woodpecker/vendor/honnef.co/go/tools/staticcheck/lint.go

4813 lines
133 KiB
Go
Raw Normal View History

// Package staticcheck contains a linter for Go source code.
package staticcheck
import (
"fmt"
"go/ast"
"go/constant"
"go/token"
"go/types"
htmltemplate "html/template"
"net/http"
"reflect"
"regexp"
"regexp/syntax"
"sort"
"strconv"
"strings"
texttemplate "text/template"
"unicode"
"honnef.co/go/tools/analysis/code"
"honnef.co/go/tools/analysis/edit"
"honnef.co/go/tools/analysis/facts"
"honnef.co/go/tools/analysis/facts/nilness"
"honnef.co/go/tools/analysis/facts/typedness"
"honnef.co/go/tools/analysis/lint"
"honnef.co/go/tools/analysis/report"
"honnef.co/go/tools/go/ast/astutil"
"honnef.co/go/tools/go/ir"
"honnef.co/go/tools/go/ir/irutil"
"honnef.co/go/tools/go/types/typeutil"
"honnef.co/go/tools/internal/passes/buildir"
"honnef.co/go/tools/internal/sharedcheck"
"honnef.co/go/tools/knowledge"
"honnef.co/go/tools/pattern"
"honnef.co/go/tools/printf"
"honnef.co/go/tools/staticcheck/fakejson"
"honnef.co/go/tools/staticcheck/fakereflect"
"honnef.co/go/tools/staticcheck/fakexml"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/passes/inspect"
"golang.org/x/tools/go/ast/inspector"
)
func checkSortSlice(call *Call) {
c := call.Instr.Common().StaticCallee()
arg := call.Args[0]
T := arg.Value.Value.Type().Underlying()
switch T.(type) {
case *types.Interface:
// we don't know.
// TODO(dh): if the value is a phi node we can look at its edges
if k, ok := arg.Value.Value.(*ir.Const); ok && k.Value == nil {
// literal nil, e.g. sort.Sort(nil, ...)
arg.Invalid(fmt.Sprintf("cannot call %s on nil literal", c))
}
case *types.Slice:
// this is fine
default:
// this is not fine
arg.Invalid(fmt.Sprintf("%s must only be called on slices, was called on %s", c, T))
}
}
func validRegexp(call *Call) {
arg := call.Args[0]
err := ValidateRegexp(arg.Value)
if err != nil {
arg.Invalid(err.Error())
}
}
type runeSlice []rune
func (rs runeSlice) Len() int { return len(rs) }
func (rs runeSlice) Less(i int, j int) bool { return rs[i] < rs[j] }
func (rs runeSlice) Swap(i int, j int) { rs[i], rs[j] = rs[j], rs[i] }
func utf8Cutset(call *Call) {
arg := call.Args[1]
if InvalidUTF8(arg.Value) {
arg.Invalid(MsgInvalidUTF8)
}
}
func uniqueCutset(call *Call) {
arg := call.Args[1]
if !UniqueStringCutset(arg.Value) {
arg.Invalid(MsgNonUniqueCutset)
}
}
func unmarshalPointer(name string, arg int) CallCheck {
return func(call *Call) {
if !Pointer(call.Args[arg].Value) {
call.Args[arg].Invalid(fmt.Sprintf("%s expects to unmarshal into a pointer, but the provided value is not a pointer", name))
}
}
}
func pointlessIntMath(call *Call) {
if ConvertedFromInt(call.Args[0].Value) {
call.Invalid(fmt.Sprintf("calling %s on a converted integer is pointless", irutil.CallName(call.Instr.Common())))
}
}
func checkValidHostPort(arg int) CallCheck {
return func(call *Call) {
if !ValidHostPort(call.Args[arg].Value) {
call.Args[arg].Invalid(MsgInvalidHostPort)
}
}
}
var (
checkRegexpRules = map[string]CallCheck{
"regexp.MustCompile": validRegexp,
"regexp.Compile": validRegexp,
"regexp.Match": validRegexp,
"regexp.MatchReader": validRegexp,
"regexp.MatchString": validRegexp,
}
checkTimeParseRules = map[string]CallCheck{
"time.Parse": func(call *Call) {
arg := call.Args[knowledge.Arg("time.Parse.layout")]
err := ValidateTimeLayout(arg.Value)
if err != nil {
arg.Invalid(err.Error())
}
},
}
checkEncodingBinaryRules = map[string]CallCheck{
"encoding/binary.Write": func(call *Call) {
arg := call.Args[knowledge.Arg("encoding/binary.Write.data")]
if !CanBinaryMarshal(call.Pass, arg.Value) {
arg.Invalid(fmt.Sprintf("value of type %s cannot be used with binary.Write", arg.Value.Value.Type()))
}
},
}
checkURLsRules = map[string]CallCheck{
"net/url.Parse": func(call *Call) {
arg := call.Args[knowledge.Arg("net/url.Parse.rawurl")]
err := ValidateURL(arg.Value)
if err != nil {
arg.Invalid(err.Error())
}
},
}
checkSyncPoolValueRules = map[string]CallCheck{
"(*sync.Pool).Put": func(call *Call) {
arg := call.Args[knowledge.Arg("(*sync.Pool).Put.x")]
typ := arg.Value.Value.Type()
_, isSlice := typ.Underlying().(*types.Slice)
if !typeutil.IsPointerLike(typ) || isSlice {
arg.Invalid("argument should be pointer-like to avoid allocations")
}
},
}
checkRegexpFindAllRules = map[string]CallCheck{
"(*regexp.Regexp).FindAll": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllIndex": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllString": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllStringIndex": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllStringSubmatch": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllStringSubmatchIndex": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllSubmatch": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllSubmatchIndex": RepeatZeroTimes("a FindAll method", 1),
}
checkUTF8CutsetRules = map[string]CallCheck{
"strings.IndexAny": utf8Cutset,
"strings.LastIndexAny": utf8Cutset,
"strings.ContainsAny": utf8Cutset,
"strings.Trim": utf8Cutset,
"strings.TrimLeft": utf8Cutset,
"strings.TrimRight": utf8Cutset,
}
checkUniqueCutsetRules = map[string]CallCheck{
"strings.Trim": uniqueCutset,
"strings.TrimLeft": uniqueCutset,
"strings.TrimRight": uniqueCutset,
}
checkUnmarshalPointerRules = map[string]CallCheck{
"encoding/xml.Unmarshal": unmarshalPointer("xml.Unmarshal", 1),
"(*encoding/xml.Decoder).Decode": unmarshalPointer("Decode", 0),
"(*encoding/xml.Decoder).DecodeElement": unmarshalPointer("DecodeElement", 0),
"encoding/json.Unmarshal": unmarshalPointer("json.Unmarshal", 1),
"(*encoding/json.Decoder).Decode": unmarshalPointer("Decode", 0),
}
checkUnbufferedSignalChanRules = map[string]CallCheck{
"os/signal.Notify": func(call *Call) {
arg := call.Args[knowledge.Arg("os/signal.Notify.c")]
if UnbufferedChannel(arg.Value) {
arg.Invalid("the channel used with signal.Notify should be buffered")
}
},
}
checkMathIntRules = map[string]CallCheck{
"math.Ceil": pointlessIntMath,
"math.Floor": pointlessIntMath,
"math.IsNaN": pointlessIntMath,
"math.Trunc": pointlessIntMath,
"math.IsInf": pointlessIntMath,
}
checkStringsReplaceZeroRules = map[string]CallCheck{
"strings.Replace": RepeatZeroTimes("strings.Replace", 3),
"bytes.Replace": RepeatZeroTimes("bytes.Replace", 3),
}
checkListenAddressRules = map[string]CallCheck{
"net/http.ListenAndServe": checkValidHostPort(0),
"net/http.ListenAndServeTLS": checkValidHostPort(0),
}
checkBytesEqualIPRules = map[string]CallCheck{
"bytes.Equal": func(call *Call) {
if ConvertedFrom(call.Args[knowledge.Arg("bytes.Equal.a")].Value, "net.IP") &&
ConvertedFrom(call.Args[knowledge.Arg("bytes.Equal.b")].Value, "net.IP") {
call.Invalid("use net.IP.Equal to compare net.IPs, not bytes.Equal")
}
},
}
checkRegexpMatchLoopRules = map[string]CallCheck{
"regexp.Match": loopedRegexp("regexp.Match"),
"regexp.MatchReader": loopedRegexp("regexp.MatchReader"),
"regexp.MatchString": loopedRegexp("regexp.MatchString"),
}
checkNoopMarshal = map[string]CallCheck{
// TODO(dh): should we really flag XML? Even an empty struct
// produces a non-zero amount of data, namely its type name.
// Let's see if we encounter any false positives.
//
// Also, should we flag gob?
"encoding/json.Marshal": checkNoopMarshalImpl(knowledge.Arg("json.Marshal.v"), "MarshalJSON", "MarshalText"),
"encoding/xml.Marshal": checkNoopMarshalImpl(knowledge.Arg("xml.Marshal.v"), "MarshalXML", "MarshalText"),
"(*encoding/json.Encoder).Encode": checkNoopMarshalImpl(knowledge.Arg("(*encoding/json.Encoder).Encode.v"), "MarshalJSON", "MarshalText"),
"(*encoding/xml.Encoder).Encode": checkNoopMarshalImpl(knowledge.Arg("(*encoding/xml.Encoder).Encode.v"), "MarshalXML", "MarshalText"),
"encoding/json.Unmarshal": checkNoopMarshalImpl(knowledge.Arg("json.Unmarshal.v"), "UnmarshalJSON", "UnmarshalText"),
"encoding/xml.Unmarshal": checkNoopMarshalImpl(knowledge.Arg("xml.Unmarshal.v"), "UnmarshalXML", "UnmarshalText"),
"(*encoding/json.Decoder).Decode": checkNoopMarshalImpl(knowledge.Arg("(*encoding/json.Decoder).Decode.v"), "UnmarshalJSON", "UnmarshalText"),
"(*encoding/xml.Decoder).Decode": checkNoopMarshalImpl(knowledge.Arg("(*encoding/xml.Decoder).Decode.v"), "UnmarshalXML", "UnmarshalText"),
}
checkUnsupportedMarshal = map[string]CallCheck{
"encoding/json.Marshal": checkUnsupportedMarshalJSON,
"encoding/xml.Marshal": checkUnsupportedMarshalXML,
"(*encoding/json.Encoder).Encode": checkUnsupportedMarshalJSON,
"(*encoding/xml.Encoder).Encode": checkUnsupportedMarshalXML,
}
checkAtomicAlignment = map[string]CallCheck{
"sync/atomic.AddInt64": checkAtomicAlignmentImpl,
"sync/atomic.AddUint64": checkAtomicAlignmentImpl,
"sync/atomic.CompareAndSwapInt64": checkAtomicAlignmentImpl,
"sync/atomic.CompareAndSwapUint64": checkAtomicAlignmentImpl,
"sync/atomic.LoadInt64": checkAtomicAlignmentImpl,
"sync/atomic.LoadUint64": checkAtomicAlignmentImpl,
"sync/atomic.StoreInt64": checkAtomicAlignmentImpl,
"sync/atomic.StoreUint64": checkAtomicAlignmentImpl,
"sync/atomic.SwapInt64": checkAtomicAlignmentImpl,
"sync/atomic.SwapUint64": checkAtomicAlignmentImpl,
}
// TODO(dh): detect printf wrappers
checkPrintfRules = map[string]CallCheck{
"fmt.Errorf": func(call *Call) { checkPrintfCall(call, 0, 1) },
"fmt.Printf": func(call *Call) { checkPrintfCall(call, 0, 1) },
"fmt.Sprintf": func(call *Call) { checkPrintfCall(call, 0, 1) },
"fmt.Fprintf": func(call *Call) { checkPrintfCall(call, 1, 2) },
"golang.org/x/xerrors.Errorf": func(call *Call) { checkPrintfCall(call, 0, 1) },
}
checkSortSliceRules = map[string]CallCheck{
"sort.Slice": checkSortSlice,
"sort.SliceIsSorted": checkSortSlice,
"sort.SliceStable": checkSortSlice,
}
checkWithValueKeyRules = map[string]CallCheck{
"context.WithValue": checkWithValueKey,
}
checkStrconvRules = map[string]CallCheck{
"strconv.ParseComplex": func(call *Call) {
validateComplexBitSize(call.Args[knowledge.Arg("strconv.ParseComplex.bitSize")])
},
"strconv.ParseFloat": func(call *Call) {
validateFloatBitSize(call.Args[knowledge.Arg("strconv.ParseFloat.bitSize")])
},
"strconv.ParseInt": func(call *Call) {
validateContinuousBitSize(call.Args[knowledge.Arg("strconv.ParseInt.bitSize")], 0, 64)
validateIntBaseAllowZero(call.Args[knowledge.Arg("strconv.ParseInt.base")])
},
"strconv.ParseUint": func(call *Call) {
validateContinuousBitSize(call.Args[knowledge.Arg("strconv.ParseUint.bitSize")], 0, 64)
validateIntBaseAllowZero(call.Args[knowledge.Arg("strconv.ParseUint.base")])
},
"strconv.FormatComplex": func(call *Call) {
validateComplexFormat(call.Args[knowledge.Arg("strconv.FormatComplex.fmt")])
validateComplexBitSize(call.Args[knowledge.Arg("strconv.FormatComplex.bitSize")])
},
"strconv.FormatFloat": func(call *Call) {
validateFloatFormat(call.Args[knowledge.Arg("strconv.FormatFloat.fmt")])
validateFloatBitSize(call.Args[knowledge.Arg("strconv.FormatFloat.bitSize")])
},
"strconv.FormatInt": func(call *Call) {
validateIntBase(call.Args[knowledge.Arg("strconv.FormatInt.base")])
},
"strconv.FormatUint": func(call *Call) {
validateIntBase(call.Args[knowledge.Arg("strconv.FormatUint.base")])
},
"strconv.AppendFloat": func(call *Call) {
validateFloatFormat(call.Args[knowledge.Arg("strconv.AppendFloat.fmt")])
validateFloatBitSize(call.Args[knowledge.Arg("strconv.AppendFloat.bitSize")])
},
"strconv.AppendInt": func(call *Call) {
validateIntBase(call.Args[knowledge.Arg("strconv.AppendInt.base")])
},
"strconv.AppendUint": func(call *Call) {
validateIntBase(call.Args[knowledge.Arg("strconv.AppendUint.base")])
},
}
)
func validateIntBase(arg *Argument) {
if c := extractConstExpectKind(arg.Value.Value, constant.Int); c != nil {
val, _ := constant.Int64Val(c.Value)
if val < 2 {
arg.Invalid("'base' must not be smaller than 2")
}
if val > 36 {
arg.Invalid("'base' must not be larger than 36")
}
}
}
func validateIntBaseAllowZero(arg *Argument) {
if c := extractConstExpectKind(arg.Value.Value, constant.Int); c != nil {
val, _ := constant.Int64Val(c.Value)
if val < 2 && val != 0 {
arg.Invalid("'base' must not be smaller than 2, unless it is 0")
}
if val > 36 {
arg.Invalid("'base' must not be larger than 36")
}
}
}
func validateComplexFormat(arg *Argument) {
validateFloatFormat(arg)
}
func validateFloatFormat(arg *Argument) {
if c := extractConstExpectKind(arg.Value.Value, constant.Int); c != nil {
val, _ := constant.Int64Val(c.Value)
switch val {
case 'b', 'e', 'E', 'f', 'g', 'G', 'x', 'X':
default:
arg.Invalid(fmt.Sprintf("'fmt' argument is invalid: unknown format %q", val))
}
}
}
func validateComplexBitSize(arg *Argument) { validateDiscreetBitSize(arg, 64, 128) }
func validateFloatBitSize(arg *Argument) { validateDiscreetBitSize(arg, 32, 64) }
func validateDiscreetBitSize(arg *Argument, size1 int, size2 int) {
if c := extractConstExpectKind(arg.Value.Value, constant.Int); c != nil {
val, _ := constant.Int64Val(c.Value)
if val != int64(size1) && val != int64(size2) {
arg.Invalid(fmt.Sprintf("'bitSize' argument is invalid, must be either %d or %d", size1, size2))
}
}
}
func validateContinuousBitSize(arg *Argument, min int, max int) {
if c := extractConstExpectKind(arg.Value.Value, constant.Int); c != nil {
val, _ := constant.Int64Val(c.Value)
if val < int64(min) || val > int64(max) {
arg.Invalid(fmt.Sprintf("'bitSize' argument is invalid, must be within %d and %d", min, max))
}
}
}
func checkPrintfCall(call *Call, fIdx, vIdx int) {
f := call.Args[fIdx]
var args []ir.Value
switch v := call.Args[vIdx].Value.Value.(type) {
case *ir.Slice:
var ok bool
args, ok = irutil.Vararg(v)
if !ok {
// We don't know what the actual arguments to the function are
return
}
case *ir.Const:
// nil, i.e. no arguments
default:
// We don't know what the actual arguments to the function are
return
}
checkPrintfCallImpl(f, f.Value.Value, args)
}
type verbFlag int
const (
isInt verbFlag = 1 << iota
isBool
isFP
isString
isPointer
// Verbs that accept "pseudo pointers" will sometimes dereference
// non-nil pointers. For example, %x on a non-nil *struct will print the
// individual fields, but on a nil pointer it will print the address.
