"
}
report.Report(pass, ifstmt, fmt.Sprintf("should replace this if statement with an unconditional %s.%s", pkg, replacement),
report.ShortRange(),
report.FilterGenerated())
}
}
code.Preorder(pass, fn, (*ast.IfStmt)(nil))
return nil, nil
}
var (
checkLoopSlideQ = pattern.MustParse(`
(ForStmt
(AssignStmt initvar@(Ident _) _ (BasicLit "INT" "0"))
(BinaryExpr initvar "<" limit@(Ident _))
(IncDecStmt initvar "++")
[(AssignStmt
(IndexExpr slice@(Ident _) initvar)
"="
(IndexExpr slice (BinaryExpr offset@(Ident _) "+" initvar)))])`)
checkLoopSlideR = pattern.MustParse(`
(CallExpr
(Ident "copy")
[(SliceExpr slice nil limit nil)
(SliceExpr slice offset nil nil)])`)
)
func CheckLoopSlide(pass *analysis.Pass) (interface{}, error) {
// TODO(dh): detect bs[i+offset] in addition to bs[offset+i]
// TODO(dh): consider merging this function with LintLoopCopy
// TODO(dh): detect length that is an expression, not a variable name
// TODO(dh): support sliding to a different offset than the beginning of the slice
fn := func(node ast.Node) {
loop := node.(*ast.ForStmt)
m, edits, ok := code.MatchAndEdit(pass, checkLoopSlideQ, checkLoopSlideR, loop)
if !ok {
return
}
if _, ok := pass.TypesInfo.TypeOf(m.State["slice"].(*ast.Ident)).Underlying().(*types.Slice); !ok {
return
}
report.Report(pass, loop, "should use copy() instead of loop for sliding slice elements",
report.ShortRange(),
report.FilterGenerated(),
report.Fixes(edit.Fix("use copy() instead of loop", edits...)))
}
code.Preorder(pass, fn, (*ast.ForStmt)(nil))
return nil, nil
}
var (
checkMakeLenCapQ1 = pattern.MustParse(`(CallExpr (Builtin "make") [typ size@(BasicLit "INT" "0")])`)
checkMakeLenCapQ2 = pattern.MustParse(`(CallExpr (Builtin "make") [typ size size])`)
)
func CheckMakeLenCap(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
if pass.Pkg.Path() == "runtime_test" && filepath.Base(pass.Fset.Position(node.Pos()).Filename) == "map_test.go" {
// special case of runtime tests testing map creation
return
}
if m, ok := code.Match(pass, checkMakeLenCapQ1, node); ok {
T := m.State["typ"].(ast.Expr)
size := m.State["size"].(ast.Node)
switch pass.TypesInfo.TypeOf(T).Underlying().(type) {
case *types.Slice, *types.Map:
return
}
report.Report(pass, size, fmt.Sprintf("should use make(%s) instead", report.Render(pass, T)), report.FilterGenerated())
} else if m, ok := code.Match(pass, checkMakeLenCapQ2, node); ok {
// TODO(dh): don't consider sizes identical if they're
// dynamic. for example: make(T, <-ch, <-ch).
