woodpecker/vendor/github.com/square/go-jose/asymmetric_test.go

432 lines
11 KiB
Go
Raw Normal View History

2015-09-07 19:50:21 +00:00
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"bytes"
"crypto/rand"
"crypto/rsa"
"errors"
"io"
"math/big"
"testing"
)
func TestVectorsRSA(t *testing.T) {
// Sources:
// http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm
// ftp://ftp.rsa.com/pub/rsalabs/tmp/pkcs1v15crypt-vectors.txt
priv := &rsa.PrivateKey{
PublicKey: rsa.PublicKey{
N: fromHexInt(`
a8b3b284af8eb50b387034a860f146c4919f318763cd6c5598c8
ae4811a1e0abc4c7e0b082d693a5e7fced675cf4668512772c0c
bc64a742c6c630f533c8cc72f62ae833c40bf25842e984bb78bd
bf97c0107d55bdb662f5c4e0fab9845cb5148ef7392dd3aaff93
ae1e6b667bb3d4247616d4f5ba10d4cfd226de88d39f16fb`),
E: 65537,
},
D: fromHexInt(`
53339cfdb79fc8466a655c7316aca85c55fd8f6dd898fdaf1195
17ef4f52e8fd8e258df93fee180fa0e4ab29693cd83b152a553d
4ac4d1812b8b9fa5af0e7f55fe7304df41570926f3311f15c4d6
5a732c483116ee3d3d2d0af3549ad9bf7cbfb78ad884f84d5beb
04724dc7369b31def37d0cf539e9cfcdd3de653729ead5d1`),
Primes: []*big.Int{
fromHexInt(`
d32737e7267ffe1341b2d5c0d150a81b586fb3132bed2f8d5262
864a9cb9f30af38be448598d413a172efb802c21acf1c11c520c
2f26a471dcad212eac7ca39d`),
fromHexInt(`
cc8853d1d54da630fac004f471f281c7b8982d8224a490edbeb3
3d3e3d5cc93c4765703d1dd791642f1f116a0dd852be2419b2af
72bfe9a030e860b0288b5d77`),
},
}
input := fromHexBytes(
"6628194e12073db03ba94cda9ef9532397d50dba79b987004afefe34")
expectedPKCS := fromHexBytes(`
50b4c14136bd198c2f3c3ed243fce036e168d56517984a263cd66492b808
04f169d210f2b9bdfb48b12f9ea05009c77da257cc600ccefe3a6283789d
8ea0e607ac58e2690ec4ebc10146e8cbaa5ed4d5cce6fe7b0ff9efc1eabb
564dbf498285f449ee61dd7b42ee5b5892cb90601f30cda07bf26489310b
cd23b528ceab3c31`)
expectedOAEP := fromHexBytes(`
354fe67b4a126d5d35fe36c777791a3f7ba13def484e2d3908aff722fad4
68fb21696de95d0be911c2d3174f8afcc201035f7b6d8e69402de5451618
c21a535fa9d7bfc5b8dd9fc243f8cf927db31322d6e881eaa91a996170e6
57a05a266426d98c88003f8477c1227094a0d9fa1e8c4024309ce1ecccb5
210035d47ac72e8a`)
// Mock random reader
randReader = bytes.NewReader(fromHexBytes(`
017341ae3875d5f87101f8cc4fa9b9bc156bb04628fccdb2f4f11e905bd3
a155d376f593bd7304210874eba08a5e22bcccb4c9d3882a93a54db022f5
03d16338b6b7ce16dc7f4bbf9a96b59772d6606e9747c7649bf9e083db98
1884a954ab3c6f18b776ea21069d69776a33e96bad48e1dda0a5ef`))
defer resetRandReader()
// RSA-PKCS1v1.5 encrypt
enc := new(rsaEncrypterVerifier)
enc.publicKey = &priv.PublicKey
encryptedPKCS, err := enc.encrypt(input, RSA1_5)
if err != nil {
t.Error("Encryption failed:", err)
return
}
if bytes.Compare(encryptedPKCS, expectedPKCS) != 0 {
t.Error("Output does not match expected value (PKCS1v1.5)")
}
// RSA-OAEP encrypt
encryptedOAEP, err := enc.encrypt(input, RSA_OAEP)
if err != nil {
t.Error("Encryption failed:", err)
return
}
if bytes.Compare(encryptedOAEP, expectedOAEP) != 0 {
t.Error("Output does not match expected value (OAEP)")
}
// Need fake cipher for PKCS1v1.5 decrypt
resetRandReader()
aes := newAESGCM(len(input))
keygen := randomKeyGenerator{
size: aes.keySize(),
}
// RSA-PKCS1v1.5 decrypt
dec := new(rsaDecrypterSigner)
dec.privateKey = priv
decryptedPKCS, err := dec.decrypt(encryptedPKCS, RSA1_5, keygen)
if err != nil {
t.Error("Decryption failed:", err)
return
}
if bytes.Compare(input, decryptedPKCS) != 0 {
t.Error("Output does not match expected value (PKCS1v1.5)")
}
// RSA-OAEP decrypt
decryptedOAEP, err := dec.decrypt(encryptedOAEP, RSA_OAEP, keygen)