isPseudoPointer
isSlice
isAny
noRecurse
)
var verbs = [...]verbFlag{
'b': isPseudoPointer | isInt | isFP,
'c': isInt,
'd': isPseudoPointer | isInt,
'e': isFP,
'E': isFP,
'f': isFP,
'F': isFP,
'g': isFP,
'G': isFP,
'o': isPseudoPointer | isInt,
'O': isPseudoPointer | isInt,
'p': isSlice | isPointer | noRecurse,
'q': isInt | isString,
's': isString,
't': isBool,
'T': isAny,
'U': isInt,
'v': isAny,
'X': isPseudoPointer | isInt | isFP | isString,
'x': isPseudoPointer | isInt | isFP | isString,
}
func checkPrintfCallImpl(carg *Argument, f ir.Value, args []ir.Value) {
var msCache *typeutil.MethodSetCache
if f.Parent() != nil {
msCache = &f.Parent().Prog.MethodSets
}
elem := func(T types.Type, verb rune) ([]types.Type, bool) {
if verbs[verb]&noRecurse != 0 {
return []types.Type{T}, false
}
switch T := T.(type) {
case *types.Slice:
if verbs[verb]&isSlice != 0 {
return []types.Type{T}, false
}
if verbs[verb]&isString != 0 && typeutil.IsType(T.Elem().Underlying(), "byte") {
return []types.Type{T}, false
}
return []types.Type{T.Elem()}, true
case *types.Map:
key := T.Key()
val := T.Elem()
return []types.Type{key, val}, true
case *types.Struct:
out := make([]types.Type, 0, T.NumFields())
for i := 0; i < T.NumFields(); i++ {
out = append(out, T.Field(i).Type())
}
return out, true
case *types.Array:
return []types.Type{T.Elem()}, true
default:
return []types.Type{T}, false
}
}
isInfo := func(T types.Type, info types.BasicInfo) bool {
basic, ok := T.Underlying().(*types.Basic)
return ok && basic.Info()&info != 0
}
isStringer := func(T types.Type, ms *types.MethodSet) bool {
sel := ms.Lookup(nil, "String")
if sel == nil {
return false
}
fn, ok := sel.Obj().(*types.Func)
if !ok {
// should be unreachable
return false
}
sig := fn.Type().(*types.Signature)
if sig.Params().Len() != 0 {
return false
}
if sig.Results().Len() != 1 {
return false
}
if !typeutil.IsType(sig.Results().At(0).Type(), "string") {
return false
}
return true
}
isError := func(T types.Type, ms *types.MethodSet) bool {
sel := ms.Lookup(nil, "Error")
if sel == nil {
return false
}
fn, ok := sel.Obj().(*types.Func)
if !ok {
// should be unreachable
return false
}
sig := fn.Type().(*types.Signature)
if sig.Params().Len() != 0 {
return false
}
if sig.Results().Len() != 1 {
return false
}
if !typeutil.IsType(sig.Results().At(0).Type(), "string") {
return false
}
return true
}
isFormatter := func(T types.Type, ms *types.MethodSet) bool {
sel := ms.Lookup(nil, "Format")
if sel == nil {
return false
}
fn, ok := sel.Obj().(*types.Func)
if !ok {
// should be unreachable
return false
}
sig := fn.Type().(*types.Signature)
if sig.Params().Len() != 2 {
return false
}
// TODO(dh): check the types of the arguments for more
// precision
if sig.Results().Len() != 0 {
return false
}
return true
}
seen := map[types.Type]bool{}
var checkType func(verb rune, T types.Type, top bool) bool
checkType = func(verb rune, T types.Type, top bool) bool {
if top {
for k := range seen {
delete(seen, k)
}
}
if seen[T] {
return true
}
seen[T] = true
if int(verb) >= len(verbs) {
// Unknown verb
return true
}
flags := verbs[verb]
if flags == 0 {
// Unknown verb
return true
}
ms := msCache.MethodSet(T)
if isFormatter(T, ms) {
// the value is responsible for formatting itself
return true
}
if flags&isString != 0 && (isStringer(T, ms) || isError(T, ms)) {
// Check for stringer early because we're about to dereference
return true
}
T = T.Underlying()
if flags&(isPointer|isPseudoPointer) == 0 && top {
T = typeutil.Dereference(T)
}
if flags&isPseudoPointer != 0 && top {
t := typeutil.Dereference(T)
if _, ok := t.Underlying().(*types.Struct); ok {
T = t
}
}
if _, ok := T.(*types.Interface); ok {
// We don't know what's in the interface
return true
}
var info types.BasicInfo
if flags&isInt != 0 {
info |= types.IsInteger
}
if flags&isBool != 0 {
info |= types.IsBoolean
}
if flags&isFP != 0 {
info |= types.IsFloat | types.IsComplex
}
if flags&isString != 0 {
info |= types.IsString
}
if info != 0 && isInfo(T, info) {
return true
}
if flags&isString != 0 {
isStringyElem := func(typ types.Type) bool {
if typ, ok := typ.Underlying().(*types.Basic); ok {
return typ.Kind() == types.Byte
}
return false
}
switch T := T.(type) {
case *types.Slice:
if isStringyElem(T.Elem()) {
return true
}
case *types.Array:
if isStringyElem(T.Elem()) {
return true
}
}
if isStringer(T, ms) || isError(T, ms) {
return true
}
}
if flags&isPointer != 0 && typeutil.IsPointerLike(T) {
return true
}
if flags&isPseudoPointer != 0 {
switch U := T.Underlying().(type) {
case *types.Pointer:
if !top {
return true
}
if _, ok := U.Elem().Underlying().(*types.Struct); !ok {
// TODO(dh): can this condition ever be false? For
// *T, if T is a struct, we'll already have
// dereferenced it, meaning the *types.Pointer
// branch couldn't have been taken. For T that
// aren't structs, this condition will always
// evaluate to true.
return true
}
case *types.Chan, *types.Signature:
// Channels and functions are always treated as
// pointers and never recursed into.
return true
case *types.Basic:
if U.Kind() == types.UnsafePointer {
return true
}
case *types.Interface:
// we will already have bailed if the type is an
// interface.
panic("unreachable")
default:
// other pointer-like types, such as maps or slices,
// will be printed element-wise.
}
}
if flags&isSlice != 0 {
if _, ok := T.(*types.Slice); ok {
return true
}
}
if flags&isAny != 0 {
return true
}
elems, ok := elem(T.Underlying(), verb)
if !ok {
return false
}
for _, elem := range elems {
if !checkType(verb, elem, false) {
return false
}
}
return true
}
k, ok := irutil.Flatten(f).(*ir.Const)
if !ok {
return
}
actions, err := printf.Parse(constant.StringVal(k.Value))
if err != nil {
carg.Invalid("couldn't parse format string")
return
}
ptr := 1
hasExplicit := false
checkStar := func(verb printf.Verb, star printf.Argument) bool {
if star, ok := star.(printf.Star); ok {
idx := 0
if star.Index == -1 {
idx = ptr
ptr++
} else {
hasExplicit = true
idx = star.Index
ptr = star.Index + 1
}
if idx == 0 {
carg.Invalid(fmt.Sprintf("Printf format %s reads invalid arg 0; indices are 1-based", verb.Raw))
return false
}
if idx > len(args) {
carg.Invalid(
fmt.Sprintf("Printf format %s reads arg #%d, but call has only %d args",
verb.Raw, idx, len(args)))
return false
}
if arg, ok := args[idx-1].(*ir.MakeInterface); ok {
if !isInfo(arg.X.Type(), types.IsInteger) {
carg.Invalid(fmt.Sprintf("Printf format %s reads non-int arg #%d as argument of *", verb.Raw, idx))
}
}
}
return true
}
// We only report one problem per format string. Making a
// mistake with an index tends to invalidate all future
// implicit indices.
for _, action := range actions {
verb, ok := action.(printf.Verb)
if !ok {
continue
}
if !checkStar(verb, verb.Width) || !checkStar(verb, verb.Precision) {
return
}
off := ptr
if verb.Value != -1 {
hasExplicit = true
off = verb.Value
}
if off > len(args) {
carg.Invalid(
fmt.Sprintf("Printf format %s reads arg #%d, but call has only %d args",
verb.Raw, off, len(args)))
return
} else if verb.Value == 0 && verb.Letter != '%' {
carg.Invalid(fmt.Sprintf("Printf format %s reads invalid arg 0; indices are 1-based", verb.Raw))
return
} else if off != 0 {
arg, ok := args[off-1].(*ir.MakeInterface)
if ok {
if !checkType(verb.Letter, arg.X.Type(), true) {
carg.Invalid(fmt.Sprintf("Printf format %s has arg #%d of wrong type %s",
verb.Raw, ptr, args[ptr-1].(*ir.MakeInterface).X.Type()))
return
}
}
}
switch verb.Value {
case -1:
// Consume next argument
ptr++
case 0:
// Don't consume any arguments
default:
ptr = verb.Value + 1
}
}
if !hasExplicit && ptr <= len(args) {
carg.Invalid(fmt.Sprintf("Printf call needs %d args but has %d args", ptr-1, len(args)))
}
}
func checkAtomicAlignmentImpl(call *Call) {
sizes := call.Pass.TypesSizes
if sizes.Sizeof(types.Typ[types.Uintptr]) != 4 {
// Not running on a 32-bit platform
return
}
v, ok := irutil.Flatten(call.Args[0].Value.Value).(*ir.FieldAddr)
if !ok {
// TODO(dh): also check indexing into arrays and slices
return
}
T := v.X.Type().Underlying().(*types.Pointer).Elem().Underlying().(*types.Struct)
fields := make([]*types.Var, 0, T.NumFields())
for i := 0; i < T.NumFields() && i <= v.Field; i++ {
fields = append(fields, T.Field(i))
}
off := sizes.Offsetsof(fields)[v.Field]
if off%8 != 0 {
msg := fmt.Sprintf("address of non 64-bit aligned field %s passed to %s",
T.Field(v.Field).Name(),
irutil.CallName(call.Instr.Common()))
call.Invalid(msg)
}
}
func checkNoopMarshalImpl(argN int, meths ...string) CallCheck {
return func(call *Call) {
if code.IsGenerated(call.Pass, call.Instr.Pos()) {
return
}
arg := call.Args[argN]
T := arg.Value.Value.Type()
Ts, ok := typeutil.Dereference(T).Underlying().(*types.Struct)
if !ok {
return
}
if Ts.NumFields() == 0 {
return
}
fields := typeutil.FlattenFields(Ts)
for _, field := range fields {
if field.Var.Exported() {
return
}
}
// OPT(dh): we could use a method set cache here
ms := call.Instr.Parent().Prog.MethodSets.MethodSet(T)
// TODO(dh): we're not checking the signature, which can cause false negatives.
// This isn't a huge problem, however, since vet complains about incorrect signatures.
for _, meth := range meths {
if ms.Lookup(nil, meth) != nil {
return
}
}
arg.Invalid(fmt.Sprintf("struct type '%s' doesn't have any exported fields, nor custom marshaling", typeutil.Dereference(T)))
}
}
func checkUnsupportedMarshalJSON(call *Call) {
arg := call.Args[0]
T := arg.Value.Value.Type()
if err := fakejson.Marshal(T); err != nil {
typ := types.TypeString(err.Type, types.RelativeTo(arg.Value.Value.Parent().Pkg.Pkg))
if err.Path == "x" {
arg.Invalid(fmt.Sprintf("trying to marshal unsupported type %s", typ))
} else {
arg.Invalid(fmt.Sprintf("trying to marshal unsupported type %s, via %s", typ, err.Path))
}
}
}
func checkUnsupportedMarshalXML(call *Call) {
arg := call.Args[0]
T := arg.Value.Value.Type()
if err := fakexml.Marshal(T); err != nil {
switch err := err.(type) {
case *fakexml.UnsupportedTypeError:
typ := types.TypeString(err.Type, types.RelativeTo(arg.Value.Value.Parent().Pkg.Pkg))
if err.Path == "x" {
arg.Invalid(fmt.Sprintf("trying to marshal unsupported type %s", typ))
} else {
arg.Invalid(fmt.Sprintf("trying to marshal unsupported type %s, via %s", typ, err.Path))
}
case *fakexml.TagPathError:
// Vet does a better job at reporting this error, because it can flag the actual struct tags, not just the call to Marshal
default:
// These errors get reported by SA5008 instead, which can flag the actual fields, independently of calls to xml.Marshal
}
}
}
func isInLoop(b *ir.BasicBlock) bool {
sets := irutil.FindLoops(b.Parent())
for _, set := range sets {
if set.Has(b) {
return true
}
}
return false
}
func CheckUntrappableSignal(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
call := node.(*ast.CallExpr)
if !code.IsCallToAny(pass, call,
"os/signal.Ignore", "os/signal.Notify", "os/signal.Reset") {
return
}
hasSigterm := false
for _, arg := range call.Args {
if conv, ok := arg.(*ast.CallExpr); ok && isName(pass, conv.Fun, "os.Signal") {
arg = conv.Args[0]
}
if isName(pass, arg, "syscall.SIGTERM") {
hasSigterm = true
break
}
}
for i, arg := range call.Args {
if conv, ok := arg.(*ast.CallExpr); ok && isName(pass, conv.Fun, "os.Signal") {
arg = conv.Args[0]
}
if isName(pass, arg, "os.Kill") || isName(pass, arg, "syscall.SIGKILL") {
var fixes []analysis.SuggestedFix
if !hasSigterm {
nargs := make([]ast.Expr, len(call.Args))
for j, a := range call.Args {
if i == j {
nargs[j] = edit.Selector("syscall", "SIGTERM")
} else {
nargs[j] = a
}
}
ncall := *call
ncall.Args = nargs
fixes = append(fixes, edit.Fix(fmt.Sprintf("use syscall.SIGTERM instead of %s", report.Render(pass, arg)), edit.ReplaceWithNode(pass.Fset, call, &ncall)))
}
nargs := make([]ast.Expr, 0, len(call.Args))
for j, a := range call.Args {
if i == j {
continue
}
nargs = append(nargs, a)
}
ncall := *call
ncall.Args = nargs
fixes = append(fixes, edit.Fix(fmt.Sprintf("remove %s from list of arguments", report.Render(pass, arg)), edit.ReplaceWithNode(pass.Fset, call, &ncall)))
report.Report(pass, arg, fmt.Sprintf("%s cannot be trapped (did you mean syscall.SIGTERM?)", report.Render(pass, arg)), report.Fixes(fixes...))
}
if isName(pass, arg, "syscall.SIGSTOP") {
nargs := make([]ast.Expr, 0, len(call.Args)-1)
for j, a := range call.Args {
if i == j {
continue
}
nargs = append(nargs, a)
}
ncall := *call
ncall.Args = nargs
report.Report(pass, arg, "syscall.SIGSTOP cannot be trapped", report.Fixes(edit.Fix("remove syscall.SIGSTOP from list of arguments", edit.ReplaceWithNode(pass.Fset, call, &ncall))))
}
}
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
func CheckTemplate(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
call := node.(*ast.CallExpr)
// OPT(dh): use integer for kind
var kind string
switch code.CallName(pass, call) {
case "(*text/template.Template).Parse":
kind = "text"
case "(*html/template.Template).Parse":
kind = "html"
default:
return
}
sel := call.Fun.(*ast.SelectorExpr)
if !code.IsCallToAny(pass, sel.X, "text/template.New", "html/template.New") {
// TODO(dh): this is a cheap workaround for templates with
// different delims. A better solution with less false
// negatives would use data flow analysis to see where the
// template comes from and where it has been
return
}
s, ok := code.ExprToString(pass, call.Args[knowledge.Arg("(*text/template.Template).Parse.text")])
if !ok {
return
}
var err error
switch kind {
case "text":
_, err = texttemplate.New("").Parse(s)
case "html":
_, err = htmltemplate.New("").Parse(s)
}
if err != nil {
// TODO(dominikh): whitelist other parse errors, if any
if strings.Contains(err.Error(), "unexpected") {
report.Report(pass, call.Args[knowledge.Arg("(*text/template.Template).Parse.text")], err.Error())
}
}
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
var (
checkTimeSleepConstantPatternRns = pattern.MustParse(`(BinaryExpr duration "*" (SelectorExpr (Ident "time") (Ident "Nanosecond")))`)
checkTimeSleepConstantPatternRs = pattern.MustParse(`(BinaryExpr duration "*" (SelectorExpr (Ident "time") (Ident "Second")))`)
)
func CheckTimeSleepConstant(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
call := node.(*ast.CallExpr)
if !code.IsCallTo(pass, call, "time.Sleep") {
return
}
lit, ok := call.Args[knowledge.Arg("time.Sleep.d")].(*ast.BasicLit)
if !ok {
return
}
n, err := strconv.Atoi(lit.Value)
if err != nil {
return
}
if n == 0 || n > 120 {
// time.Sleep(0) is a seldom used pattern in concurrency
// tests. >120 might be intentional. 120 was chosen
// because the user could've meant 2 minutes.
return
}
report.Report(pass, lit,
fmt.Sprintf("sleeping for %d nanoseconds is probably a bug; be explicit if it isn't", n), report.Fixes(
edit.Fix("explicitly use nanoseconds", edit.ReplaceWithPattern(pass, checkTimeSleepConstantPatternRns, pattern.State{"duration": lit}, lit)),
edit.Fix("use seconds", edit.ReplaceWithPattern(pass, checkTimeSleepConstantPatternRs, pattern.State{"duration": lit}, lit))))
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
var checkWaitgroupAddQ = pattern.MustParse(`
(GoStmt
(CallExpr
(FuncLit
_
call@(CallExpr (Function "(*sync.WaitGroup).Add") _):_) _))`)
func CheckWaitgroupAdd(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
if m, ok := code.Match(pass, checkWaitgroupAddQ, node); ok {
call := m.State["call"].(ast.Node)
report.Report(pass, call, fmt.Sprintf("should call %s before starting the goroutine to avoid a race", report.Render(pass, call)))
}
}
code.Preorder(pass, fn, (*ast.GoStmt)(nil))
return nil, nil
}
func CheckInfiniteEmptyLoop(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
loop := node.(*ast.ForStmt)
if len(loop.Body.List) != 0 || loop.Post != nil {
return
}
if loop.Init != nil {
// TODO(dh): this isn't strictly necessary, it just makes
// the check easier.
return
}
// An empty loop is bad news in two cases: 1) The loop has no
// condition. In that case, it's just a loop that spins
// forever and as fast as it can, keeping a core busy. 2) The
// loop condition only consists of variable or field reads and
// operators on those. The only way those could change their
// value is with unsynchronised access, which constitutes a
// data race.