T := m.State["typ"].(ast.Expr)
size := m.State["size"].(ast.Node)
report.Report(pass, size,
fmt.Sprintf("should use make(%s, %s) instead", report.Render(pass, T), report.Render(pass, size)),
report.FilterGenerated())
}
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
var (
checkAssertNotNilFn1Q = pattern.MustParse(`
(IfStmt
(AssignStmt [(Ident "_") ok@(Object _)] _ [(TypeAssertExpr assert@(Object _) _)])
(Or
(BinaryExpr ok "&&" (BinaryExpr assert "!=" (Builtin "nil")))
(BinaryExpr (BinaryExpr assert "!=" (Builtin "nil")) "&&" ok))
_
_)`)
checkAssertNotNilFn2Q = pattern.MustParse(`
(IfStmt
nil
(BinaryExpr lhs@(Object _) "!=" (Builtin "nil"))
[
ifstmt@(IfStmt
(AssignStmt [(Ident "_") ok@(Object _)] _ [(TypeAssertExpr lhs _)])
ok
_
nil)
]
nil)`)
)
func CheckAssertNotNil(pass *analysis.Pass) (interface{}, error) {
fn1 := func(node ast.Node) {
m, ok := code.Match(pass, checkAssertNotNilFn1Q, node)
if !ok {
return
}
assert := m.State["assert"].(types.Object)
assign := m.State["ok"].(types.Object)
report.Report(pass, node, fmt.Sprintf("when %s is true, %s can't be nil", assign.Name(), assert.Name()),
report.ShortRange(),
report.FilterGenerated())
}
fn2 := func(node ast.Node) {
m, ok := code.Match(pass, checkAssertNotNilFn2Q, node)
if !ok {
return
}
ifstmt := m.State["ifstmt"].(*ast.IfStmt)
lhs := m.State["lhs"].(types.Object)
assignIdent := m.State["ok"].(types.Object)
report.Report(pass, ifstmt, fmt.Sprintf("when %s is true, %s can't be nil", assignIdent.Name(), lhs.Name()),
report.ShortRange(),
report.FilterGenerated())
}
// OPT(dh): merge fn1 and fn2
code.Preorder(pass, fn1, (*ast.IfStmt)(nil))
code.Preorder(pass, fn2, (*ast.IfStmt)(nil))
return nil, nil
}
func CheckDeclareAssign(pass *analysis.Pass) (interface{}, error) {
hasMultipleAssignments := func(root ast.Node, ident *ast.Ident) bool {
num := 0
ast.Inspect(root, func(node ast.Node) bool {
if num >= 2 {
return false
}
assign, ok := node.(*ast.AssignStmt)
if !ok {
return true
}
for _, lhs := range assign.Lhs {
if oident, ok := lhs.(*ast.Ident); ok {
if oident.Obj == ident.Obj {
num++
}
}
}
return true
})
return num >= 2
}
fn := func(node ast.Node) {
block := node.(*ast.BlockStmt)
if len(block.List) < 2 {
return
}
for i, stmt := range block.List[:len(block.List)-1] {
_ = i
decl, ok := stmt.(*ast.DeclStmt)
if !ok {
continue
}
gdecl, ok := decl.Decl.(*ast.GenDecl)
if !ok || gdecl.Tok != token.VAR || len(gdecl.Specs) != 1 {
continue
}
vspec, ok := gdecl.Specs[0].(*ast.ValueSpec)
if !ok || len(vspec.Names) != 1 || len(vspec.Values) != 0 {
continue
}
assign, ok := block.List[i+1].(*ast.AssignStmt)
if !ok || assign.Tok != token.ASSIGN {
continue
}
if len(assign.Lhs) != 1 || len(assign.Rhs) != 1 {
continue
}
ident, ok := assign.Lhs[0].(*ast.Ident)
if !ok {
continue
}
if vspec.Names[0].Obj != ident.Obj {
continue
}
if refersTo(pass, assign.Rhs[0], pass.TypesInfo.ObjectOf(ident)) {
continue
}
if hasMultipleAssignments(block, ident) {
continue
}
r := &ast.GenDecl{
Specs: []ast.Spec{
&ast.ValueSpec{
Names: vspec.Names,
Values: []ast.Expr{assign.Rhs[0]},
Type: vspec.Type,
},
},
Tok: gdecl.Tok,
}
report.Report(pass, decl, "should merge variable declaration with assignment on next line",
report.FilterGenerated(),
report.Fixes(edit.Fix("merge declaration with assignment", edit.ReplaceWithNode(pass.Fset, edit.Range{decl.Pos(), assign.End()}, r))))
}
}
code.Preorder(pass, fn, (*ast.BlockStmt)(nil))
return nil, nil
}
func CheckRedundantBreak(pass *analysis.Pass) (interface{}, error) {
fn1 := func(node ast.Node) {
clause := node.(*ast.CaseClause)
if len(clause.Body) < 2 {
return
}
branch, ok := clause.Body[len(clause.Body)-1].(*ast.BranchStmt)
if !ok || branch.Tok != token.BREAK || branch.Label != nil {
return
}
report.Report(pass, branch, "redundant break statement", report.FilterGenerated())
}
fn2 := func(node ast.Node) {
var ret *ast.FieldList
var body *ast.BlockStmt
switch x := node.(type) {
case *ast.FuncDecl:
ret = x.Type.Results
body = x.Body
case *ast.FuncLit:
ret = x.Type.Results
body = x.Body
default:
lint.ExhaustiveTypeSwitch(node)
}
// if the func has results, a return can't be redundant.
