woodpecker/vendor/github.com/uudashr/gocognit/README.md

185 lines
4.7 KiB
Markdown
Raw Normal View History

[![GoDoc](https://godoc.org/github.com/uudashr/gocognit?status.svg)](https://godoc.org/github.com/uudashr/gocognit)
# Gocognit
Gocognit calculates cognitive complexities of functions in Go source code. A measurement of how hard does the code is intuitively to understand.
## Understanding the complexity
Given code using `if` statement,
```go
func GetWords(number int) string {
if number == 1 { // +1
return "one"
} else if number == 2 { // +1
return "a couple"
} else if number == 3 { // +1
return "a few"
} else { // +1
return "lots"
}
} // Cognitive complexity = 4
```
Above code can be refactored using `switch` statement,
```go
func GetWords(number int) string {
switch number { // +1
case 1:
return "one"
case 2:
return "a couple"
case 3:
return "a few"
default:
return "lots"
}
} // Cognitive complexity = 1
```
As you see above codes are the same, but the second code are easier to understand, that is why the cognitive complexity score are lower compare to the first one.
## Comparison with cyclometic complexity
### Example 1
#### Cyclometic complexity
```go
func GetWords(number int) string { // +1
switch number {
case 1: // +1
return "one"
case 2: // +1
return "a couple"
case 3: // +1
return "a few"
default:
return "lots"
}
} // Cyclomatic complexity = 4
```
#### Cognitive complexity
```go
func GetWords(number int) string {
switch number { // +1
case 1:
return "one"
case 2:
return "a couple"
case 3:
return "a few"
default:
return "lots"
}
} // Cognitive complexity = 1
```
Cognitive complexity give lower score compare to cyclomatic complexity.
### Example 2
#### Cyclomatic complexity
```go
func SumOfPrimes(max int) int { // +1
var total int
OUT:
for i := 1; i < max; i++ { // +1
for j := 2; j < i; j++ { // +1
if i%j == 0 { // +1
continue OUT
}
}
total += i
}
return total
} // Cyclomatic complexity = 4
```
#### Cognitive complexity
```go
func SumOfPrimes(max int) int {
var total int
OUT:
for i := 1; i < max; i++ { // +1
for j := 2; j < i; j++ { // +2 (nesting = 1)
if i%j == 0 { // +3 (nesting = 2)
continue OUT // +1
}
}
total += i
}
return total
} // Cognitive complexity = 7
```
Cognitive complexity give higher score compare to cyclomatic complexity.
## Rules
The cognitive complexity of a function is calculated according to the
following rules:
> Note: these rules are specific for Go, please see the [original whitepaper](https://www.sonarsource.com/docs/CognitiveComplexity.pdf) for more complete reference.
### Increments
There is an increment for each of the following:
1. `if`, `else if`, `else`
2. `switch`, `select`
3. `for`
4. `goto` LABEL, `break` LABEL, `continue` LABEL
5. sequence of binary logical operators
6. each method in a recursion cycle
### Nesting level
The following structures increment the nesting level:
1. `if`, `else if`, `else`
2. `switch`, `select`
3. `for`
4. function literal or lambda
### Nesting increments
The following structures receive a nesting increment commensurate with their nested depth inside nesting structures:
1. `if`
2. `switch`, `select`
3. `for`
## Installation
```
$ go get github.com/uudashr/gocognit/cmd/gocognit
```
## Usage
```
$ gocognit
Calculate cognitive complexities of Go functions.
Usage:
gocognit [flags] <Go file or directory> ...
Flags:
-over N show functions with complexity > N only and
return exit code 1 if the set is non-empty
-top N show the top N most complex functions only
-avg show the average complexity over all functions,
not depending on whether -over or -top are set
The output fields for each line are:
<complexity> <package> <function> <file:row:column>
```
Examples:
```
$ gocognit .
$ gocognit main.go
$ gocognit -top 10 src/
$ gocognit -over 25 docker
$ gocognit -avg .
```
The output fields for each line are:
```
<complexity> <package> <function> <file:row:column>
```
## Related project
- [Gocyclo](https://github.com/fzipp/gocyclo) where the code are based on.
- [Cognitive Complexity: A new way of measuring understandability](https://www.sonarsource.com/docs/CognitiveComplexity.pdf) white paper by G. Ann Campbell.