//
// If the condition contains any function calls, its behaviour
// is dynamic and the loop might terminate. Similarly for
// channel receives.
if loop.Cond != nil {
if code.MayHaveSideEffects(pass, loop.Cond, nil) {
return
}
if ident, ok := loop.Cond.(*ast.Ident); ok {
if k, ok := pass.TypesInfo.ObjectOf(ident).(*types.Const); ok {
if !constant.BoolVal(k.Val()) {
// don't flag `for false {}` loops. They're a debug aid.
return
}
}
}
report.Report(pass, loop, "loop condition never changes or has a race condition")
}
report.Report(pass, loop, "this loop will spin, using 100% CPU", report.ShortRange())
}
code.Preorder(pass, fn, (*ast.ForStmt)(nil))
return nil, nil
}
func CheckDeferInInfiniteLoop(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
mightExit := false
var defers []ast.Stmt
loop := node.(*ast.ForStmt)
if loop.Cond != nil {
return
}
fn2 := func(node ast.Node) bool {
switch stmt := node.(type) {
case *ast.ReturnStmt:
mightExit = true
return false
case *ast.BranchStmt:
// TODO(dominikh): if this sees a break in a switch or
// select, it doesn't check if it breaks the loop or
// just the select/switch. This causes some false
// negatives.
if stmt.Tok == token.BREAK {
mightExit = true
return false
}
case *ast.DeferStmt:
defers = append(defers, stmt)
case *ast.FuncLit:
// Don't look into function bodies
return false
}
return true
}
ast.Inspect(loop.Body, fn2)
if mightExit {
return
}
for _, stmt := range defers {
report.Report(pass, stmt, "defers in this infinite loop will never run")
}
}
code.Preorder(pass, fn, (*ast.ForStmt)(nil))
return nil, nil
}
func CheckDubiousDeferInChannelRangeLoop(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
loop := node.(*ast.RangeStmt)
typ := pass.TypesInfo.TypeOf(loop.X)
_, ok := typ.Underlying().(*types.Chan)
if !ok {
return
}
fn2 := func(node ast.Node) bool {
switch stmt := node.(type) {
case *ast.DeferStmt:
report.Report(pass, stmt, "defers in this range loop won't run unless the channel gets closed")
case *ast.FuncLit:
// Don't look into function bodies
return false
}
return true
}
ast.Inspect(loop.Body, fn2)
}
code.Preorder(pass, fn, (*ast.RangeStmt)(nil))
return nil, nil
}
func CheckTestMainExit(pass *analysis.Pass) (interface{}, error) {
if code.IsGoVersion(pass, 15) {
// Beginning with Go 1.15, the test framework will call
// os.Exit for us.
return nil, nil
}
var (
fnmain ast.Node
callsExit bool
callsRun bool
arg types.Object
)
fn := func(node ast.Node, push bool) bool {
if !push {
if fnmain != nil && node == fnmain {
if !callsExit && callsRun {
report.Report(pass, fnmain, "TestMain should call os.Exit to set exit code")
}
fnmain = nil
callsExit = false
callsRun = false
arg = nil
}
return true
}
switch node := node.(type) {
case *ast.FuncDecl:
if fnmain != nil {
return true
}
if !isTestMain(pass, node) {
return false
}
fnmain = node
arg = pass.TypesInfo.ObjectOf(node.Type.Params.List[0].Names[0])
return true
case *ast.CallExpr:
if code.IsCallTo(pass, node, "os.Exit") {
callsExit = true
return false
}
sel, ok := node.Fun.(*ast.SelectorExpr)
if !ok {
return true
}
ident, ok := sel.X.(*ast.Ident)
if !ok {
return true
}
if arg != pass.TypesInfo.ObjectOf(ident) {
return true
}
if sel.Sel.Name == "Run" {
callsRun = true
return false
}
return true
default:
lint.ExhaustiveTypeSwitch(node)
return true
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Nodes([]ast.Node{(*ast.FuncDecl)(nil), (*ast.CallExpr)(nil)}, fn)
return nil, nil
}
func isTestMain(pass *analysis.Pass, decl *ast.FuncDecl) bool {
if decl.Name.Name != "TestMain" {
return false
}
if len(decl.Type.Params.List) != 1 {
return false
}
arg := decl.Type.Params.List[0]
if len(arg.Names) != 1 {
return false
}
return code.IsOfType(pass, arg.Type, "*testing.M")
}
func CheckExec(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
call := node.(*ast.CallExpr)
if !code.IsCallTo(pass, call, "os/exec.Command") {
return
}
val, ok := code.ExprToString(pass, call.Args[knowledge.Arg("os/exec.Command.name")])
if !ok {
return
}
if !strings.Contains(val, " ") || strings.Contains(val, `\`) || strings.Contains(val, "/") {
return
}
report.Report(pass, call.Args[knowledge.Arg("os/exec.Command.name")],
"first argument to exec.Command looks like a shell command, but a program name or path are expected")
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
func CheckLoopEmptyDefault(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
loop := node.(*ast.ForStmt)
if len(loop.Body.List) != 1 || loop.Cond != nil || loop.Init != nil {
return
}
sel, ok := loop.Body.List[0].(*ast.SelectStmt)
if !ok {
return
}
for _, c := range sel.Body.List {
// FIXME this leaves behind an empty line, and possibly
// comments in the default branch. We can't easily fix
// either.
if comm, ok := c.(*ast.CommClause); ok && comm.Comm == nil && len(comm.Body) == 0 {
report.Report(pass, comm, "should not have an empty default case in a for+select loop; the loop will spin",
report.Fixes(edit.Fix("remove empty default branch", edit.Delete(comm))))
// there can only be one default case
break
}
}
}
code.Preorder(pass, fn, (*ast.ForStmt)(nil))
return nil, nil
}
func CheckLhsRhsIdentical(pass *analysis.Pass) (interface{}, error) {
var isFloat func(T types.Type) bool
isFloat = func(T types.Type) bool {
switch T := T.Underlying().(type) {
case *types.Basic:
kind := T.Kind()
return kind == types.Float32 || kind == types.Float64
case *types.Array:
return isFloat(T.Elem())
case *types.Struct:
for i := 0; i < T.NumFields(); i++ {
if !isFloat(T.Field(i).Type()) {
return false
}
}
return true
default:
return false
}
}
// TODO(dh): this check ignores the existence of side-effects and
// happily flags fn() == fn() so far, we've had nobody complain
// about a false positive, and it's caught several bugs in real
// code.
//
// We special case functions from the math/rand package. Someone ran
// into the following false positive: "rand.Intn(2) - rand.Intn(2), which I wrote to generate values {-1, 0, 1} with {0.25, 0.5, 0.25} probability."
fn := func(node ast.Node) {
op := node.(*ast.BinaryExpr)
switch op.Op {
case token.EQL, token.NEQ:
case token.SUB, token.QUO, token.AND, token.REM, token.OR, token.XOR, token.AND_NOT,
token.LAND, token.LOR, token.LSS, token.GTR, token.LEQ, token.GEQ:
default:
// For some ops, such as + and *, it can make sense to
// have identical operands
return
}
if isFloat(pass.TypesInfo.TypeOf(op.X)) {
// 'float <op> float' makes sense for several operators.
// We've tried keeping an exact list of operators to allow, but floats keep surprising us. Let's just give up instead.
return
}
if reflect.TypeOf(op.X) != reflect.TypeOf(op.Y) {
return
}
if report.Render(pass, op.X) != report.Render(pass, op.Y) {
return
}
l1, ok1 := op.X.(*ast.BasicLit)
l2, ok2 := op.Y.(*ast.BasicLit)
if ok1 && ok2 && l1.Kind == token.INT && l2.Kind == l1.Kind && l1.Value == "0" && l2.Value == l1.Value && code.IsGenerated(pass, l1.Pos()) {
// cgo generates the following function call:
// _cgoCheckPointer(_cgoBase0, 0 == 0) it uses 0 == 0
// instead of true in case the user shadowed the
// identifier. Ideally we'd restrict this exception to
// calls of _cgoCheckPointer, but it's not worth the
// hassle of keeping track of the stack. <lit> <op> <lit>
// are very rare to begin with, and we're mostly checking
// for them to catch typos such as 1 == 1 where the user
// meant to type i == 1. The odds of a false negative for
// 0 == 0 are slim.
return
}
if expr, ok := op.X.(*ast.CallExpr); ok {
call := code.CallName(pass, expr)
switch call {
case "math/rand.Int",
"math/rand.Int31",
"math/rand.Int31n",
"math/rand.Int63",
"math/rand.Int63n",
"math/rand.Intn",
"math/rand.Uint32",
"math/rand.Uint64",
"math/rand.ExpFloat64",
"math/rand.Float32",
"math/rand.Float64",
"math/rand.NormFloat64",
"(*math/rand.Rand).Int",
"(*math/rand.Rand).Int31",
"(*math/rand.Rand).Int31n",
"(*math/rand.Rand).Int63",
"(*math/rand.Rand).Int63n",
"(*math/rand.Rand).Intn",
"(*math/rand.Rand).Uint32",
"(*math/rand.Rand).Uint64",
"(*math/rand.Rand).ExpFloat64",
"(*math/rand.Rand).Float32",
"(*math/rand.Rand).Float64",
"(*math/rand.Rand).NormFloat64":
return
}
}
report.Report(pass, op, fmt.Sprintf("identical expressions on the left and right side of the '%s' operator", op.Op))
}
code.Preorder(pass, fn, (*ast.BinaryExpr)(nil))
return nil, nil
}
func CheckScopedBreak(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
var body *ast.BlockStmt
switch node := node.(type) {
case *ast.ForStmt:
body = node.Body
case *ast.RangeStmt:
body = node.Body
default:
lint.ExhaustiveTypeSwitch(node)
}
for _, stmt := range body.List {
var blocks [][]ast.Stmt
switch stmt := stmt.(type) {
case *ast.SwitchStmt:
for _, c := range stmt.Body.List {
blocks = append(blocks, c.(*ast.CaseClause).Body)
}
case *ast.SelectStmt:
for _, c := range stmt.Body.List {
blocks = append(blocks, c.(*ast.CommClause).Body)
}
default:
continue
}
for _, body := range blocks {
if len(body) == 0 {
continue
}
lasts := []ast.Stmt{body[len(body)-1]}
// TODO(dh): unfold all levels of nested block
// statements, not just a single level if statement
if ifs, ok := lasts[0].(*ast.IfStmt); ok {
if len(ifs.Body.List) == 0 {
continue
}
lasts[0] = ifs.Body.List[len(ifs.Body.List)-1]
if block, ok := ifs.Else.(*ast.BlockStmt); ok {
if len(block.List) != 0 {
lasts = append(lasts, block.List[len(block.List)-1])
}
}
}
for _, last := range lasts {
branch, ok := last.(*ast.BranchStmt)
if !ok || branch.Tok != token.BREAK || branch.Label != nil {
continue
}
report.Report(pass, branch, "ineffective break statement. Did you mean to break out of the outer loop?")
}
}
}
}
code.Preorder(pass, fn, (*ast.ForStmt)(nil), (*ast.RangeStmt)(nil))
return nil, nil
}
func CheckUnsafePrintf(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
call := node.(*ast.CallExpr)
name := code.CallName(pass, call)
var arg int
switch name {
case "fmt.Printf", "fmt.Sprintf", "log.Printf":
arg = knowledge.Arg("fmt.Printf.format")
case "fmt.Fprintf":
arg = knowledge.Arg("fmt.Fprintf.format")
default:
return
}
if len(call.Args) != arg+1 {
return
}
switch call.Args[arg].(type) {
case *ast.CallExpr, *ast.Ident:
default:
return
}
if _, ok := pass.TypesInfo.TypeOf(call.Args[arg]).(*types.Tuple); ok {
// the called function returns multiple values and got
// splatted into the call. for all we know, it is
// returning good arguments.
return
}
alt := name[:len(name)-1]
report.Report(pass, call,
"printf-style function with dynamic format string and no further arguments should use print-style function instead",
report.Fixes(edit.Fix(fmt.Sprintf("use %s instead of %s", alt, name), edit.ReplaceWithString(pass.Fset, call.Fun, alt))))
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
func CheckEarlyDefer(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
block := node.(*ast.BlockStmt)
if len(block.List) < 2 {
return
}
for i, stmt := range block.List {
if i == len(block.List)-1 {
break
}
assign, ok := stmt.(*ast.AssignStmt)
if !ok {
continue
}
if len(assign.Rhs) != 1 {
continue
}
if len(assign.Lhs) < 2 {
continue
}
if lhs, ok := assign.Lhs[len(assign.Lhs)-1].(*ast.Ident); ok && lhs.Name == "_" {
continue
}
call, ok := assign.Rhs[0].(*ast.CallExpr)
if !ok {
continue
}
sig, ok := pass.TypesInfo.TypeOf(call.Fun).(*types.Signature)
if !ok {
continue
}
if sig.Results().Len() < 2 {
continue
}
last := sig.Results().At(sig.Results().Len() - 1)
// FIXME(dh): check that it's error from universe, not
// another type of the same name
if last.Type().String() != "error" {
continue
}
lhs, ok := assign.Lhs[0].(*ast.Ident)
if !ok {
continue
}
def, ok := block.List[i+1].(*ast.DeferStmt)
if !ok {
continue
}
sel, ok := def.Call.Fun.(*ast.SelectorExpr)
if !ok {
continue
}
ident, ok := selectorX(sel).(*ast.Ident)
if !ok {
continue
}
if ident.Obj != lhs.Obj {
continue
}
if sel.Sel.Name != "Close" {
continue
}
report.Report(pass, def, fmt.Sprintf("should check returned error before deferring %s", report.Render(pass, def.Call)))
}
}
code.Preorder(pass, fn, (*ast.BlockStmt)(nil))
return nil, nil
}
func selectorX(sel *ast.SelectorExpr) ast.Node {
switch x := sel.X.(type) {
case *ast.SelectorExpr:
return selectorX(x)
default:
return x
}
}
func CheckEmptyCriticalSection(pass *analysis.Pass) (interface{}, error) {
if pass.Pkg.Path() == "sync_test" {
// exception for the sync package's tests
return nil, nil
}
// Initially it might seem like this check would be easier to
// implement using IR. After all, we're only checking for two
// consecutive method calls. In reality, however, there may be any
// number of other instructions between the lock and unlock, while
// still constituting an empty critical section. For example,
// given `m.x().Lock(); m.x().Unlock()`, there will be a call to
// x(). In the AST-based approach, this has a tiny potential for a
// false positive (the second call to x might be doing work that
// is protected by the mutex). In an IR-based approach, however,
// it would miss a lot of real bugs.
mutexParams := func(s ast.Stmt) (x ast.Expr, funcName string, ok bool) {
expr, ok := s.(*ast.ExprStmt)
if !ok {
return nil, "", false
}
call, ok := expr.X.(*ast.CallExpr)
if !ok {
return nil, "", false
}
sel, ok := call.Fun.(*ast.SelectorExpr)
if !ok {
return nil, "", false
}
fn, ok := pass.TypesInfo.ObjectOf(sel.Sel).(*types.Func)
if !ok {
return nil, "", false
}
sig := fn.Type().(*types.Signature)
if sig.Params().Len() != 0 || sig.Results().Len() != 0 {
return nil, "", false
}
return sel.X, fn.Name(), true
}
fn := func(node ast.Node) {
block := node.(*ast.BlockStmt)
if len(block.List) < 2 {
return
}
for i := range block.List[:len(block.List)-1] {
sel1, method1, ok1 := mutexParams(block.List[i])
sel2, method2, ok2 := mutexParams(block.List[i+1])
if !ok1 || !ok2 || report.Render(pass, sel1) != report.Render(pass, sel2) {
continue
}
if (method1 == "Lock" && method2 == "Unlock") ||
(method1 == "RLock" && method2 == "RUnlock") {
report.Report(pass, block.List[i+1], "empty critical section")
}
}
}
code.Preorder(pass, fn, (*ast.BlockStmt)(nil))
return nil, nil
}
var (
// cgo produces code like fn(&*_Cvar_kSomeCallbacks) which we don't
// want to flag.
cgoIdent = regexp.MustCompile(`^_C(func|var)_.+$`)
checkIneffectiveCopyQ1 = pattern.MustParse(`(UnaryExpr "&" (StarExpr obj))`)
checkIneffectiveCopyQ2 = pattern.MustParse(`(StarExpr (UnaryExpr "&" _))`)
)
func CheckIneffectiveCopy(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
if m, ok := code.Match(pass, checkIneffectiveCopyQ1, node); ok {
if ident, ok := m.State["obj"].(*ast.Ident); !ok || !cgoIdent.MatchString(ident.Name) {
report.Report(pass, node, "&*x will be simplified to x. It will not copy x.")