// similarly, if there are no statements, there can be
// no return.
if ret != nil || body == nil || len(body.List) < 1 {
return
}
rst, ok := body.List[len(body.List)-1].(*ast.ReturnStmt)
if !ok {
return
}
// we don't need to check rst.Results as we already
// checked x.Type.Results to be nil.
report.Report(pass, rst, "redundant return statement", report.FilterGenerated())
}
code.Preorder(pass, fn1, (*ast.CaseClause)(nil))
code.Preorder(pass, fn2, (*ast.FuncDecl)(nil), (*ast.FuncLit)(nil))
return nil, nil
}
func isStringer(T types.Type, msCache *typeutil.MethodSetCache) bool {
ms := msCache.MethodSet(T)
sel := ms.Lookup(nil, "String")
if sel == nil {
return false
}
fn, ok := sel.Obj().(*types.Func)
if !ok {
// should be unreachable
return false
}
sig := fn.Type().(*types.Signature)
if sig.Params().Len() != 0 {
return false
}
if sig.Results().Len() != 1 {
return false
}
if !typeutil.IsType(sig.Results().At(0).Type(), "string") {
return false
}
return true
}
func isFormatter(T types.Type, msCache *typeutil.MethodSetCache) bool {
// TODO(dh): this function also exists in staticcheck/lint.go deduplicate.
ms := msCache.MethodSet(T)
sel := ms.Lookup(nil, "Format")
if sel == nil {
return false
}
fn, ok := sel.Obj().(*types.Func)
if !ok {
// should be unreachable
return false
}
sig := fn.Type().(*types.Signature)
if sig.Params().Len() != 2 {
return false
}
// TODO(dh): check the types of the arguments for more
// precision
if sig.Results().Len() != 0 {
return false
}
return true
}
var checkRedundantSprintfQ = pattern.MustParse(`(CallExpr (Function "fmt.Sprintf") [format arg])`)
func CheckRedundantSprintf(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
m, ok := code.Match(pass, checkRedundantSprintfQ, node)
if !ok {
return
}
format := m.State["format"].(ast.Expr)
arg := m.State["arg"].(ast.Expr)
// TODO(dh): should we really support named constants here?
// shouldn't we only look for string literals? to avoid false
// positives via build tags?
if s, ok := code.ExprToString(pass, format); !ok || s != "%s" {
return
}
typ := pass.TypesInfo.TypeOf(arg)
irpkg := pass.ResultOf[buildir.Analyzer].(*buildir.IR).Pkg
if types.TypeString(typ, nil) == "reflect.Value" {
// printing with %s produces output different from using
// the String method
return
}
if isFormatter(typ, &irpkg.Prog.MethodSets) {
// the type may choose to handle %s in arbitrary ways
return
}
if isStringer(typ, &irpkg.Prog.MethodSets) {
replacement := &ast.CallExpr{
Fun: &ast.SelectorExpr{
X: arg,
Sel: &ast.Ident{Name: "String"},
},
}
report.Report(pass, node, "should use String() instead of fmt.Sprintf",
report.Fixes(edit.Fix("replace with call to String method", edit.ReplaceWithNode(pass.Fset, node, replacement))))
} else if typ == types.Universe.Lookup("string").Type() {
report.Report(pass, node, "the argument is already a string, there's no need to use fmt.Sprintf",
report.FilterGenerated(),
report.Fixes(edit.Fix("remove unnecessary call to fmt.Sprintf", edit.ReplaceWithNode(pass.Fset, node, arg))))
} else if typ.Underlying() == types.Universe.Lookup("string").Type() {
replacement := &ast.CallExpr{
Fun: &ast.Ident{Name: "string"},
Args: []ast.Expr{arg},
}
report.Report(pass, node, "the argument's underlying type is a string, should use a simple conversion instead of fmt.Sprintf",
report.FilterGenerated(),
report.Fixes(edit.Fix("replace with conversion to string", edit.ReplaceWithNode(pass.Fset, node, replacement))))
} else if slice, ok := typ.Underlying().(*types.Slice); ok && slice.Elem() == types.Universe.Lookup("byte").Type() {
// Note that we check slice.Elem(), not slice.Elem().Underlying, because of https://github.com/golang/go/issues/23536