if err != nil {
t.Error("decryption failed:", err)
return
}
if bytes.Compare(input, decryptedOAEP) != 0 {
t.Error("output does not match expected value (OAEP)")
}
}
func TestInvalidAlgorithmsRSA(t *testing.T) {
_, err := newRSARecipient("XYZ", nil)
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
_, err = newRSASigner("XYZ", nil)
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
enc := new(rsaEncrypterVerifier)
enc.publicKey = &rsaTestKey.PublicKey
_, err = enc.encryptKey([]byte{}, "XYZ")
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
err = enc.verifyPayload([]byte{}, []byte{}, "XYZ")
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
dec := new(rsaDecrypterSigner)
dec.privateKey = rsaTestKey
_, err = dec.decrypt(make([]byte, 256), "XYZ", randomKeyGenerator{size: 16})
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
_, err = dec.signPayload([]byte{}, "XYZ")
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
}
type failingKeyGenerator struct{}
func (ctx failingKeyGenerator) keySize() int {
return 0
}
func (ctx failingKeyGenerator) genKey() ([]byte, rawHeader, error) {
return nil, rawHeader{}, errors.New("failed to generate key")
}
func TestPKCSKeyGeneratorFailure(t *testing.T) {
dec := new(rsaDecrypterSigner)
dec.privateKey = rsaTestKey
generator := failingKeyGenerator{}
_, err := dec.decrypt(make([]byte, 256), RSA1_5, generator)
if err != ErrCryptoFailure {
t.Error("should return error on invalid algorithm")
}
}
func TestInvalidAlgorithmsEC(t *testing.T) {
_, err := newECDHRecipient("XYZ", nil)
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
_, err = newECDSASigner("XYZ", nil)
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
enc := new(ecEncrypterVerifier)
enc.publicKey = &ecTestKey256.PublicKey
_, err = enc.encryptKey([]byte{}, "XYZ")
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
}
func TestInvalidECKeyGen(t *testing.T) {
gen := ecKeyGenerator{
size: 16,
algID: "A128GCM",
publicKey: &ecTestKey256.PublicKey,
}
if gen.keySize() != 16 {
t.Error("ec key generator reported incorrect key size")
}
_, _, err := gen.genKey()
if err != nil {
t.Error("ec key generator failed to generate key", err)
}
}
func TestInvalidECDecrypt(t *testing.T) {
dec := ecDecrypterSigner{
privateKey: ecTestKey256,
}
generator := randomKeyGenerator{size: 16}
// Missing epk header
headers := rawHeader{
Alg: string(ECDH_ES),
}
_, err := dec.decryptKey(headers, nil, generator)
if err == nil {
t.Error("ec decrypter accepted object with missing epk header")
}
// Invalid epk header
headers.Epk = &JsonWebKey{}
_, err = dec.decryptKey(headers, nil, generator)
if err == nil {
t.Error("ec decrypter accepted object with invalid epk header")
}
}
func TestDecryptWithIncorrectSize(t *testing.T) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
t.Error(err)
return
}
dec := new(rsaDecrypterSigner)
dec.privateKey = priv
aes := newAESGCM(16)
keygen := randomKeyGenerator{
size: aes.keySize(),
}
payload := make([]byte, 254)
_, err = dec.decrypt(payload, RSA1_5, keygen)
if err == nil {
t.Error("Invalid payload size should return error")
}
payload = make([]byte, 257)
_, err = dec.decrypt(payload, RSA1_5, keygen)
if err == nil {
t.Error("Invalid payload size should return error")
}
}
func TestPKCSDecryptNeverFails(t *testing.T) {
// We don't want RSA-PKCS1 v1.5 decryption to ever fail, in order to prevent
// side-channel timing attacks (Bleichenbacher attack in particular).