}
} else if _, ok := code.Match(pass, checkIneffectiveCopyQ2, node); ok {
report.Report(pass, node, "*&x will be simplified to x. It will not copy x.")
}
}
code.Preorder(pass, fn, (*ast.UnaryExpr)(nil), (*ast.StarExpr)(nil))
return nil, nil
}
func CheckCanonicalHeaderKey(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node, push bool) bool {
if !push {
return false
}
if assign, ok := node.(*ast.AssignStmt); ok {
// TODO(dh): This risks missing some Header reads, for
// example in `h1["foo"] = h2["foo"]` these edge
// cases are probably rare enough to ignore for now.
for _, expr := range assign.Lhs {
op, ok := expr.(*ast.IndexExpr)
if !ok {
continue
}
if code.IsOfType(pass, op.X, "net/http.Header") {
return false
}
}
return true
}
op, ok := node.(*ast.IndexExpr)
if !ok {
return true
}
if !code.IsOfType(pass, op.X, "net/http.Header") {
return true
}
s, ok := code.ExprToString(pass, op.Index)
if !ok {
return true
}
canonical := http.CanonicalHeaderKey(s)
if s == canonical {
return true
}
var fix analysis.SuggestedFix
switch op.Index.(type) {
case *ast.BasicLit:
fix = edit.Fix("canonicalize header key", edit.ReplaceWithString(pass.Fset, op.Index, strconv.Quote(canonical)))
case *ast.Ident:
call := &ast.CallExpr{
Fun: edit.Selector("http", "CanonicalHeaderKey"),
Args: []ast.Expr{op.Index},
}
fix = edit.Fix("wrap in http.CanonicalHeaderKey", edit.ReplaceWithNode(pass.Fset, op.Index, call))
}
msg := fmt.Sprintf("keys in http.Header are canonicalized, %q is not canonical; fix the constant or use http.CanonicalHeaderKey", s)
if fix.Message != "" {
report.Report(pass, op, msg, report.Fixes(fix))
} else {
report.Report(pass, op, msg)
}
return true
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Nodes([]ast.Node{(*ast.AssignStmt)(nil), (*ast.IndexExpr)(nil)}, fn)
return nil, nil
}
func CheckBenchmarkN(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
assign := node.(*ast.AssignStmt)
if len(assign.Lhs) != 1 || len(assign.Rhs) != 1 {
return
}
sel, ok := assign.Lhs[0].(*ast.SelectorExpr)
if !ok {
return
}
if sel.Sel.Name != "N" {
return
}
if !code.IsOfType(pass, sel.X, "*testing.B") {
return
}
report.Report(pass, assign, fmt.Sprintf("should not assign to %s", report.Render(pass, sel)))
}
code.Preorder(pass, fn, (*ast.AssignStmt)(nil))
return nil, nil
}
func CheckUnreadVariableValues(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
if irutil.IsExample(fn) {
continue
}
node := fn.Source()
if node == nil {
continue
}
if gen, ok := code.Generator(pass, node.Pos()); ok && gen == facts.Goyacc {
// Don't flag unused values in code generated by goyacc.
// There may be hundreds of those due to the way the state
// machine is constructed.
continue
}
switchTags := map[ir.Value]struct{}{}
ast.Inspect(node, func(node ast.Node) bool {
s, ok := node.(*ast.SwitchStmt)
if !ok {
return true
}
v, _ := fn.ValueForExpr(s.Tag)
switchTags[v] = struct{}{}
return true
})
// OPT(dh): don't use a map, possibly use a bitset
var hasUse func(v ir.Value, seen map[ir.Value]struct{}) bool
hasUse = func(v ir.Value, seen map[ir.Value]struct{}) bool {
if _, ok := seen[v]; ok {
return false
}
if _, ok := switchTags[v]; ok {
return true
}
refs := v.Referrers()
if refs == nil {
// TODO investigate why refs can be nil
return true
}
for _, ref := range *refs {
switch ref := ref.(type) {
case *ir.DebugRef:
case *ir.Sigma:
if seen == nil {
seen = map[ir.Value]struct{}{}
}
seen[v] = struct{}{}
if hasUse(ref, seen) {
return true
}
case *ir.Phi:
if seen == nil {
seen = map[ir.Value]struct{}{}
}
seen[v] = struct{}{}
if hasUse(ref, seen) {
return true
}
default:
return true
}
}
return false
}
ast.Inspect(node, func(node ast.Node) bool {
assign, ok := node.(*ast.AssignStmt)
if !ok {
return true
}
if len(assign.Lhs) > 1 && len(assign.Rhs) == 1 {
// Either a function call with multiple return values,
// or a comma-ok assignment
val, _ := fn.ValueForExpr(assign.Rhs[0])
if val == nil {
return true
}
refs := val.Referrers()
if refs == nil {
return true
}
for _, ref := range *refs {
ex, ok := ref.(*ir.Extract)
if !ok {
continue
}
if !hasUse(ex, nil) {
lhs := assign.Lhs[ex.Index]
if ident, ok := lhs.(*ast.Ident); !ok || ok && ident.Name == "_" {
continue
}
report.Report(pass, assign, fmt.Sprintf("this value of %s is never used", lhs))
}
}
return true
}
for i, lhs := range assign.Lhs {
rhs := assign.Rhs[i]
if ident, ok := lhs.(*ast.Ident); !ok || ok && ident.Name == "_" {
continue
}
val, _ := fn.ValueForExpr(rhs)
if val == nil {
continue
}
if _, ok := val.(*ir.Const); ok {
// a zero-valued constant, for example in 'foo := []string(nil)'
continue
}
if !hasUse(val, nil) {
report.Report(pass, assign, fmt.Sprintf("this value of %s is never used", lhs))
}
}
return true
})
}
return nil, nil
}
func CheckPredeterminedBooleanExprs(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
for _, block := range fn.Blocks {
for _, ins := range block.Instrs {
binop, ok := ins.(*ir.BinOp)
if !ok {
continue
}
switch binop.Op {
case token.GTR, token.LSS, token.EQL, token.NEQ, token.LEQ, token.GEQ:
default:
continue
}
xs, ok1 := consts(binop.X, nil, nil)
ys, ok2 := consts(binop.Y, nil, nil)
if !ok1 || !ok2 || len(xs) == 0 || len(ys) == 0 {
continue
}
trues := 0
for _, x := range xs {
for _, y := range ys {
if x.Value == nil {
if y.Value == nil {
trues++
}
continue
}
if constant.Compare(x.Value, binop.Op, y.Value) {
trues++
}
}
}
b := trues != 0
if trues == 0 || trues == len(xs)*len(ys) {
report.Report(pass, binop, fmt.Sprintf("binary expression is always %t for all possible values (%s %s %s)", b, xs, binop.Op, ys))
}
}
}
}
return nil, nil
}
func CheckNilMaps(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
for _, block := range fn.Blocks {
for _, ins := range block.Instrs {
mu, ok := ins.(*ir.MapUpdate)
if !ok {
continue
}
c, ok := irutil.Flatten(mu.Map).(*ir.Const)
if !ok {
continue
}
if c.Value != nil {
continue
}
report.Report(pass, mu, "assignment to nil map")
}
}
}
return nil, nil
}
func CheckExtremeComparison(pass *analysis.Pass) (interface{}, error) {
isobj := func(expr ast.Expr, name string) bool {
sel, ok := expr.(*ast.SelectorExpr)
if !ok {
return false
}
return typeutil.IsObject(pass.TypesInfo.ObjectOf(sel.Sel), name)
}
fn := func(node ast.Node) {
expr := node.(*ast.BinaryExpr)
tx := pass.TypesInfo.TypeOf(expr.X)
basic, ok := tx.Underlying().(*types.Basic)
if !ok {
return
}
var max string
var min string
switch basic.Kind() {
case types.Uint8:
max = "math.MaxUint8"
case types.Uint16:
max = "math.MaxUint16"
case types.Uint32:
max = "math.MaxUint32"
case types.Uint64:
max = "math.MaxUint64"
case types.Uint:
max = "math.MaxUint64"
case types.Int8:
min = "math.MinInt8"
max = "math.MaxInt8"
case types.Int16:
min = "math.MinInt16"
max = "math.MaxInt16"
case types.Int32:
min = "math.MinInt32"
max = "math.MaxInt32"
case types.Int64:
min = "math.MinInt64"
max = "math.MaxInt64"
case types.Int:
min = "math.MinInt64"
max = "math.MaxInt64"
}
if (expr.Op == token.GTR || expr.Op == token.GEQ) && isobj(expr.Y, max) ||
(expr.Op == token.LSS || expr.Op == token.LEQ) && isobj(expr.X, max) {
report.Report(pass, expr, fmt.Sprintf("no value of type %s is greater than %s", basic, max))
}
if expr.Op == token.LEQ && isobj(expr.Y, max) ||
expr.Op == token.GEQ && isobj(expr.X, max) {
report.Report(pass, expr, fmt.Sprintf("every value of type %s is <= %s", basic, max))
}
if (basic.Info() & types.IsUnsigned) != 0 {
if (expr.Op == token.LSS && astutil.IsIntLiteral(expr.Y, "0")) ||
(expr.Op == token.GTR && astutil.IsIntLiteral(expr.X, "0")) {
report.Report(pass, expr, fmt.Sprintf("no value of type %s is less than 0", basic))
}
if expr.Op == token.GEQ && astutil.IsIntLiteral(expr.Y, "0") ||
expr.Op == token.LEQ && astutil.IsIntLiteral(expr.X, "0") {
report.Report(pass, expr, fmt.Sprintf("every value of type %s is >= 0", basic))
}
} else {
if (expr.Op == token.LSS || expr.Op == token.LEQ) && isobj(expr.Y, min) ||
(expr.Op == token.GTR || expr.Op == token.GEQ) && isobj(expr.X, min) {
report.Report(pass, expr, fmt.Sprintf("no value of type %s is less than %s", basic, min))
}
if expr.Op == token.GEQ && isobj(expr.Y, min) ||
expr.Op == token.LEQ && isobj(expr.X, min) {
report.Report(pass, expr, fmt.Sprintf("every value of type %s is >= %s", basic, min))
}
}
}
code.Preorder(pass, fn, (*ast.BinaryExpr)(nil))
return nil, nil
}
func consts(val ir.Value, out []*ir.Const, visitedPhis map[string]bool) ([]*ir.Const, bool) {
if visitedPhis == nil {
visitedPhis = map[string]bool{}
}
var ok bool
switch val := val.(type) {
case *ir.Phi:
if visitedPhis[val.Name()] {
break
}
visitedPhis[val.Name()] = true
vals := val.Operands(nil)
for _, phival := range vals {
out, ok = consts(*phival, out, visitedPhis)
if !ok {
return nil, false
}
}
case *ir.Const:
out = append(out, val)
case *ir.Convert:
out, ok = consts(val.X, out, visitedPhis)
if !ok {
return nil, false
}
default:
return nil, false
}
if len(out) < 2 {
return out, true
}
uniq := []*ir.Const{out[0]}
for _, val := range out[1:] {
if val.Value == uniq[len(uniq)-1].Value {
continue
}
uniq = append(uniq, val)
}
return uniq, true
}
func CheckLoopCondition(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
cb := func(node ast.Node) bool {
loop, ok := node.(*ast.ForStmt)
if !ok {
return true
}
if loop.Init == nil || loop.Cond == nil || loop.Post == nil {
return true
}
init, ok := loop.Init.(*ast.AssignStmt)
if !ok || len(init.Lhs) != 1 || len(init.Rhs) != 1 {
return true
}
cond, ok := loop.Cond.(*ast.BinaryExpr)
if !ok {
return true
}
x, ok := cond.X.(*ast.Ident)
if !ok {
return true
}
lhs, ok := init.Lhs[0].(*ast.Ident)
if !ok {
return true
}
if x.Obj != lhs.Obj {
return true
}
if _, ok := loop.Post.(*ast.IncDecStmt); !ok {
return true
}
v, isAddr := fn.ValueForExpr(cond.X)
if v == nil || isAddr {
return true
}
switch v := v.(type) {
case *ir.Phi:
ops := v.Operands(nil)
if len(ops) != 2 {
return true
}
_, ok := (*ops[0]).(*ir.Const)
if !ok {
return true
}
sigma, ok := (*ops[1]).(*ir.Sigma)
if !ok {
return true
}
if sigma.X != v {
return true
}
case *ir.Load:
return true
}
report.Report(pass, cond, "variable in loop condition never changes")
return true
}
if source := fn.Source(); source != nil {
ast.Inspect(source, cb)
}
}
return nil, nil
}
func CheckArgOverwritten(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
cb := func(node ast.Node) bool {
var typ *ast.FuncType
var body *ast.BlockStmt
switch fn := node.(type) {
case *ast.FuncDecl:
typ = fn.Type
body = fn.Body
case *ast.FuncLit:
typ = fn.Type
body = fn.Body
}
if body == nil {
return true
}
if len(typ.Params.List) == 0 {
return true
}
for _, field := range typ.Params.List {
for _, arg := range field.Names {
obj := pass.TypesInfo.ObjectOf(arg)
var irobj *ir.Parameter
for _, param := range fn.Params {
if param.Object() == obj {
irobj = param
break
}
}
if irobj == nil {
continue
}
refs := irobj.Referrers()
if refs == nil {
continue
}
if len(irutil.FilterDebug(*refs)) != 0 {
continue
}
var assignment ast.Node
ast.Inspect(body, func(node ast.Node) bool {
if assignment != nil {
return false
}
assign, ok := node.(*ast.AssignStmt)
if !ok {
return true
}
for _, lhs := range assign.Lhs {
ident, ok := lhs.(*ast.Ident)
if !ok {
continue
}
if pass.TypesInfo.ObjectOf(ident) == obj {
assignment = assign
return false
}
}
return true
})
if assignment != nil {
report.Report(pass, arg, fmt.Sprintf("argument %s is overwritten before first use", arg),
report.Related(assignment, fmt.Sprintf("assignment to %s", arg)))
}
}
}
return true
}
if source := fn.Source(); source != nil {
ast.Inspect(source, cb)
}
}
return nil, nil
}
func CheckIneffectiveLoop(pass *analysis.Pass) (interface{}, error) {
// This check detects some, but not all unconditional loop exits.
// We give up in the following cases:
//
// - a goto anywhere in the loop. The goto might skip over our
// return, and we don't check that it doesn't.
//
// - any nested, unlabelled continue, even if it is in another
// loop or closure.
fn := func(node ast.Node) {
var body *ast.BlockStmt
switch fn := node.(type) {
case *ast.FuncDecl:
body = fn.Body
case *ast.FuncLit:
body = fn.Body
default:
lint.ExhaustiveTypeSwitch(node)
}
if body == nil {
return
}
labels := map[*ast.Object]ast.Stmt{}
ast.Inspect(body, func(node ast.Node) bool {
label, ok := node.(*ast.LabeledStmt)
if !ok {
return true
}
labels[label.Label.Obj] = label.Stmt
return true
})
ast.Inspect(body, func(node ast.Node) bool {
var loop ast.Node
var body *ast.BlockStmt
switch node := node.(type) {
case *ast.ForStmt:
body = node.Body
loop = node
case *ast.RangeStmt:
typ := pass.TypesInfo.TypeOf(node.X)
if _, ok := typ.Underlying().(*types.Map); ok {
// looping once over a map is a valid pattern for
// getting an arbitrary element.
return true
}
body = node.Body
loop = node
default:
return true
}
if len(body.List) < 2 {
// TODO(dh): is this check needed? when body.List < 2,
// then we can't find both an unconditional exit and a
// branching statement (if, ...). and we don't flag
// unconditional exits if there has been no branching
// in the loop body.
// avoid flagging the somewhat common pattern of using
// a range loop to get the first element in a slice,
// or the first rune in a string.
return true
}
var unconditionalExit ast.Node
hasBranching := false
for _, stmt := range body.List {
switch stmt := stmt.(type) {
case *ast.BranchStmt:
switch stmt.Tok {
case token.BREAK:
if stmt.Label == nil || labels[stmt.Label.Obj] == loop {
unconditionalExit = stmt
}
case token.CONTINUE:
if stmt.Label == nil || labels[stmt.Label.Obj] == loop {
unconditionalExit = nil
return false
}
}
case *ast.ReturnStmt:
unconditionalExit = stmt
case *ast.IfStmt, *ast.ForStmt, *ast.RangeStmt, *ast.SwitchStmt, *ast.SelectStmt:
hasBranching = true
}
}
if unconditionalExit == nil || !hasBranching {
return false
}
ast.Inspect(body, func(node ast.Node) bool {
if branch, ok := node.(*ast.BranchStmt); ok {
switch branch.Tok {
case token.GOTO:
unconditionalExit = nil
return false
case token.CONTINUE:
if branch.Label != nil && labels[branch.Label.Obj] != loop {
return true
}
unconditionalExit = nil
return false
}
}
return true
})
if unconditionalExit != nil {
report.Report(pass, unconditionalExit, "the surrounding loop is unconditionally terminated")
}
return true
})
}
code.Preorder(pass, fn, (*ast.FuncDecl)(nil), (*ast.FuncLit)(nil))
return nil, nil
}
var checkNilContextQ = pattern.MustParse(`(CallExpr fun@(Function _) (Builtin "nil"):_)`)
func CheckNilContext(pass *analysis.Pass) (interface{}, error) {
todo := &ast.CallExpr{
Fun: edit.Selector("context", "TODO"),
}
bg := &ast.CallExpr{
Fun: edit.Selector("context", "Background"),
}
fn := func(node ast.Node) {
m, ok := code.Match(pass, checkNilContextQ, node)
if !ok {
return
}
call := node.(*ast.CallExpr)
fun, ok := m.State["fun"].(*types.Func)
if !ok {
// it might also be a builtin
return
}
sig := fun.Type().(*types.Signature)
if sig.Params().Len() == 0 {
// Our CallExpr might've matched a method expression, like
// (*T).Foo(nil) here, nil isn't the first argument of
// the Foo method, but the method receiver.
return
}
if !typeutil.IsType(sig.Params().At(0).Type(), "context.Context") {
return
}
report.Report(pass, call.Args[0],
"do not pass a nil Context, even if a function permits it; pass context.TODO if you are unsure about which Context to use", report.Fixes(
edit.Fix("use context.TODO", edit.ReplaceWithNode(pass.Fset, call.Args[0], todo)),
edit.Fix("use context.Background", edit.ReplaceWithNode(pass.Fset, call.Args[0], bg))))
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
var (
checkSeekerQ = pattern.MustParse(`(CallExpr fun@(SelectorExpr _ (Ident "Seek")) [arg1@(SelectorExpr (Ident "io") (Ident (Or "SeekStart" "SeekCurrent" "SeekEnd"))) arg2])`)
checkSeekerR = pattern.MustParse(`(CallExpr fun [arg2 arg1])`)
)
func CheckSeeker(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
if _, edits, ok := code.MatchAndEdit(pass, checkSeekerQ, checkSeekerR, node); ok {
report.Report(pass, node, "the first argument of io.Seeker is the offset, but an io.Seek* constant is being used instead",
report.Fixes(edit.Fix("swap arguments", edits...)))