replacement := &ast.CallExpr{
Fun: &ast.Ident{Name: "string"},
Args: []ast.Expr{arg},
}
report.Report(pass, node, "the argument's underlying type is a slice of bytes, should use a simple conversion instead of fmt.Sprintf",
report.FilterGenerated(),
report.Fixes(edit.Fix("replace with conversion to string", edit.ReplaceWithNode(pass.Fset, node, replacement))))
}
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
var (
checkErrorsNewSprintfQ = pattern.MustParse(`(CallExpr (Function "errors.New") [(CallExpr (Function "fmt.Sprintf") args)])`)
checkErrorsNewSprintfR = pattern.MustParse(`(CallExpr (SelectorExpr (Ident "fmt") (Ident "Errorf")) args)`)
)
func CheckErrorsNewSprintf(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
if _, edits, ok := code.MatchAndEdit(pass, checkErrorsNewSprintfQ, checkErrorsNewSprintfR, node); ok {
// TODO(dh): the suggested fix may leave an unused import behind
report.Report(pass, node, "should use fmt.Errorf(...) instead of errors.New(fmt.Sprintf(...))",
report.FilterGenerated(),
report.Fixes(edit.Fix("use fmt.Errorf", edits...)))
}
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
func CheckRangeStringRunes(pass *analysis.Pass) (interface{}, error) {
return sharedcheck.CheckRangeStringRunes(pass)
}
var checkNilCheckAroundRangeQ = pattern.MustParse(`
(IfStmt
nil
(BinaryExpr x@(Object _) "!=" (Builtin "nil"))
[(RangeStmt _ _ _ x _)]
nil)`)
func CheckNilCheckAroundRange(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
m, ok := code.Match(pass, checkNilCheckAroundRangeQ, node)
if !ok {
return
}
switch m.State["x"].(types.Object).Type().Underlying().(type) {
case *types.Slice, *types.Map:
report.Report(pass, node, "unnecessary nil check around range",
report.ShortRange(),
report.FilterGenerated())
}
}
code.Preorder(pass, fn, (*ast.IfStmt)(nil))
return nil, nil
}
func isPermissibleSort(pass *analysis.Pass, node ast.Node) bool {
call := node.(*ast.CallExpr)
typeconv, ok := call.Args[0].(*ast.CallExpr)
if !ok {
return true
}
sel, ok := typeconv.Fun.(*ast.SelectorExpr)
if !ok {
return true
}
name := code.SelectorName(pass, sel)
switch name {
case "sort.IntSlice", "sort.Float64Slice", "sort.StringSlice":
default:
return true
}
return false
}
func CheckSortHelpers(pass *analysis.Pass) (interface{}, error) {
type Error struct {
node ast.Node
msg string
}
var allErrors []Error
fn := func(node ast.Node) {
var body *ast.BlockStmt
switch node := node.(type) {
case *ast.FuncLit:
body = node.Body
case *ast.FuncDecl:
body = node.Body
default:
lint.ExhaustiveTypeSwitch(node)
}
if body == nil {
return
}
var errors []Error
permissible := false
fnSorts := func(node ast.Node) bool {
if permissible {
return false
}
if !code.IsCallTo(pass, node, "sort.Sort") {
return true
}
if isPermissibleSort(pass, node) {
permissible = true
return false
}
call := node.(*ast.CallExpr)
// isPermissibleSort guarantees that this type assertion will succeed
typeconv := call.Args[knowledge.Arg("sort.Sort.data")].(*ast.CallExpr)
sel := typeconv.Fun.(*ast.SelectorExpr)
name := code.SelectorName(pass, sel)
switch name {
case "sort.IntSlice":
errors = append(errors, Error{node, "should use sort.Ints(...) instead of sort.Sort(sort.IntSlice(...))"})
case "sort.Float64Slice":
errors = append(errors, Error{node, "should use sort.Float64s(...) instead of sort.Sort(sort.Float64Slice(...))"})
case "sort.StringSlice":
errors = append(errors, Error{node, "should use sort.Strings(...) instead of sort.Sort(sort.StringSlice(...))"})
}
return true
}
ast.Inspect(body, fnSorts)
if permissible {
return
}
allErrors = append(allErrors, errors...)