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
t.Error(err)
return
}
dec := new(rsaDecrypterSigner)
dec.privateKey = priv
aes := newAESGCM(16)
keygen := randomKeyGenerator{
size: aes.keySize(),
}
for i := 1; i < 50; i++ {
payload := make([]byte, 256)
_, err := io.ReadFull(rand.Reader, payload)
if err != nil {
t.Error("Unable to get random data:", err)
return
}
_, err = dec.decrypt(payload, RSA1_5, keygen)
if err != nil {
t.Error("PKCS1v1.5 decrypt should never fail:", err)
return
}
}
}
func BenchmarkPKCSDecryptWithValidPayloads(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
panic(err)
}
enc := new(rsaEncrypterVerifier)
enc.publicKey = &priv.PublicKey
dec := new(rsaDecrypterSigner)
dec.privateKey = priv
aes := newAESGCM(32)
b.StopTimer()
b.ResetTimer()
for i := 0; i < b.N; i++ {
plaintext := make([]byte, 32)
_, err = io.ReadFull(rand.Reader, plaintext)
if err != nil {
panic(err)
}
ciphertext, err := enc.encrypt(plaintext, RSA1_5)
if err != nil {
panic(err)
}
keygen := randomKeyGenerator{
size: aes.keySize(),
}
b.StartTimer()
_, err = dec.decrypt(ciphertext, RSA1_5, keygen)
b.StopTimer()
if err != nil {
panic(err)
}
}
}
func BenchmarkPKCSDecryptWithInvalidPayloads(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
panic(err)
}
enc := new(rsaEncrypterVerifier)
enc.publicKey = &priv.PublicKey
dec := new(rsaDecrypterSigner)
dec.privateKey = priv
aes := newAESGCM(16)
keygen := randomKeyGenerator{
size: aes.keySize(),
}
b.StopTimer()
b.ResetTimer()
for i := 0; i < b.N; i++ {
plaintext := make([]byte, 16)
_, err = io.ReadFull(rand.Reader, plaintext)
if err != nil {
panic(err)
}
ciphertext, err := enc.encrypt(plaintext, RSA1_5)
if err != nil {
panic(err)
}
// Do some simple scrambling
ciphertext[128] ^= 0xFF
b.StartTimer()
_, err = dec.decrypt(ciphertext, RSA1_5, keygen)
b.StopTimer()
if err != nil {
panic(err)
}
}
}
func TestInvalidEllipticCurve(t *testing.T) {
signer256 := ecDecrypterSigner{privateKey: ecTestKey256}
signer384 := ecDecrypterSigner{privateKey: ecTestKey384}
signer521 := ecDecrypterSigner{privateKey: ecTestKey521}
_, err := signer256.signPayload([]byte{}, ES384)
if err == nil {
t.Error("should not generate ES384 signature with P-256 key")
}
_, err = signer256.signPayload([]byte{}, ES512)
if err == nil {
t.Error("should not generate ES512 signature with P-256 key")
}
_, err = signer384.signPayload([]byte{}, ES256)
if err == nil {
t.Error("should not generate ES256 signature with P-384 key")
}
_, err = signer384.signPayload([]byte{}, ES512)
if err == nil {
t.Error("should not generate ES512 signature with P-384 key")
}
_, err = signer521.signPayload([]byte{}, ES256)
if err == nil {
t.Error("should not generate ES256 signature with P-521 key")
}
_, err = signer521.signPayload([]byte{}, ES384)
if err == nil {
t.Error("should not generate ES384 signature with P-521 key")
}
}