}
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
func CheckIneffectiveAppend(pass *analysis.Pass) (interface{}, error) {
isAppend := func(ins ir.Value) bool {
call, ok := ins.(*ir.Call)
if !ok {
return false
}
if call.Call.IsInvoke() {
return false
}
if builtin, ok := call.Call.Value.(*ir.Builtin); !ok || builtin.Name() != "append" {
return false
}
return true
}
// We have to be careful about aliasing.
// Multiple slices may refer to the same backing array,
// making appends observable even when we don't see the result of append be used anywhere.
//
// We will have to restrict ourselves to slices that have been allocated within the function,
// haven't been sliced,
// and haven't been passed anywhere that could retain them (such as function calls or memory stores).
//
// We check whether an append should be flagged in two steps.
//
// In the first step, we look at the data flow graph, starting in reverse from the argument to append, till we reach the root.
// This graph must only consist of the following instructions:
//
// - phi
// - sigma
// - slice
// - const nil
// - MakeSlice
// - Alloc
// - calls to append
//
// If this step succeeds, we look at all referrers of the values found in the first step, recursively.
// These referrers must either be in the set of values found in the first step,
// be DebugRefs,
// or fulfill the same type requirements as step 1, with the exception of appends, which are forbidden.
//
// If both steps succeed then we know that the backing array hasn't been aliased in an observable manner.
//
// We could relax these restrictions by making use of additional information:
// - if we passed the slice to a function that doesn't retain the slice then we can still flag it
// - if a slice has been sliced but is dead afterwards, we can flag appends to the new slice
// OPT(dh): We could cache the results of both validate functions.
// However, we only use these functions on values that we otherwise want to flag, which are very few.
// Not caching values hasn't increased the runtimes for the standard library nor k8s.
var validateArgument func(v ir.Value, seen map[ir.Value]struct{}) bool
validateArgument = func(v ir.Value, seen map[ir.Value]struct{}) bool {
if _, ok := seen[v]; ok {
// break cycle
return true
}
seen[v] = struct{}{}
switch v := v.(type) {
case *ir.Phi:
for _, edge := range v.Edges {
if !validateArgument(edge, seen) {
return false
}
}
return true
case *ir.Sigma:
return validateArgument(v.X, seen)
case *ir.Slice:
return validateArgument(v.X, seen)
case *ir.Const:
return true
case *ir.MakeSlice:
return true
case *ir.Alloc:
return true
case *ir.Call:
if isAppend(v) {
return validateArgument(v.Call.Args[0], seen)
}
return false
default:
return false
}
}
var validateReferrers func(v ir.Value, seen map[ir.Instruction]struct{}) bool
validateReferrers = func(v ir.Value, seen map[ir.Instruction]struct{}) bool {
for _, ref := range *v.Referrers() {
if _, ok := seen[ref]; ok {
continue
}
seen[ref] = struct{}{}
switch ref.(type) {
case *ir.Phi:
case *ir.Sigma:
case *ir.Slice:
case *ir.Const:
case *ir.MakeSlice:
case *ir.Alloc:
case *ir.DebugRef:
default:
return false
}
if ref, ok := ref.(ir.Value); ok {
if !validateReferrers(ref, seen) {
return false
}
}
}
return true
}
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
for _, block := range fn.Blocks {
for _, ins := range block.Instrs {
val, ok := ins.(ir.Value)
if !ok || !isAppend(val) {
continue
}
isUsed := false
visited := map[ir.Instruction]bool{}
var walkRefs func(refs []ir.Instruction)
walkRefs = func(refs []ir.Instruction) {
loop:
for _, ref := range refs {
if visited[ref] {
continue
}
visited[ref] = true
if _, ok := ref.(*ir.DebugRef); ok {
continue
}
switch ref := ref.(type) {
case *ir.Phi:
walkRefs(*ref.Referrers())
case *ir.Sigma:
walkRefs(*ref.Referrers())
case ir.Value:
if !isAppend(ref) {
isUsed = true
} else {
walkRefs(*ref.Referrers())
}
case ir.Instruction:
isUsed = true
break loop
}
}
}
refs := val.Referrers()
if refs == nil {
continue
}
walkRefs(*refs)
if isUsed {
continue
}
seen := map[ir.Value]struct{}{}
if !validateArgument(ins.(*ir.Call).Call.Args[0], seen) {
continue
}
seen2 := map[ir.Instruction]struct{}{}
for k := range seen {
// the only values we allow are also instructions, so this type assertion cannot fail
seen2[k.(ir.Instruction)] = struct{}{}
}
seen2[ins] = struct{}{}
failed := false
for v := range seen {
if !validateReferrers(v, seen2) {
failed = true
break
}
}
if !failed {
report.Report(pass, ins, "this result of append is never used, except maybe in other appends")
}
}
}
}
return nil, nil
}
func CheckConcurrentTesting(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
for _, block := range fn.Blocks {
for _, ins := range block.Instrs {
gostmt, ok := ins.(*ir.Go)
if !ok {
continue
}
var fn *ir.Function
switch val := gostmt.Call.Value.(type) {
case *ir.Function:
fn = val
case *ir.MakeClosure:
fn = val.Fn.(*ir.Function)
default:
continue
}
if fn.Blocks == nil {
continue
}
for _, block := range fn.Blocks {
for _, ins := range block.Instrs {
call, ok := ins.(*ir.Call)
if !ok {
continue
}
if call.Call.IsInvoke() {
continue
}
callee := call.Call.StaticCallee()
if callee == nil {
continue
}
recv := callee.Signature.Recv()
if recv == nil {
continue
}
if !typeutil.IsType(recv.Type(), "*testing.common") {
continue
}
fn, ok := call.Call.StaticCallee().Object().(*types.Func)
if !ok {
continue
}
name := fn.Name()
switch name {
case "FailNow", "Fatal", "Fatalf", "SkipNow", "Skip", "Skipf":
default:
continue
}
// TODO(dh): don't report multiple diagnostics
// for multiple calls to T.Fatal, but do
// collect all of them as related information
report.Report(pass, gostmt, fmt.Sprintf("the goroutine calls T.%s, which must be called in the same goroutine as the test", name),
report.Related(call, fmt.Sprintf("call to T.%s", name)))
}
}
}
}
}
return nil, nil
}
func eachCall(fn *ir.Function, cb func(caller *ir.Function, site ir.CallInstruction, callee *ir.Function)) {
for _, b := range fn.Blocks {
for _, instr := range b.Instrs {
if site, ok := instr.(ir.CallInstruction); ok {
if g := site.Common().StaticCallee(); g != nil {
cb(fn, site, g)
}
}
}
}
}
func CheckCyclicFinalizer(pass *analysis.Pass) (interface{}, error) {
cb := func(caller *ir.Function, site ir.CallInstruction, callee *ir.Function) {
if callee.RelString(nil) != "runtime.SetFinalizer" {
return
}
arg0 := site.Common().Args[knowledge.Arg("runtime.SetFinalizer.obj")]
if iface, ok := arg0.(*ir.MakeInterface); ok {
arg0 = iface.X
}
load, ok := arg0.(*ir.Load)
if !ok {
return
}
v, ok := load.X.(*ir.Alloc)
if !ok {
return
}
arg1 := site.Common().Args[knowledge.Arg("runtime.SetFinalizer.finalizer")]
if iface, ok := arg1.(*ir.MakeInterface); ok {
arg1 = iface.X
}
mc, ok := arg1.(*ir.MakeClosure)
if !ok {
return
}
for _, b := range mc.Bindings {
if b == v {
pos := report.DisplayPosition(pass.Fset, mc.Fn.Pos())
report.Report(pass, site, fmt.Sprintf("the finalizer closes over the object, preventing the finalizer from ever running (at %s)", pos))
}
}
}
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
eachCall(fn, cb)
}
return nil, nil
}
/*
func CheckSliceOutOfBounds(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
for _, block := range fn.Blocks {
for _, ins := range block.Instrs {
ia, ok := ins.(*ir.IndexAddr)
if !ok {
continue
}
if _, ok := ia.X.Type().Underlying().(*types.Slice); !ok {
continue
}
sr, ok1 := c.funcDescs.Get(fn).Ranges[ia.X].(vrp.SliceInterval)
idxr, ok2 := c.funcDescs.Get(fn).Ranges[ia.Index].(vrp.IntInterval)
if !ok1 || !ok2 || !sr.IsKnown() || !idxr.IsKnown() || sr.Length.Empty() || idxr.Empty() {
continue
}
if idxr.Lower.Cmp(sr.Length.Upper) >= 0 {
report.Nodef(pass, ia, "index out of bounds")
}
}
}
}
return nil, nil
}
*/
func CheckDeferLock(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
for _, block := range fn.Blocks {
instrs := irutil.FilterDebug(block.Instrs)
if len(instrs) < 2 {
continue
}
for i, ins := range instrs[:len(instrs)-1] {
call, ok := ins.(*ir.Call)
if !ok {
continue
}
if !irutil.IsCallToAny(call.Common(), "(*sync.Mutex).Lock", "(*sync.RWMutex).RLock") {
continue
}
nins, ok := instrs[i+1].(*ir.Defer)
if !ok {
continue
}
if !irutil.IsCallToAny(&nins.Call, "(*sync.Mutex).Lock", "(*sync.RWMutex).RLock") {
continue
}
if call.Common().Args[0] != nins.Call.Args[0] {
continue
}
name := shortCallName(call.Common())
alt := ""
switch name {
case "Lock":
alt = "Unlock"
case "RLock":
alt = "RUnlock"
}
report.Report(pass, nins, fmt.Sprintf("deferring %s right after having locked already; did you mean to defer %s?", name, alt))
}
}
}
return nil, nil
}
func CheckNaNComparison(pass *analysis.Pass) (interface{}, error) {
isNaN := func(v ir.Value) bool {
call, ok := v.(*ir.Call)
if !ok {
return false
}
return irutil.IsCallTo(call.Common(), "math.NaN")
}
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
for _, block := range fn.Blocks {
for _, ins := range block.Instrs {
ins, ok := ins.(*ir.BinOp)
if !ok {
continue
}
if isNaN(irutil.Flatten(ins.X)) || isNaN(irutil.Flatten(ins.Y)) {
report.Report(pass, ins, "no value is equal to NaN, not even NaN itself")
}
}
}
}
return nil, nil
}
func CheckInfiniteRecursion(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
eachCall(fn, func(caller *ir.Function, site ir.CallInstruction, callee *ir.Function) {
if callee != fn {
return
}
if _, ok := site.(*ir.Go); ok {
// Recursively spawning goroutines doesn't consume
// stack space infinitely, so don't flag it.
return
}
block := site.Block()
canReturn := false
for _, b := range fn.Blocks {
if block.Dominates(b) {
continue
}
if len(b.Instrs) == 0 {
continue
}
if _, ok := b.Control().(*ir.Return); ok {
canReturn = true
break
}
}
if canReturn {
return
}
report.Report(pass, site, "infinite recursive call")
})
}
return nil, nil
}
func objectName(obj types.Object) string {
if obj == nil {
return "<nil>"
}
var name string
if obj.Pkg() != nil && obj.Pkg().Scope().Lookup(obj.Name()) == obj {
s := obj.Pkg().Path()
if s != "" {
name += s + "."
}
}
name += obj.Name()
return name
}
func isName(pass *analysis.Pass, expr ast.Expr, name string) bool {
var obj types.Object
switch expr := expr.(type) {
case *ast.Ident:
obj = pass.TypesInfo.ObjectOf(expr)
case *ast.SelectorExpr:
obj = pass.TypesInfo.ObjectOf(expr.Sel)
}
return objectName(obj) == name
}
func CheckLeakyTimeTick(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
if code.IsMainLike(pass) || code.IsInTest(pass, fn) {
continue
}
for _, block := range fn.Blocks {
for _, ins := range block.Instrs {
call, ok := ins.(*ir.Call)
if !ok || !irutil.IsCallTo(call.Common(), "time.Tick") {
continue
}
if !irutil.Terminates(call.Parent()) {
continue
}
report.Report(pass, call, "using time.Tick leaks the underlying ticker, consider using it only in endless functions, tests and the main package, and use time.NewTicker here")
}
}
}
return nil, nil
}
var checkDoubleNegationQ = pattern.MustParse(`(UnaryExpr "!" single@(UnaryExpr "!" x))`)
func CheckDoubleNegation(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
if m, ok := code.Match(pass, checkDoubleNegationQ, node); ok {
report.Report(pass, node, "negating a boolean twice has no effect; is this a typo?", report.Fixes(
edit.Fix("turn into single negation", edit.ReplaceWithNode(pass.Fset, node, m.State["single"].(ast.Node))),
edit.Fix("remove double negation", edit.ReplaceWithNode(pass.Fset, node, m.State["x"].(ast.Node)))))
}
}
code.Preorder(pass, fn, (*ast.UnaryExpr)(nil))
return nil, nil
}
func CheckRepeatedIfElse(pass *analysis.Pass) (interface{}, error) {
seen := map[ast.Node]bool{}
var collectConds func(ifstmt *ast.IfStmt, conds []ast.Expr) ([]ast.Expr, bool)
collectConds = func(ifstmt *ast.IfStmt, conds []ast.Expr) ([]ast.Expr, bool) {
seen[ifstmt] = true
// Bail if any if-statement has an Init statement or side effects in its condition
if ifstmt.Init != nil {
return nil, false
}
if code.MayHaveSideEffects(pass, ifstmt.Cond, nil) {
return nil, false
}
conds = append(conds, ifstmt.Cond)
if elsestmt, ok := ifstmt.Else.(*ast.IfStmt); ok {
return collectConds(elsestmt, conds)
}
return conds, true
}
fn := func(node ast.Node) {
ifstmt := node.(*ast.IfStmt)
if seen[ifstmt] {
// this if-statement is part of an if/else-if chain that we've already processed
return
}
if ifstmt.Else == nil {
// there can be at most one condition
return
}
conds, ok := collectConds(ifstmt, nil)
if !ok {
return
}
if len(conds) < 2 {
return
}
counts := map[string]int{}
for _, cond := range conds {
s := report.Render(pass, cond)
counts[s]++
if counts[s] == 2 {
report.Report(pass, cond, "this condition occurs multiple times in this if/else if chain")
}
}
}
code.Preorder(pass, fn, (*ast.IfStmt)(nil))
return nil, nil
}
func CheckSillyBitwiseOps(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
binop := node.(*ast.BinaryExpr)
b, ok := pass.TypesInfo.TypeOf(binop).Underlying().(*types.Basic)
if !ok {
return
}
if (b.Info() & types.IsInteger) == 0 {
return
}
switch binop.Op {
case token.AND, token.OR, token.XOR:
default:
// we do not flag shifts because too often, x<<0 is part
// of a pattern, x<<0, x<<8, x<<16, ...