}
code.Preorder(pass, fn, (*ast.FuncLit)(nil), (*ast.FuncDecl)(nil))
sort.Slice(allErrors, func(i, j int) bool {
return allErrors[i].node.Pos() < allErrors[j].node.Pos()
})
var prev token.Pos
for _, err := range allErrors {
if err.node.Pos() == prev {
continue
}
prev = err.node.Pos()
report.Report(pass, err.node, err.msg, report.FilterGenerated())
}
return nil, nil
}
var checkGuardedDeleteQ = pattern.MustParse(`
(IfStmt
(AssignStmt
[(Ident "_") ok@(Ident _)]
":="
(IndexExpr m key))
ok
[call@(CallExpr (Builtin "delete") [m key])]
nil)`)
func CheckGuardedDelete(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
if m, ok := code.Match(pass, checkGuardedDeleteQ, node); ok {
report.Report(pass, node, "unnecessary guard around call to delete",
report.ShortRange(),
report.FilterGenerated(),
report.Fixes(edit.Fix("remove guard", edit.ReplaceWithNode(pass.Fset, node, m.State["call"].(ast.Node)))))
}
}
code.Preorder(pass, fn, (*ast.IfStmt)(nil))
return nil, nil
}
var (
checkSimplifyTypeSwitchQ = pattern.MustParse(`
(TypeSwitchStmt
nil
expr@(TypeAssertExpr ident@(Ident _) _)
body)`)
checkSimplifyTypeSwitchR = pattern.MustParse(`(AssignStmt ident ":=" expr)`)
)
func CheckSimplifyTypeSwitch(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
m, ok := code.Match(pass, checkSimplifyTypeSwitchQ, node)
if !ok {
return
}
stmt := node.(*ast.TypeSwitchStmt)
expr := m.State["expr"].(ast.Node)
ident := m.State["ident"].(*ast.Ident)
x := pass.TypesInfo.ObjectOf(ident)
var allOffenders []*ast.TypeAssertExpr
canSuggestFix := true
for _, clause := range stmt.Body.List {
clause := clause.(*ast.CaseClause)
if len(clause.List) != 1 {
continue
}
hasUnrelatedAssertion := false
var offenders []*ast.TypeAssertExpr
ast.Inspect(clause, func(node ast.Node) bool {
assert2, ok := node.(*ast.TypeAssertExpr)
if !ok {
return true
}
ident, ok := assert2.X.(*ast.Ident)
if !ok {
hasUnrelatedAssertion = true
return false
}
if pass.TypesInfo.ObjectOf(ident) != x {
hasUnrelatedAssertion = true
return false
}
if !types.Identical(pass.TypesInfo.TypeOf(clause.List[0]), pass.TypesInfo.TypeOf(assert2.Type)) {
hasUnrelatedAssertion = true
return false
}
offenders = append(offenders, assert2)
return true
})
if !hasUnrelatedAssertion {
// don't flag cases that have other type assertions
// unrelated to the one in the case clause. often
// times, this is done for symmetry, when two
// different values have to be asserted to the same
// type.
allOffenders = append(allOffenders, offenders...)