return
}
switch y := binop.Y.(type) {
case *ast.Ident:
obj, ok := pass.TypesInfo.ObjectOf(y).(*types.Const)
if !ok {
return
}
if obj.Pkg() != pass.Pkg {
// identifier was dot-imported
return
}
if v, _ := constant.Int64Val(obj.Val()); v != 0 {
return
}
path, _ := astutil.PathEnclosingInterval(code.File(pass, obj), obj.Pos(), obj.Pos())
if len(path) < 2 {
return
}
spec, ok := path[1].(*ast.ValueSpec)
if !ok {
return
}
if len(spec.Names) != 1 || len(spec.Values) != 1 {
// TODO(dh): we could support this
return
}
ident, ok := spec.Values[0].(*ast.Ident)
if !ok {
return
}
if !isIota(pass.TypesInfo.ObjectOf(ident)) {
return
}
switch binop.Op {
case token.AND:
report.Report(pass, node,
fmt.Sprintf("%s always equals 0; %s is defined as iota and has value 0, maybe %s is meant to be 1 << iota?", report.Render(pass, binop), report.Render(pass, binop.Y), report.Render(pass, binop.Y)))
case token.OR, token.XOR:
report.Report(pass, node,
fmt.Sprintf("%s always equals %s; %s is defined as iota and has value 0, maybe %s is meant to be 1 << iota?", report.Render(pass, binop), report.Render(pass, binop.X), report.Render(pass, binop.Y), report.Render(pass, binop.Y)))
}
case *ast.BasicLit:
if !astutil.IsIntLiteral(binop.Y, "0") {
return
}
switch binop.Op {
case token.AND:
report.Report(pass, node, fmt.Sprintf("%s always equals 0", report.Render(pass, binop)))
case token.OR, token.XOR:
report.Report(pass, node, fmt.Sprintf("%s always equals %s", report.Render(pass, binop), report.Render(pass, binop.X)))
}
default:
return
}
}
code.Preorder(pass, fn, (*ast.BinaryExpr)(nil))
return nil, nil
}
func isIota(obj types.Object) bool {
if obj.Name() != "iota" {
return false
}
c, ok := obj.(*types.Const)
if !ok {
return false
}
return c.Pkg() == nil
}
func CheckNonOctalFileMode(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
call := node.(*ast.CallExpr)
for _, arg := range call.Args {
lit, ok := arg.(*ast.BasicLit)
if !ok {
continue
}
if !typeutil.IsType(pass.TypesInfo.TypeOf(lit), "os.FileMode") &&
!typeutil.IsType(pass.TypesInfo.TypeOf(lit), "io/fs.FileMode") {
continue
}
if len(lit.Value) == 3 &&
lit.Value[0] != '0' &&
lit.Value[0] >= '0' && lit.Value[0] <= '7' &&
lit.Value[1] >= '0' && lit.Value[1] <= '7' &&
lit.Value[2] >= '0' && lit.Value[2] <= '7' {
v, err := strconv.ParseInt(lit.Value, 10, 64)
if err != nil {
continue
}
report.Report(pass, arg, fmt.Sprintf("file mode '%s' evaluates to %#o; did you mean '0%s'?", lit.Value, v, lit.Value),
report.Fixes(edit.Fix("fix octal literal", edit.ReplaceWithString(pass.Fset, arg, "0"+lit.Value))))
}
}
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
func CheckPureFunctions(pass *analysis.Pass) (interface{}, error) {
pure := pass.ResultOf[facts.Purity].(facts.PurityResult)
fnLoop:
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
if code.IsInTest(pass, fn) {
params := fn.Signature.Params()
for i := 0; i < params.Len(); i++ {
param := params.At(i)
if typeutil.IsType(param.Type(), "*testing.B") {
// Ignore discarded pure functions in code related
// to benchmarks. Instead of matching BenchmarkFoo
// functions, we match any function accepting a
// *testing.B. Benchmarks sometimes call generic
// functions for doing the actual work, and
// checking for the parameter is a lot easier and
// faster than analyzing call trees.
continue fnLoop
}
}
}
for _, b := range fn.Blocks {
for _, ins := range b.Instrs {
ins, ok := ins.(*ir.Call)
if !ok {
continue
}
refs := ins.Referrers()
if refs == nil || len(irutil.FilterDebug(*refs)) > 0 {
continue
}
callee := ins.Common().StaticCallee()
if callee == nil {
continue
}
if callee.Object() == nil {
// TODO(dh): support anonymous functions
continue
}
if _, ok := pure[callee.Object().(*types.Func)]; ok {
if pass.Pkg.Path() == "fmt_test" && callee.Object().(*types.Func).FullName() == "fmt.Sprintf" {
// special case for benchmarks in the fmt package
continue
}
report.Report(pass, ins, fmt.Sprintf("%s is a pure function but its return value is ignored", callee.Name()))
}
}
}
}
return nil, nil
}
func CheckDeprecated(pass *analysis.Pass) (interface{}, error) {
deprs := pass.ResultOf[facts.Deprecated].(facts.DeprecatedResult)
// Selectors can appear outside of function literals, e.g. when
// declaring package level variables.
var tfn types.Object
stack := 0
fn := func(node ast.Node, push bool) bool {
if !push {
stack--
return false
}
stack++
if stack == 1 {
tfn = nil
}
if fn, ok := node.(*ast.FuncDecl); ok {
tfn = pass.TypesInfo.ObjectOf(fn.Name)
}
sel, ok := node.(*ast.SelectorExpr)
if !ok {
return true
}
obj := pass.TypesInfo.ObjectOf(sel.Sel)
if obj.Pkg() == nil {
return true
}
if pass.Pkg == obj.Pkg() || obj.Pkg().Path()+"_test" == pass.Pkg.Path() {
// Don't flag stuff in our own package
return true
}
if depr, ok := deprs.Objects[obj]; ok {
// Note: gopls doesn't correctly run analyzers on
// dependencies, so we'll never be able to find deprecated
// objects in imported code. We've experimented with
// lifting the stdlib handling out of the general check,
// to at least work for deprecated objects in the stdlib,
// but we gave up on that, because we wouldn't have access
// to the deprecation message.
std, ok := knowledge.StdlibDeprecations[code.SelectorName(pass, sel)]
if ok {
switch std.AlternativeAvailableSince {
case knowledge.DeprecatedNeverUse:
// This should never be used, regardless of the
// targeted Go version. Examples include insecure
// cryptography or inherently broken APIs.
//
// We always want to flag these.
case knowledge.DeprecatedUseNoLonger:
// This should no longer be used. Using it with
// older Go versions might still make sense.
if !code.IsGoVersion(pass, std.DeprecatedSince) {
return true
}
default:
if std.AlternativeAvailableSince < 0 {
panic(fmt.Sprintf("unhandled case %d", std.AlternativeAvailableSince))
}
// Look for the first available alternative, not the first
// version something was deprecated in. If a function was
// deprecated in Go 1.6, an alternative has been available
// already in 1.0, and we're targeting 1.2, it still
// makes sense to use the alternative from 1.0, to be
// future-proof.
if !code.IsGoVersion(pass, std.AlternativeAvailableSince) {
return true
}
}
}
if tfn != nil {
if _, ok := deprs.Objects[tfn]; ok {
// functions that are deprecated may use deprecated
// symbols
return true
}
}
if ok {
if std.AlternativeAvailableSince == knowledge.DeprecatedNeverUse {
report.Report(pass, sel, fmt.Sprintf("%s has been deprecated since Go 1.%d because it shouldn't be used: %s", report.Render(pass, sel), std.DeprecatedSince, depr.Msg))
} else if std.AlternativeAvailableSince == std.DeprecatedSince || std.AlternativeAvailableSince == knowledge.DeprecatedUseNoLonger {
report.Report(pass, sel, fmt.Sprintf("%s has been deprecated since Go 1.%d: %s", report.Render(pass, sel), std.DeprecatedSince, depr.Msg))
} else {
report.Report(pass, sel, fmt.Sprintf("%s has been deprecated since Go 1.%d and an alternative has been available since Go 1.%d: %s", report.Render(pass, sel), std.DeprecatedSince, std.AlternativeAvailableSince, depr.Msg))
}
} else {
report.Report(pass, sel, fmt.Sprintf("%s is deprecated: %s", report.Render(pass, sel), depr.Msg))
}
return true
}
return true
}
fn2 := func(node ast.Node) {
spec := node.(*ast.ImportSpec)
var imp *types.Package
if spec.Name != nil {
imp = pass.TypesInfo.ObjectOf(spec.Name).(*types.PkgName).Imported()
} else {
imp = pass.TypesInfo.Implicits[spec].(*types.PkgName).Imported()
}
p := spec.Path.Value
path := p[1 : len(p)-1]
if depr, ok := deprs.Packages[imp]; ok {
if path == "github.com/golang/protobuf/proto" {
gen, ok := code.Generator(pass, spec.Path.Pos())
if ok && gen == facts.ProtocGenGo {
return
}
}
report.Report(pass, spec, fmt.Sprintf("package %s is deprecated: %s", path, depr.Msg))
}
}
pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Nodes(nil, fn)
code.Preorder(pass, fn2, (*ast.ImportSpec)(nil))
return nil, nil
}
func callChecker(rules map[string]CallCheck) func(pass *analysis.Pass) (interface{}, error) {
return func(pass *analysis.Pass) (interface{}, error) {
return checkCalls(pass, rules)
}
}
func checkCalls(pass *analysis.Pass, rules map[string]CallCheck) (interface{}, error) {
cb := func(caller *ir.Function, site ir.CallInstruction, callee *ir.Function) {
obj, ok := callee.Object().(*types.Func)
if !ok {
return
}
r, ok := rules[typeutil.FuncName(obj)]
if !ok {
return
}
var args []*Argument
irargs := site.Common().Args
if callee.Signature.Recv() != nil {
irargs = irargs[1:]
}
for _, arg := range irargs {
if iarg, ok := arg.(*ir.MakeInterface); ok {
arg = iarg.X
}
args = append(args, &Argument{Value: Value{arg}})
}
call := &Call{
Pass: pass,
Instr: site,
Args: args,
Parent: site.Parent(),
}
r(call)
var astcall *ast.CallExpr
switch source := site.Source().(type) {
case *ast.CallExpr:
astcall = source
case *ast.DeferStmt:
astcall = source.Call
case *ast.GoStmt:
astcall = source.Call
case nil:
// TODO(dh): I am not sure this can actually happen. If it
// can't, we should remove this case, and also stop
// checking for astcall == nil in the code that follows.
default:
panic(fmt.Sprintf("unhandled case %T", source))
}
for idx, arg := range call.Args {
for _, e := range arg.invalids {
if astcall != nil {
if idx < len(astcall.Args) {
report.Report(pass, astcall.Args[idx], e)
} else {
// this is an instance of fn1(fn2()) where fn2
// returns multiple values. Report the error
// at the next-best position that we have, the
// first argument. An example of a check that
// triggers this is checkEncodingBinaryRules.
report.Report(pass, astcall.Args[0], e)
}
} else {
report.Report(pass, site, e)
}
}
}
for _, e := range call.invalids {
report.Report(pass, call.Instr, e)
}
}
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
eachCall(fn, cb)
}
return nil, nil
}
func shortCallName(call *ir.CallCommon) string {
if call.IsInvoke() {
return ""
}
switch v := call.Value.(type) {
case *ir.Function:
fn, ok := v.Object().(*types.Func)
if !ok {
return ""
}
return fn.Name()
case *ir.Builtin:
return v.Name()
}
return ""
}
func CheckWriterBufferModified(pass *analysis.Pass) (interface{}, error) {
// TODO(dh): this might be a good candidate for taint analysis.
// Taint the argument as MUST_NOT_MODIFY, then propagate that
// through functions like bytes.Split
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
sig := fn.Signature
if fn.Name() != "Write" || sig.Recv() == nil || sig.Params().Len() != 1 || sig.Results().Len() != 2 {
continue
}
tArg, ok := sig.Params().At(0).Type().(*types.Slice)
if !ok {
continue
}
if basic, ok := tArg.Elem().(*types.Basic); !ok || basic.Kind() != types.Byte {
continue
}
if basic, ok := sig.Results().At(0).Type().(*types.Basic); !ok || basic.Kind() != types.Int {
continue
}
if named, ok := sig.Results().At(1).Type().(*types.Named); !ok || !typeutil.IsType(named, "error") {
continue
}
for _, block := range fn.Blocks {
for _, ins := range block.Instrs {
switch ins := ins.(type) {
case *ir.Store:
addr, ok := ins.Addr.(*ir.IndexAddr)
if !ok {
continue
}
if addr.X != fn.Params[1] {
continue
}
report.Report(pass, ins, "io.Writer.Write must not modify the provided buffer, not even temporarily")
case *ir.Call:
if !irutil.IsCallTo(ins.Common(), "append") {
continue
}
if ins.Common().Args[0] != fn.Params[1] {
continue
}
report.Report(pass, ins, "io.Writer.Write must not modify the provided buffer, not even temporarily")
}
}
}
}
return nil, nil
}
func loopedRegexp(name string) CallCheck {
return func(call *Call) {
if extractConst(call.Args[0].Value.Value) == nil {
return
}
if !isInLoop(call.Instr.Block()) {
return
}
call.Invalid(fmt.Sprintf("calling %s in a loop has poor performance, consider using regexp.Compile", name))
}
}
func CheckEmptyBranch(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
if fn.Source() == nil {
continue
}
if irutil.IsExample(fn) {
continue
}
cb := func(node ast.Node) bool {
ifstmt, ok := node.(*ast.IfStmt)
if !ok {
return true
}
if ifstmt.Else != nil {
b, ok := ifstmt.Else.(*ast.BlockStmt)
if !ok || len(b.List) != 0 {
return true
}
report.Report(pass, ifstmt.Else, "empty branch", report.FilterGenerated(), report.ShortRange())
}
if len(ifstmt.Body.List) != 0 {
return true
}
report.Report(pass, ifstmt, "empty branch", report.FilterGenerated(), report.ShortRange())
return true
}
if source := fn.Source(); source != nil {
ast.Inspect(source, cb)
}
}
return nil, nil
}
func CheckMapBytesKey(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
for _, b := range fn.Blocks {
insLoop:
for _, ins := range b.Instrs {
// find []byte -> string conversions
conv, ok := ins.(*ir.Convert)
if !ok || conv.Type() != types.Universe.Lookup("string").Type() {
continue
}
if s, ok := conv.X.Type().(*types.Slice); !ok || s.Elem() != types.Universe.Lookup("byte").Type() {
continue
}
refs := conv.Referrers()
// need at least two (DebugRef) references: the
// conversion and the *ast.Ident
if refs == nil || len(*refs) < 2 {
continue
}
ident := false
// skip first reference, that's the conversion itself
for _, ref := range (*refs)[1:] {
switch ref := ref.(type) {
case *ir.DebugRef:
if _, ok := ref.Expr.(*ast.Ident); !ok {
// the string seems to be used somewhere
// unexpected; the default branch should
// catch this already, but be safe
continue insLoop
} else {
ident = true
}
case *ir.MapLookup:
default:
// the string is used somewhere else than a
// map lookup
continue insLoop
}
}
// the result of the conversion wasn't assigned to an
// identifier
if !ident {
continue
}
report.Report(pass, conv, "m[string(key)] would be more efficient than k := string(key); m[k]")
}
}
}
return nil, nil
}
func CheckRangeStringRunes(pass *analysis.Pass) (interface{}, error) {
return sharedcheck.CheckRangeStringRunes(pass)
}
func CheckSelfAssignment(pass *analysis.Pass) (interface{}, error) {
pure := pass.ResultOf[facts.Purity].(facts.PurityResult)
fn := func(node ast.Node) {
assign := node.(*ast.AssignStmt)
if assign.Tok != token.ASSIGN || len(assign.Lhs) != len(assign.Rhs) {
return
}
for i, lhs := range assign.Lhs {
rhs := assign.Rhs[i]
if reflect.TypeOf(lhs) != reflect.TypeOf(rhs) {
continue
}
if code.MayHaveSideEffects(pass, lhs, pure) || code.MayHaveSideEffects(pass, rhs, pure) {
continue
}
rlh := report.Render(pass, lhs)
rrh := report.Render(pass, rhs)
if rlh == rrh {
report.Report(pass, assign, fmt.Sprintf("self-assignment of %s to %s", rrh, rlh), report.FilterGenerated())
}
}
}
code.Preorder(pass, fn, (*ast.AssignStmt)(nil))
return nil, nil
}
func buildTagsIdentical(s1, s2 []string) bool {
if len(s1) != len(s2) {
return false
}
s1s := make([]string, len(s1))
copy(s1s, s1)
sort.Strings(s1s)
s2s := make([]string, len(s2))
copy(s2s, s2)
sort.Strings(s2s)
for i, s := range s1s {
if s != s2s[i] {
return false
}
}
return true
}
func CheckDuplicateBuildConstraints(pass *analysis.Pass) (interface{}, error) {
for _, f := range pass.Files {
constraints := buildTags(f)
for i, constraint1 := range constraints {
for j, constraint2 := range constraints {
if i >= j {
continue
}
if buildTagsIdentical(constraint1, constraint2) {
msg := fmt.Sprintf("identical build constraints %q and %q",
strings.Join(constraint1, " "),
strings.Join(constraint2, " "))
report.Report(pass, f, msg, report.FilterGenerated(), report.ShortRange())
}
}
}
}
return nil, nil
}
func CheckSillyRegexp(pass *analysis.Pass) (interface{}, error) {
// We could use the rule checking engine for this, but the
// arguments aren't really invalid.
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
for _, b := range fn.Blocks {
for _, ins := range b.Instrs {
call, ok := ins.(*ir.Call)
if !ok {
continue
}
if !irutil.IsCallToAny(call.Common(), "regexp.MustCompile", "regexp.Compile", "regexp.Match", "regexp.MatchReader", "regexp.MatchString") {
continue
}
c, ok := call.Common().Args[0].(*ir.Const)
if !ok {
continue
}
s := constant.StringVal(c.Value)
re, err := syntax.Parse(s, 0)
if err != nil {
continue
}
if re.Op != syntax.OpLiteral && re.Op != syntax.OpEmptyMatch {
continue
}
report.Report(pass, call, "regular expression does not contain any meta characters")
}
}
}
return nil, nil
}
func CheckMissingEnumTypesInDeclaration(pass *analysis.Pass) (interface{}, error) {
convertibleTo := func(V, T types.Type) bool {
if types.ConvertibleTo(V, T) {
return true
}
// Go <1.16 returns false for untyped string to string conversion
if V, ok := V.(*types.Basic); ok && V.Kind() == types.UntypedString {
if T, ok := T.Underlying().(*types.Basic); ok && T.Kind() == types.String {
return true
}
}
return false
}
fn := func(node ast.Node) {
decl := node.(*ast.GenDecl)
if !decl.Lparen.IsValid() {
return
}
if decl.Tok != token.CONST {
return
}
groups := astutil.GroupSpecs(pass.Fset, decl.Specs)
groupLoop:
for _, group := range groups {
if len(group) < 2 {
continue
}
if group[0].(*ast.ValueSpec).Type == nil {
// first constant doesn't have a type
continue groupLoop
}
firstType := pass.TypesInfo.TypeOf(group[0].(*ast.ValueSpec).Values[0])
for i, spec := range group {
spec := spec.(*ast.ValueSpec)
if i > 0 && spec.Type != nil {
continue groupLoop
}
if len(spec.Names) != 1 || len(spec.Values) != 1 {
continue groupLoop
}
if !convertibleTo(pass.TypesInfo.TypeOf(spec.Values[0]), firstType) {
continue groupLoop
}
switch v := spec.Values[0].(type) {
case *ast.BasicLit:
case *ast.UnaryExpr:
if _, ok := v.X.(*ast.BasicLit); !ok {
continue groupLoop
}
default:
// if it's not a literal it might be typed, such as
// time.Microsecond = 1000 * Nanosecond
continue groupLoop
}
}
var edits []analysis.TextEdit
typ := group[0].(*ast.ValueSpec).Type
for _, spec := range group[1:] {
nspec := *spec.(*ast.ValueSpec)
nspec.Type = typ
// The position of `spec` node excludes comments (if any).
// However, on generating the source back from the node, the comments are included. Setting `Comment` to nil ensures deduplication of comments.
nspec.Comment = nil
edits = append(edits, edit.ReplaceWithNode(pass.Fset, spec, &nspec))
}
report.Report(pass, group[0], "only the first constant in this group has an explicit type", report.Fixes(edit.Fix("add type to all constants in group", edits...)))
}
}
code.Preorder(pass, fn, (*ast.GenDecl)(nil))
return nil, nil
}
func CheckTimerResetReturnValue(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
for _, block := range fn.Blocks {
for _, ins := range block.Instrs {
call, ok := ins.(*ir.Call)
if !ok {
continue
}
if !irutil.IsCallTo(call.Common(), "(*time.Timer).Reset") {
continue
}
refs := call.Referrers()
if refs == nil {
continue
}
for _, ref := range irutil.FilterDebug(*refs) {
ifstmt, ok := ref.(*ir.If)
if !ok {
continue
}
found := false
for _, succ := range ifstmt.Block().Succs {
if len(succ.Preds) != 1 {
// Merge point, not a branch in the
// syntactical sense.
// FIXME(dh): this is broken for if
// statements a la "if x || y"
continue
}
irutil.Walk(succ, func(b *ir.BasicBlock) bool {
if !succ.Dominates(b) {
// We've reached the end of the branch
return false
}
for _, ins := range b.Instrs {
// TODO(dh): we should check that
// we're receiving from the channel of
// a time.Timer to further reduce
// false positives. Not a key
// priority, considering the rarity of
// Reset and the tiny likeliness of a
// false positive
if ins, ok := ins.(*ir.Recv); ok && typeutil.IsType(ins.Chan.Type(), "<-chan time.Time") {
found = true
return false
}
}
return true
})
}
if found {
report.Report(pass, call, "it is not possible to use Reset's return value correctly, as there is a race condition between draining the channel and the new timer expiring")
}
}
}
}
}
return nil, nil
}
var (
checkToLowerToUpperComparisonQ = pattern.MustParse(`
(BinaryExpr
(CallExpr fun@(Function (Or "strings.ToLower" "strings.ToUpper")) [a])
tok@(Or "==" "!=")
(CallExpr fun [b]))`)
checkToLowerToUpperComparisonR = pattern.MustParse(`(CallExpr (SelectorExpr (Ident "strings") (Ident "EqualFold")) [a b])`)
)
func CheckToLowerToUpperComparison(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
m, ok := code.Match(pass, checkToLowerToUpperComparisonQ, node)
if !ok {
return
}
rn := pattern.NodeToAST(checkToLowerToUpperComparisonR.Root, m.State).(ast.Expr)
if m.State["tok"].(token.Token) == token.NEQ {
rn = &ast.UnaryExpr{
Op: token.NOT,
X: rn,
}
}
report.Report(pass, node, "should use strings.EqualFold instead", report.Fixes(edit.Fix("replace with strings.EqualFold", edit.ReplaceWithNode(pass.Fset, node, rn))))
}
code.Preorder(pass, fn, (*ast.BinaryExpr)(nil))
return nil, nil
}
func CheckUnreachableTypeCases(pass *analysis.Pass) (interface{}, error) {
// Check if T subsumes V in a type switch. T subsumes V if T is an interface and T's method set is a subset of V's method set.
subsumes := func(T, V types.Type) bool {
tIface, ok := T.Underlying().(*types.Interface)
if !ok {
return false
}
return types.Implements(V, tIface)
}
subsumesAny := func(Ts, Vs []types.Type) (types.Type, types.Type, bool) {
for _, T := range Ts {
for _, V := range Vs {
if subsumes(T, V) {
return T, V, true
}
}
}
return nil, nil, false
}
fn := func(node ast.Node) {
tsStmt := node.(*ast.TypeSwitchStmt)
type ccAndTypes struct {
cc *ast.CaseClause
types []types.Type
}
// All asserted types in the order of case clauses.
ccs := make([]ccAndTypes, 0, len(tsStmt.Body.List))
for _, stmt := range tsStmt.Body.List {
cc, _ := stmt.(*ast.CaseClause)
// Exclude the 'default' case.
if len(cc.List) == 0 {
continue
}
Ts := make([]types.Type, 0, len(cc.List))
for _, expr := range cc.List {
// Exclude the 'nil' value from any 'case' statement (it is always reachable).
if typ := pass.TypesInfo.TypeOf(expr); typ != types.Typ[types.UntypedNil] {
Ts = append(Ts, typ)
}
}
ccs = append(ccs, ccAndTypes{cc: cc, types: Ts})
}
if len(ccs) <= 1 {
// Zero or one case clauses, nothing to check.
return
}
// Check if case clauses following cc have types that are subsumed by cc.
for i, cc := range ccs[:len(ccs)-1] {
for _, next := range ccs[i+1:] {
if T, V, yes := subsumesAny(cc.types, next.types); yes {
report.Report(pass, next.cc, fmt.Sprintf("unreachable case clause: %s will always match before %s", T.String(), V.String()),
report.ShortRange())
}
}
}
}
code.Preorder(pass, fn, (*ast.TypeSwitchStmt)(nil))
return nil, nil
}
var checkSingleArgAppendQ = pattern.MustParse(`(CallExpr (Builtin "append") [_])`)
func CheckSingleArgAppend(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
_, ok := code.Match(pass, checkSingleArgAppendQ, node)
if !ok {
return
}
report.Report(pass, node, "x = append(y) is equivalent to x = y", report.FilterGenerated())
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}
func CheckStructTags(pass *analysis.Pass) (interface{}, error) {
importsGoFlags := false
// we use the AST instead of (*types.Package).Imports to work
// around vendored packages in GOPATH mode. A vendored package's
// path will include the vendoring subtree as a prefix.
for _, f := range pass.Files {
for _, imp := range f.Imports {
v := imp.Path.Value
if v[1:len(v)-1] == "github.com/jessevdk/go-flags" {
importsGoFlags = true
break
}
}
}
fn := func(node ast.Node) {
structNode := node.(*ast.StructType)
T := pass.TypesInfo.Types[structNode].Type.(*types.Struct)
rt := fakereflect.TypeAndCanAddr{
Type: T,
}
for i, field := range structNode.Fields.List {
if field.Tag == nil {
continue
}
tags, err := parseStructTag(field.Tag.Value[1 : len(field.Tag.Value)-1])
if err != nil {
report.Report(pass, field.Tag, fmt.Sprintf("unparseable struct tag: %s", err))
continue
}
for k, v := range tags {
if len(v) > 1 {
isGoFlagsTag := importsGoFlags &&
(k == "choice" || k == "optional-value" || k == "default")
if !isGoFlagsTag {
report.Report(pass, field.Tag, fmt.Sprintf("duplicate struct tag %q", k))
}
}
switch k {
case "json":
checkJSONTag(pass, field, v[0])
case "xml":
if _, err := fakexml.StructFieldInfo(rt.Field(i)); err != nil {
report.Report(pass, field.Tag, fmt.Sprintf("invalid XML tag: %s", err))
}
checkXMLTag(pass, field, v[0])
}
}
}
}
code.Preorder(pass, fn, (*ast.StructType)(nil))
return nil, nil
}
func checkJSONTag(pass *analysis.Pass, field *ast.Field, tag string) {
if pass.Pkg.Path() == "encoding/json" || pass.Pkg.Path() == "encoding/json_test" {
// don't flag malformed JSON tags in the encoding/json
// package; it knows what it is doing, and it is testing
// itself.
return
}
//lint:ignore SA9003 TODO(dh): should we flag empty tags?
if len(tag) == 0 {
}
fields := strings.Split(tag, ",")
for _, r := range fields[0] {
if !unicode.IsLetter(r) && !unicode.IsDigit(r) && !strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", r) {
report.Report(pass, field.Tag, fmt.Sprintf("invalid JSON field name %q", fields[0]))
}
}
var co, cs, ci int
for _, s := range fields[1:] {
switch s {
case "omitempty":
co++
case "":
// allow stuff like "-,"
case "string":
cs++
// only for string, floating point, integer and bool
T := typeutil.Dereference(pass.TypesInfo.TypeOf(field.Type).Underlying()).Underlying()
basic, ok := T.(*types.Basic)
if !ok || (basic.Info()&(types.IsBoolean|types.IsInteger|types.IsFloat|types.IsString)) == 0 {
report.Report(pass, field.Tag, "the JSON string option only applies to fields of type string, floating point, integer or bool, or pointers to those")
}
case "inline":
ci++
default:
report.Report(pass, field.Tag, fmt.Sprintf("unknown JSON option %q", s))
}
}
if co > 1 {
report.Report(pass, field.Tag, `duplicate JSON option "omitempty"`)
}
if cs > 1 {
report.Report(pass, field.Tag, `duplicate JSON option "string"`)
}
if ci > 1 {
report.Report(pass, field.Tag, `duplicate JSON option "inline"`)
}
}
func checkXMLTag(pass *analysis.Pass, field *ast.Field, tag string) {
//lint:ignore SA9003 TODO(dh): should we flag empty tags?
if len(tag) == 0 {
}
fields := strings.Split(tag, ",")
counts := map[string]int{}
for _, s := range fields[1:] {
switch s {
case "attr", "chardata", "cdata", "innerxml", "comment":
counts[s]++
case "omitempty", "any":
counts[s]++
case "":
default:
report.Report(pass, field.Tag, fmt.Sprintf("invalid XML tag: unknown option %q", s))
}
}
for k, v := range counts {
if v > 1 {
report.Report(pass, field.Tag, fmt.Sprintf("invalid XML tag: duplicate option %q", k))
}
}
}
func CheckImpossibleTypeAssertion(pass *analysis.Pass) (interface{}, error) {
type entry struct {
l, r *types.Func
}
msc := &pass.ResultOf[buildir.Analyzer].(*buildir.IR).Pkg.Prog.MethodSets
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
for _, b := range fn.Blocks {
for _, instr := range b.Instrs {
assert, ok := instr.(*ir.TypeAssert)
if !ok {
continue
}
var wrong []entry
left := assert.X.Type()
right := assert.AssertedType
righti, ok := right.Underlying().(*types.Interface)
if !ok {
// We only care about interface->interface
// assertions. The Go compiler already catches
// impossible interface->concrete assertions.
continue
}
ms := msc.MethodSet(left)
for i := 0; i < righti.NumMethods(); i++ {
mr := righti.Method(i)
sel := ms.Lookup(mr.Pkg(), mr.Name())
if sel == nil {
continue
}
ml := sel.Obj().(*types.Func)
if types.AssignableTo(ml.Type(), mr.Type()) {
continue
}
wrong = append(wrong, entry{ml, mr})
}
if len(wrong) != 0 {
s := fmt.Sprintf("impossible type assertion; %s and %s contradict each other:",
types.TypeString(left, types.RelativeTo(pass.Pkg)),
types.TypeString(right, types.RelativeTo(pass.Pkg)))
for _, e := range wrong {
s += fmt.Sprintf("\n\twrong type for %s method", e.l.Name())
s += fmt.Sprintf("\n\t\thave %s", e.l.Type())
s += fmt.Sprintf("\n\t\twant %s", e.r.Type())
}
report.Report(pass, assert, s)
}
}
}
}
return nil, nil
}
func checkWithValueKey(call *Call) {
arg := call.Args[1]
T := arg.Value.Value.Type()
if T, ok := T.(*types.Basic); ok {
arg.Invalid(
fmt.Sprintf("should not use built-in type %s as key for value; define your own type to avoid collisions", T))
}
if !types.Comparable(T) {
arg.Invalid(fmt.Sprintf("keys used with context.WithValue must be comparable, but type %s is not comparable", T))
}
}
func CheckMaybeNil(pass *analysis.Pass) (interface{}, error) {
// This is an extremely trivial check that doesn't try to reason
// about control flow. That is, phis and sigmas do not propagate
// any information. As such, we can flag this:
//
// _ = *x
// if x == nil { return }
//
// but we cannot flag this:
//
// if x == nil { println(x) }
// _ = *x
//
// nor many other variations of conditional uses of or assignments to x.
//
// However, even this trivial implementation finds plenty of
// real-world bugs, such as dereference before nil pointer check,
// or using t.Error instead of t.Fatal when encountering nil
// pointers.
//
// On the flip side, our naive implementation avoids false positives in branches, such as
//
// if x != nil { _ = *x }
//
// due to the same lack of propagating information through sigma
// nodes. x inside the branch will be independent of the x in the
// nil pointer check.
//
//
// We could implement a more powerful check, but then we'd be
// getting false positives instead of false negatives because
// we're incapable of deducing relationships between variables.
// For example, a function might return a pointer and an error,
// and the error being nil guarantees that the pointer is not nil.
// Depending on the surrounding code, the pointer may still end up
// being checked against nil in one place, and guarded by a check
// on the error in another, which would lead to us marking some
// loads as unsafe.
//
// Unfortunately, simply hard-coding the relationship between
// return values wouldn't eliminate all false positives, either.
// Many other more subtle relationships exist. An abridged example
// from real code:
//
// if a == nil && b == nil { return }
// c := fn(a)
// if c != "" { _ = *a }
//
// where `fn` is guaranteed to return a non-empty string if a
// isn't nil.
//
// We choose to err on the side of false negatives.
isNilConst := func(v ir.Value) bool {
if typeutil.IsPointerLike(v.Type()) {
if k, ok := v.(*ir.Const); ok {
return k.IsNil()
}
}
return false
}
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
maybeNil := map[ir.Value]ir.Instruction{}
for _, b := range fn.Blocks {
for _, instr := range b.Instrs {
// Originally we looked at all ir.BinOp, but that would lead to calls like 'assert(x != nil)' causing false positives.