}
canSuggestFix = canSuggestFix && !hasUnrelatedAssertion
}
if len(allOffenders) != 0 {
var opts []report.Option
for _, offender := range allOffenders {
opts = append(opts, report.Related(offender, "could eliminate this type assertion"))
}
opts = append(opts, report.FilterGenerated())
msg := fmt.Sprintf("assigning the result of this type assertion to a variable (switch %s := %s.(type)) could eliminate type assertions in switch cases",
report.Render(pass, ident), report.Render(pass, ident))
if canSuggestFix {
var edits []analysis.TextEdit
edits = append(edits, edit.ReplaceWithPattern(pass, checkSimplifyTypeSwitchR, m.State, expr))
for _, offender := range allOffenders {
edits = append(edits, edit.ReplaceWithNode(pass.Fset, offender, offender.X))
}
opts = append(opts, report.Fixes(edit.Fix("simplify type switch", edits...)))
report.Report(pass, expr, msg, opts...)
} else {
report.Report(pass, expr, msg, opts...)
}
}
}
code.Preorder(pass, fn, (*ast.TypeSwitchStmt)(nil))
return nil, nil
}
func CheckRedundantCanonicalHeaderKey(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
call := node.(*ast.CallExpr)
callName := code.CallName(pass, call)
switch callName {
case "(net/http.Header).Add", "(net/http.Header).Del", "(net/http.Header).Get", "(net/http.Header).Set":
default:
return
}
if !code.IsCallTo(pass, call.Args[0], "net/http.CanonicalHeaderKey") {
return
}
report.Report(pass, call,
fmt.Sprintf("calling net/http.CanonicalHeaderKey on the 'key' argument of %s is redundant", callName),
report.FilterGenerated(),
report.Fixes(edit.Fix("remove call to CanonicalHeaderKey", edit.ReplaceWithNode(pass.Fset, call.Args[0], call.Args[0].(*ast.CallExpr).Args[0]))))
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
var checkUnnecessaryGuardQ = pattern.MustParse(`
(Or
(IfStmt
(AssignStmt [(Ident "_") ok@(Ident _)] ":=" indexexpr@(IndexExpr _ _))
ok
set@(AssignStmt indexexpr "=" (CallExpr (Builtin "append") indexexpr:values))
(AssignStmt indexexpr "=" (CompositeLit _ values)))
(IfStmt
(AssignStmt [(Ident "_") ok] ":=" indexexpr@(IndexExpr _ _))
ok
set@(AssignStmt indexexpr "+=" value)
(AssignStmt indexexpr "=" value))
(IfStmt
(AssignStmt [(Ident "_") ok] ":=" indexexpr@(IndexExpr _ _))
ok
set@(IncDecStmt indexexpr "++")
(AssignStmt indexexpr "=" (BasicLit "INT" "1"))))`)
func CheckUnnecessaryGuard(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
if m, ok := code.Match(pass, checkUnnecessaryGuardQ, node); ok {
if code.MayHaveSideEffects(pass, m.State["indexexpr"].(ast.Expr), nil) {
return
}
report.Report(pass, node, "unnecessary guard around map access",
report.ShortRange(),
report.Fixes(edit.Fix("simplify map access", edit.ReplaceWithNode(pass.Fset, node, m.State["set"].(ast.Node)))))
}
}
code.Preorder(pass, fn, (*ast.IfStmt)(nil))
return nil, nil
}
var (
checkElaborateSleepQ = pattern.MustParse(`(SelectStmt (CommClause (UnaryExpr "<-" (CallExpr (Function "time.After") [arg])) body))`)
checkElaborateSleepR = pattern.MustParse(`(CallExpr (SelectorExpr (Ident "time") (Ident "Sleep")) [arg])`)
)
func CheckElaborateSleep(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
if m, ok := code.Match(pass, checkElaborateSleepQ, node); ok {
if body, ok := m.State["body"].([]ast.Stmt); ok && len(body) == 0 {
report.Report(pass, node, "should use time.Sleep instead of elaborate way of sleeping",
report.ShortRange(),
report.FilterGenerated(),
report.Fixes(edit.Fix("Use time.Sleep", edit.ReplaceWithPattern(pass, checkElaborateSleepR, m.State, node))))
} else {
// TODO(dh): we could make a suggested fix if the body
// doesn't declare or shadow any identifiers
report.Report(pass, node, "should use time.Sleep instead of elaborate way of sleeping",
report.ShortRange(),
report.FilterGenerated())
}
}
}
code.Preorder(pass, fn, (*ast.SelectStmt)(nil))
return nil, nil
}
var checkPrintSprintQ = pattern.MustParse(`
(Or
(CallExpr
fn@(Or
(Function "fmt.Print")
(Function "fmt.Sprint")
(Function "fmt.Println")
(Function "fmt.Sprintln"))
[(CallExpr (Function "fmt.Sprintf") f:_)])
(CallExpr
fn@(Or
(Function "fmt.Fprint")
(Function "fmt.Fprintln"))
[_ (CallExpr (Function "fmt.Sprintf") f:_)]))`)
func CheckPrintSprintf(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
m, ok := code.Match(pass, checkPrintSprintQ, node)
if !ok {
return
}
name := m.State["fn"].(*types.Func).Name()
var msg string
switch name {
case "Print", "Fprint", "Sprint":
newname := name + "f"
msg = fmt.Sprintf("should use fmt.%s instead of fmt.%s(fmt.Sprintf(...))", newname, name)
case "Println", "Fprintln", "Sprintln":
if _, ok := m.State["f"].(*ast.BasicLit); !ok {
// This may be an instance of
// fmt.Println(fmt.Sprintf(arg, ...)) where arg is an
// externally provided format string and the caller
// cannot guarantee that the format string ends with a
// newline.
return
}
newname := name[:len(name)-2] + "f"
msg = fmt.Sprintf("should use fmt.%s instead of fmt.%s(fmt.Sprintf(...)) (but don't forget the newline)", newname, name)
}
report.Report(pass, node, msg,
report.FilterGenerated())
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
var checkSprintLiteralQ = pattern.MustParse(`
(CallExpr
fn@(Or
(Function "fmt.Sprint")
(Function "fmt.Sprintf"))
[lit@(BasicLit "STRING" _)])`)
func CheckSprintLiteral(pass *analysis.Pass) (interface{}, error) {
// We only flag calls with string literals, not expressions of
// type string, because some people use fmt.Sprint(s) as a pattern
// for copying strings, which may be useful when extracting a small
// substring from a large string.
fn := func(node ast.Node) {
m, ok := code.Match(pass, checkSprintLiteralQ, node)
if !ok {
return
}
callee := m.State["fn"].(*types.Func)
lit := m.State["lit"].(*ast.BasicLit)
if callee.Name() == "Sprintf" {
if strings.ContainsRune(lit.Value, '%') {
// This might be a format string
return
}
}
report.Report(pass, node, fmt.Sprintf("unnecessary use of fmt.%s", callee.Name()),
report.FilterGenerated(),
report.Fixes(edit.Fix("Replace with string literal", edit.ReplaceWithNode(pass.Fset, node, lit))))
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
func CheckSameTypeTypeAssertion(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
expr := node.(*ast.TypeAssertExpr)
if expr.Type == nil {
// skip type switches
//
// TODO(dh): we could flag type switches, too, when a case
// statement has the same type as expr.X however,
// depending on the location of that case, it might behave
// identically to a default branch. we need to think
// carefully about the instances we want to flag. We also
// have to take nil interface values into consideration.
//
// It might make more sense to extend SA4020 to handle
// this.
return
}
t1 := pass.TypesInfo.TypeOf(expr.Type)
t2 := pass.TypesInfo.TypeOf(expr.X)
if types.IsInterface(t1) && types.Identical(t1, t2) {
report.Report(pass, expr,
fmt.Sprintf("type assertion to the same type: %s already has type %s", report.Render(pass, expr.X), report.Render(pass, expr.Type)),
report.FilterGenerated())
}
}
// TODO(dh): add suggested fixes. we need different fixes depending on the context:
// - assignment with 1 or 2 lhs
// - assignment to blank identifiers (as the first, second or both lhs)
// - initializers in if statements, with the same variations as above
code.Preorder(pass, fn, (*ast.TypeAssertExpr)(nil))
return nil, nil
}