// Restrict ourselves to actual if statements, as these are more likely to affect control flow in a way we can observe.
if instr, ok := instr.(*ir.If); ok {
if cond, ok := instr.Cond.(*ir.BinOp); ok {
var ptr ir.Value
if isNilConst(cond.X) {
ptr = cond.Y
} else if isNilConst(cond.Y) {
ptr = cond.X
}
maybeNil[ptr] = cond
}
}
}
}
for _, b := range fn.Blocks {
for _, instr := range b.Instrs {
var ptr ir.Value
switch instr := instr.(type) {
case *ir.Load:
ptr = instr.X
case *ir.Store:
ptr = instr.Addr
case *ir.IndexAddr:
ptr = instr.X
if _, ok := ptr.Type().Underlying().(*types.Slice); ok {
// indexing a nil slice does not cause a nil pointer panic
//
// Note: This also works around the bad lowering of range loops over slices
// (https://github.com/dominikh/go-tools/issues/1053)
continue
}
case *ir.FieldAddr:
ptr = instr.X
}
if ptr != nil {
switch ptr.(type) {
case *ir.Alloc, *ir.FieldAddr, *ir.IndexAddr:
// these cannot be nil
continue
}
if r, ok := maybeNil[ptr]; ok {
report.Report(pass, instr, "possible nil pointer dereference",
report.Related(r, "this check suggests that the pointer can be nil"))
}
}
}
}
}
return nil, nil
}
var checkAddressIsNilQ = pattern.MustParse(
`(BinaryExpr
(UnaryExpr "&" _)
(Or "==" "!=")
(Builtin "nil"))`)
func CheckAddressIsNil(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
_, ok := code.Match(pass, checkAddressIsNilQ, node)
if !ok {
return
}
report.Report(pass, node, "the address of a variable cannot be nil")
}
code.Preorder(pass, fn, (*ast.BinaryExpr)(nil))
return nil, nil
}
var (
checkFixedLengthTypeShiftQ = pattern.MustParse(`
(Or
(AssignStmt _ (Or ">>=" "<<=") _)
(BinaryExpr _ (Or ">>" "<<") _))
`)
)
func CheckStaticBitShift(pass *analysis.Pass) (interface{}, error) {
isDubiousShift := func(x, y ast.Expr) (int64, int64, bool) {
typ, ok := pass.TypesInfo.TypeOf(x).Underlying().(*types.Basic)
if !ok {
return 0, 0, false
}
switch typ.Kind() {
case types.Int8, types.Int16, types.Int32, types.Int64,
types.Uint8, types.Uint16, types.Uint32, types.Uint64:
// We're only interested in fixedsize types.
default:
return 0, 0, false
}
const bitsInByte = 8
typeBits := pass.TypesSizes.Sizeof(typ) * bitsInByte
shiftLength, ok := code.ExprToInt(pass, y)
if !ok {
return 0, 0, false
}
return typeBits, shiftLength, shiftLength >= typeBits
}
fn := func(node ast.Node) {
if _, ok := code.Match(pass, checkFixedLengthTypeShiftQ, node); !ok {
return
}
switch e := node.(type) {
case *ast.AssignStmt:
if size, shift, yes := isDubiousShift(e.Lhs[0], e.Rhs[0]); yes {
report.Report(pass, e, fmt.Sprintf("shifting %d-bit value by %d bits will always clear it", size, shift))
}
case *ast.BinaryExpr:
if size, shift, yes := isDubiousShift(e.X, e.Y); yes {
report.Report(pass, e, fmt.Sprintf("shifting %d-bit value by %d bits will always clear it", size, shift))
}
}
}
code.Preorder(pass, fn, (*ast.AssignStmt)(nil), (*ast.BinaryExpr)(nil))
return nil, nil
}
func findSliceLenChecks(pass *analysis.Pass) {
// mark all function parameters that have to be of even length
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
for _, b := range fn.Blocks {
// all paths go through this block
if !b.Dominates(fn.Exit) {
continue
}
// if foo % 2 != 0
ifi, ok := b.Control().(*ir.If)
if !ok {
continue
}
cmp, ok := ifi.Cond.(*ir.BinOp)
if !ok {
continue
}
var needle uint64
switch cmp.Op {
case token.NEQ:
// look for != 0
needle = 0
case token.EQL:
// look for == 1
needle = 1
default:
continue
}
rem, ok1 := cmp.X.(*ir.BinOp)
k, ok2 := cmp.Y.(*ir.Const)
if ok1 != ok2 {
continue
}
if !ok1 {
rem, ok1 = cmp.Y.(*ir.BinOp)
k, ok2 = cmp.X.(*ir.Const)
}
if !ok1 || !ok2 || rem.Op != token.REM || k.Value.Kind() != constant.Int || k.Uint64() != needle {
continue
}
k, ok = rem.Y.(*ir.Const)
if !ok || k.Value.Kind() != constant.Int || k.Uint64() != 2 {
continue
}
// if len(foo) % 2 != 0
call, ok := rem.X.(*ir.Call)
if !ok || !irutil.IsCallTo(call.Common(), "len") {
continue
}
// we're checking the length of a parameter that is a slice
// TODO(dh): support parameters that have flown through sigmas and phis
param, ok := call.Call.Args[0].(*ir.Parameter)
if !ok {
continue
}
if _, ok := param.Type().Underlying().(*types.Slice); !ok {
continue
}
// if len(foo) % 2 != 0 then panic
if _, ok := b.Succs[0].Control().(*ir.Panic); !ok {
continue
}
pass.ExportObjectFact(param.Object(), new(evenElements))
}
}
}
func findIndirectSliceLenChecks(pass *analysis.Pass) {
seen := map[*ir.Function]struct{}{}
var doFunction func(fn *ir.Function)
doFunction = func(fn *ir.Function) {
if _, ok := seen[fn]; ok {
return
}
seen[fn] = struct{}{}
for _, b := range fn.Blocks {
// all paths go through this block
if !b.Dominates(fn.Exit) {
continue
}
for _, instr := range b.Instrs {
call, ok := instr.(*ir.Call)
if !ok {
continue
}
callee := call.Call.StaticCallee()
if callee == nil {
continue
}
if callee.Pkg == fn.Pkg {
// TODO(dh): are we missing interesting wrappers
// because wrappers don't have Pkg set?
doFunction(callee)
}
for argi, arg := range call.Call.Args {
if callee.Signature.Recv() != nil {
if argi == 0 {
continue
}
argi--
}
// TODO(dh): support parameters that have flown through sigmas and phis
param, ok := arg.(*ir.Parameter)
if !ok {
continue
}
if _, ok := param.Type().Underlying().(*types.Slice); !ok {
continue
}
// We can't use callee.Params to look up the
// parameter, because Params is not populated for
// external functions. In our modular analysis.
// any function in any package that isn't the
// current package is considered "external", as it
// has been loaded from export data only.
sigParams := callee.Signature.Params()
if !pass.ImportObjectFact(sigParams.At(argi), new(evenElements)) {
continue
}
pass.ExportObjectFact(param.Object(), new(evenElements))
}
}
}
}
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
doFunction(fn)
}
}
func findSliceLength(v ir.Value) int {
// TODO(dh): VRP would help here
v = irutil.Flatten(v)
val := func(v ir.Value) int {
if v, ok := v.(*ir.Const); ok {
return int(v.Int64())
}
return -1
}
switch v := v.(type) {
case *ir.Slice:
low := 0
high := -1
if v.Low != nil {
low = val(v.Low)
}
if v.High != nil {
high = val(v.High)
} else {
switch vv := v.X.(type) {
case *ir.Alloc:
high = int(typeutil.Dereference(vv.Type()).Underlying().(*types.Array).Len())
case *ir.Slice:
high = findSliceLength(vv)
}
}
if low == -1 || high == -1 {
return -1
}
return high - low
default:
return -1
}
}
type evenElements struct{}
func (evenElements) AFact() {}
func (evenElements) String() string { return "needs even elements" }
func flagSliceLens(pass *analysis.Pass) {
var tag evenElements
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
for _, b := range fn.Blocks {
for _, instr := range b.Instrs {
call, ok := instr.(ir.CallInstruction)
if !ok {
continue
}
callee := call.Common().StaticCallee()
if callee == nil {
continue
}
for argi, arg := range call.Common().Args {
if callee.Signature.Recv() != nil {
if argi == 0 {
continue
}
argi--
}
_, ok := arg.Type().Underlying().(*types.Slice)
if !ok {
continue
}
param := callee.Signature.Params().At(argi)
if !pass.ImportObjectFact(param, &tag) {
continue
}
// TODO handle stubs
// we know the argument has to have even length.
// now let's try to find its length
if n := findSliceLength(arg); n > -1 && n%2 != 0 {
src := call.Source().(*ast.CallExpr).Args[argi]
sig := call.Common().Signature()
var label string
if argi == sig.Params().Len()-1 && sig.Variadic() {
label = "variadic argument"
} else {
label = "argument"
}
// Note that param.Name() is guaranteed to not
// be empty, otherwise the function couldn't
// have enforced its length.
report.Report(pass, src, fmt.Sprintf("%s %q is expected to have even number of elements, but has %d elements", label, param.Name(), n))
}
}
}
}
}
}
func CheckEvenSliceLength(pass *analysis.Pass) (interface{}, error) {
findSliceLenChecks(pass)
findIndirectSliceLenChecks(pass)
flagSliceLens(pass)
return nil, nil
}
func CheckTypedNilInterface(pass *analysis.Pass) (interface{}, error) {
// The comparison 'fn() == nil' can never be true if fn() returns
// an interface value and only returns typed nils. This is usually
// a mistake in the function itself, but all we can say for
// certain is that the comparison is pointless.
//
// Flag results if no untyped nils are being returned, but either
// known typed nils, or typed unknown nilness are being returned.
irpkg := pass.ResultOf[buildir.Analyzer].(*buildir.IR)
typedness := pass.ResultOf[typedness.Analysis].(*typedness.Result)
nilness := pass.ResultOf[nilness.Analysis].(*nilness.Result)
for _, fn := range irpkg.SrcFuncs {
for _, b := range fn.Blocks {
for _, instr := range b.Instrs {
binop, ok := instr.(*ir.BinOp)
if !ok || !(binop.Op == token.EQL || binop.Op == token.NEQ) {
continue
}
if _, ok := binop.X.Type().Underlying().(*types.Interface); !ok {
// TODO support swapped X and Y
continue
}
k, ok := binop.Y.(*ir.Const)
if !ok || !k.IsNil() {
// if binop.X is an interface, then binop.Y can
// only be a Const if its untyped. A typed nil
// constant would first be passed to
// MakeInterface.
continue
}
var idx int
var obj *types.Func
switch x := irutil.Flatten(binop.X).(type) {
case *ir.Call:
callee := x.Call.StaticCallee()
if callee == nil {
continue
}
obj, _ = callee.Object().(*types.Func)
idx = 0
case *ir.Extract:
call, ok := irutil.Flatten(x.Tuple).(*ir.Call)
if !ok {
continue
}
callee := call.Call.StaticCallee()
if callee == nil {
continue
}
obj, _ = callee.Object().(*types.Func)
idx = x.Index
case *ir.MakeInterface:
var qualifier string
switch binop.Op {
case token.EQL:
qualifier = "never"
case token.NEQ:
qualifier = "always"
default:
panic("unreachable")
}
if report.HasRange(x.X) {
report.Report(pass, binop, fmt.Sprintf("this comparison is %s true", qualifier),
report.Related(x.X, "the lhs of the comparison gets its value from here and has a concrete type"))
} else {
// we can't generate related information for this, so make the diagnostic itself slightly more useful
report.Report(pass, binop, fmt.Sprintf("this comparison is %s true; the lhs of the comparison has been assigned a concretely typed value", qualifier))
}
continue
}
if obj == nil {
continue
}
isNil, onlyGlobal := nilness.MayReturnNil(obj, idx)
if typedness.MustReturnTyped(obj, idx) && isNil && !onlyGlobal && !code.IsInTest(pass, binop) {
// Don't flag these comparisons in tests. Tests
// may be explicitly enforcing the invariant that
// a value isn't nil.
var qualifier string
switch binop.Op {
case token.EQL:
qualifier = "never"
case token.NEQ:
qualifier = "always"
default:
panic("unreachable")
}
report.Report(pass, binop, fmt.Sprintf("this comparison is %s true", qualifier),
// TODO support swapped X and Y
report.Related(binop.X, fmt.Sprintf("the lhs of the comparison is the %s return value of this function call", report.Ordinal(idx+1))),
report.Related(obj, fmt.Sprintf("%s never returns a nil interface value", typeutil.FuncName(obj))))
}
}
}
}
return nil, nil
}
var builtinLessThanZeroQ = pattern.MustParse(`
(Or
(BinaryExpr
(BasicLit "INT" "0")
">"
(CallExpr builtin@(Builtin (Or "len" "cap")) _))
(BinaryExpr
(CallExpr builtin@(Builtin (Or "len" "cap")) _)
"<"
(BasicLit "INT" "0")))
`)
func CheckBuiltinZeroComparison(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
matcher, ok := code.Match(pass, builtinLessThanZeroQ, node)
if !ok {
return
}
builtin := matcher.State["builtin"].(*ast.Ident)
report.Report(pass, node, fmt.Sprintf("builtin function %s does not return negative values", builtin.Name))
}
code.Preorder(pass, fn, (*ast.BinaryExpr)(nil))
return nil, nil
}
var integerDivisionQ = pattern.MustParse(`(BinaryExpr (BasicLit "INT" _) "/" (BasicLit "INT" _))`)
func CheckIntegerDivisionEqualsZero(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
_, ok := code.Match(pass, integerDivisionQ, node)
if !ok {
return
}
val := constant.ToInt(pass.TypesInfo.Types[node.(ast.Expr)].Value)
if v, ok := constant.Uint64Val(val); ok && v == 0 {
report.Report(pass, node, fmt.Sprintf("the integer division '%s' results in zero", report.Render(pass, node)))
}
// TODO: we could offer a suggested fix here, but I am not
// sure what it should be. There are many options to choose
// from.
// Note: we experimented with flagging divisions that truncate
// (e.g. 4 / 3), but it ran into false positives in Go's
// 'time' package, which does this, deliberately:
//
// unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
//
// The check also found a real bug in other code, but I don't
// think we can outright ban this kind of division.
}
code.Preorder(pass, fn, (*ast.BinaryExpr)(nil))
return nil, nil
}
func CheckIneffectiveFieldAssignments(pass *analysis.Pass) (interface{}, error) {
// The analysis only considers the receiver and its first level
// fields. It doesn't look at other parameters, nor at nested
// fields.
//
// The analysis does not detect all kinds of dead stores, only
// those of fields that are never read after the write. That is,
// we do not flag 'a.x = 1; a.x = 2; _ = a.x'. We might explore
// this again if we add support for SROA to go/ir and implement
// https://github.com/dominikh/go-tools/issues/191.
irpkg := pass.ResultOf[buildir.Analyzer].(*buildir.IR)
fnLoop:
for _, fn := range irpkg.SrcFuncs {
if recv := fn.Signature.Recv(); recv == nil {
continue
} else if _, ok := recv.Type().Underlying().(*types.Struct); !ok {
continue
}
recv := fn.Params[0]
refs := irutil.FilterDebug(*recv.Referrers())
if len(refs) != 1 {
continue
}
store, ok := refs[0].(*ir.Store)
if !ok {
continue
}
alloc, ok := store.Addr.(*ir.Alloc)
if !ok || alloc.Heap {
continue
}
reads := map[int][]ir.Instruction{}
writes := map[int][]ir.Instruction{}
for _, ref := range *alloc.Referrers() {
switch ref := ref.(type) {
case *ir.FieldAddr:
for _, refref := range *ref.Referrers() {
switch refref.(type) {
case *ir.Store:
writes[ref.Field] = append(writes[ref.Field], refref)
case *ir.Load:
reads[ref.Field] = append(reads[ref.Field], refref)
case *ir.DebugRef:
continue
default:
// this should be safe… if the field address
// escapes, then alloc.Heap will be true.
// there should be no instructions left that,
// given this FieldAddr, without escaping, can
// effect a load or store.
continue
}
}
case *ir.Store:
// we could treat this as a store to every field, but
// we don't want to decide the semantics of partial
// struct initializers. should `v = t{x: 1}` also mark
// v.y as being written to?
if ref != store {
continue fnLoop
}
case *ir.Load:
// a load of the entire struct loads every field
for i := 0; i < recv.Type().Underlying().(*types.Struct).NumFields(); i++ {
reads[i] = append(reads[i], ref)
}
case *ir.DebugRef:
continue
default:
continue fnLoop
}
}
offset := func(instr ir.Instruction) int {
for i, other := range instr.Block().Instrs {
if instr == other {
return i
}
}
panic("couldn't find instruction in its block")
}
for field, ws := range writes {
rs := reads[field]
wLoop:
for _, w := range ws {
for _, r := range rs {
if w.Block() == r.Block() {
if offset(r) > offset(w) {
// found a reachable read of our write
continue wLoop
}
} else if irutil.Reachable(w.Block(), r.Block()) {
// found a reachable read of our write
continue wLoop
}
}
fieldName := recv.Type().Underlying().(*types.Struct).Field(field).Name()
report.Report(pass, w, fmt.Sprintf("ineffective assignment to field %s.%s", recv.Type().(*types.Named).Obj().Name(), fieldName))
}
}
}
return nil, nil
}
var negativeZeroFloatQ = pattern.MustParse(`
(Or
(UnaryExpr
"-"
(BasicLit "FLOAT" "0.0"))
(UnaryExpr
"-"
(CallExpr conv@(Object (Or "float32" "float64")) lit@(Or (BasicLit "INT" "0") (BasicLit "FLOAT" "0.0"))))
(CallExpr
conv@(Object (Or "float32" "float64"))
(UnaryExpr "-" lit@(BasicLit "INT" "0"))))`)
func CheckNegativeZeroFloat(pass *analysis.Pass) (interface{}, error) {
fn := func(node ast.Node) {
m, ok := code.Match(pass, negativeZeroFloatQ, node)
if !ok {
return
}
if conv, ok := m.State["conv"].(*types.TypeName); ok {
var replacement string
// TODO(dh): how does this handle type aliases?
if conv.Name() == "float32" {
replacement = `float32(math.Copysign(0, -1))`
} else {
replacement = `math.Copysign(0, -1)`
}
report.Report(pass, node,
fmt.Sprintf("in Go, the floating-point expression '%s' is the same as '%s(%s)', it does not produce a negative zero",
report.Render(pass, node),
conv.Name(),
report.Render(pass, m.State["lit"])),
report.Fixes(edit.Fix("use math.Copysign to create negative zero", edit.ReplaceWithString(pass.Fset, node, replacement))))
} else {
const replacement = `math.Copysign(0, -1)`
report.Report(pass, node,
"in Go, the floating-point literal '-0.0' is the same as '0.0', it does not produce a negative zero",
report.Fixes(edit.Fix("use math.Copysign to create negative zero", edit.ReplaceWithString(pass.Fset, node, replacement))))
}
}
code.Preorder(pass, fn, (*ast.UnaryExpr)(nil), (*ast.CallExpr)(nil))
return nil, nil
}
var ineffectiveURLQueryAddQ = pattern.MustParse(`(CallExpr (SelectorExpr (CallExpr (SelectorExpr recv (Ident "Query")) []) (Ident meth)) _)`)
func CheckIneffectiveURLQueryModification(pass *analysis.Pass) (interface{}, error) {
// TODO(dh): We could make this check more complex and detect
// pointless modifications of net/url.Values in general, but that
// requires us to get the state machine correct, else we'll cause
// false positives.
fn := func(node ast.Node) {
m, ok := code.Match(pass, ineffectiveURLQueryAddQ, node)
if !ok {
return
}
if !code.IsOfType(pass, m.State["recv"].(ast.Expr), "*net/url.URL") {
return
}
switch m.State["meth"].(string) {
case "Add", "Del", "Set":
default:
return
}
report.Report(pass, node, "(*net/url.URL).Query returns a copy, modifying it doesn't change the URL")
}
code.Preorder(pass, fn, (*ast.CallExpr)(nil))
return nil, nil
}