gstreamer/gst-libs/gst/video/resampler.c
Wim Taymans 28e5ed00de resampler: make offset/phase/n_taps uint32
Make various resizer fields uint32 so that we can use them in ORC
functions later.
2014-10-29 16:26:19 +01:00

398 lines
9.3 KiB
C

/* GStreamer
* Copyright (C) <2014> Wim Taymans <wim.taymans@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "resampler.h"
typedef struct _ResamplerParams ResamplerParams;
struct _ResamplerParams
{
GstResamplerMethod method;
GstResamplerFlags flags;
gdouble shift;
gdouble (*get_tap) (ResamplerParams * params, gint l, gint xi, gdouble x);
/* for cubic */
gdouble b, c;
/* used by lanczos */
gdouble ex, fx, dx;
/* extra params */
gdouble envelope;
gdouble sharpness;
gdouble sharpen;
GstResampler *resampler;
};
static double
sinc (double x)
{
if (x == 0)
return 1;
return sin (G_PI * x) / (G_PI * x);
}
static double
envelope (double x)
{
if (x <= -1 || x >= 1)
return 0;
return sinc (x);
}
static gdouble
get_nearest_tap (ResamplerParams * params, gint l, gint xi, gdouble x)
{
return 1.0;
}
static gdouble
get_linear_tap (ResamplerParams * params, gint l, gint xi, gdouble x)
{
gdouble n_taps;
gdouble res, a;
gint xl = xi + l;
n_taps = (params->resampler->max_taps + 1) / 2;
a = fabs (x - xl);
if (a < n_taps)
res = (n_taps - a) / (gdouble) n_taps;
else
res = 0.0;
return res;
}
static gdouble
bicubic (gdouble s, gdouble b, gdouble c)
{
gdouble s2, s3;
s = fabs (s);
s2 = s * s;
s3 = s2 * s;
if (s <= 1.0)
return ((12.0 - 9.0 * b - 6.0 * c) * s3 +
(-18.0 + 12.0 * b + 6.0 * c) * s2 + (6.0 - 2.0 * b)) / 6.0;
else if (s <= 2.0)
return ((-b - 6.0 * c) * s3 +
(6.0 * b + 30.0 * c) * s2 +
(-12.0 * b - 48.0 * c) * s + (8.0 * b + 24.0 * c)) / 6.0;
else
return 0.0;
}
static gdouble
get_cubic_tap (ResamplerParams * params, gint l, gint xi, gdouble x)
{
gdouble a, b, c, res;
a = x - (xi + 1);
b = params->b;
c = params->c;
if (l == 0)
res = bicubic (1.0 + a, b, c);
else if (l == 1)
res = bicubic (a, b, c);
else if (l == 2)
res = bicubic (1.0 - a, b, c);
else
res = bicubic (2.0 - a, b, c);
return res;
}
static gdouble
get_sinc_tap (ResamplerParams * params, gint l, gint xi, gdouble x)
{
gint xl = xi + l;
return sinc (x - xl);
}
static gdouble
get_lanczos_tap (ResamplerParams * params, gint l, gint xi, gdouble x)
{
gint xl = xi + l;
gdouble env = envelope ((x - xl) * params->ex);
return (sinc ((x - xl) * params->fx) - params->sharpen) * env;
}
static void
resampler_calculate_taps (ResamplerParams * params)
{
GstResampler *resampler = params->resampler;
gint j;
guint32 *offset, *n_taps, *phase;
gint tap_offs;
gint max_taps;
gint in_size, out_size;
gdouble shift;
gdouble corr;
in_size = resampler->in_size;
out_size = resampler->out_size;
max_taps = resampler->max_taps;
tap_offs = (max_taps - 1) / 2;
corr = (max_taps == 1 ? 0.0 : 0.5);
shift = params->shift;
resampler->taps = g_malloc (sizeof (gdouble) * max_taps * out_size);
n_taps = resampler->n_taps = g_malloc (sizeof (guint32) * out_size);
offset = resampler->offset = g_malloc (sizeof (guint32) * out_size);
phase = resampler->phase = g_malloc (sizeof (guint32) * out_size);
for (j = 0; j < out_size; j++) {
gdouble ox, x;
gint xi;
gint l;
gdouble weight;
gdouble *taps;
/* center of the output pixel */
ox = (0.5 + (gdouble) j - shift) / out_size;
/* x is the source pixel to use, can be fractional */
x = ox * (gdouble) in_size - corr;
x = CLAMP (x, 0, in_size - 1);
/* this is the first source pixel to use */
xi = floor (x - tap_offs);
offset[j] = xi;
phase[j] = j;
n_taps[j] = max_taps;
weight = 0;
taps = resampler->taps + j * max_taps;
for (l = 0; l < max_taps; l++) {
taps[l] = params->get_tap (params, l, xi, x);
weight += taps[l];
}
for (l = 0; l < max_taps; l++)
taps[l] /= weight;
if (xi < 0) {
gint sh = -xi;
for (l = 0; l < sh; l++) {
taps[sh] += taps[l];
}
for (l = 0; l < max_taps - sh; l++) {
taps[l] = taps[sh + l];
}
for (; l < max_taps; l++) {
taps[l] = 0;
}
offset[j] += sh;
}
if (xi > in_size - max_taps) {
gint sh = xi - (in_size - max_taps);
for (l = 0; l < sh; l++) {
taps[max_taps - sh - 1] += taps[max_taps - sh + l];
}
for (l = 0; l < max_taps - sh; l++) {
taps[max_taps - 1 - l] = taps[max_taps - 1 - sh - l];
}
for (l = 0; l < sh; l++) {
taps[l] = 0;
}
offset[j] -= sh;
}
}
}
/**
* gst_resampler_new:
* @resampler: a #GstResampler
* @method: a #GstResamplerMethod
* @flags: #GstResamplerFlags
* @n_phases: number of phases to use
* @n_taps: number of taps to use
* @in_size: number of source elements
* @out_size: number of destination elements
* @options: extra options
*
* Make a new resampler. @in_size source elements will
* be resampled to @out_size destination elements.
*
* @n_taps specifies the amount of elements to use from the source for one output
* element. If n_taps is 0, this function chooses a good value automatically based
* on the @method and @in_size/@out_size.
*
* Returns: %TRUE on success
*
* Since: 1.6
*/
gboolean
gst_resampler_init (GstResampler * resampler,
GstResamplerMethod method, GstResamplerFlags flags,
guint n_phases, guint n_taps, gdouble shift, guint in_size, guint out_size,
GstStructure * options)
{
ResamplerParams params;
g_return_val_if_fail (in_size != 0, FALSE);
g_return_val_if_fail (out_size != 0, FALSE);
g_return_val_if_fail (n_phases == out_size, FALSE);
resampler->in_size = in_size;
resampler->out_size = out_size;
resampler->n_phases = n_phases;
params.method = method;
params.flags = flags;
params.shift = shift;
params.resampler = resampler;
GST_DEBUG ("%d %u %u->%u", method, n_taps, in_size, out_size);
switch (method) {
case GST_RESAMPLER_METHOD_NEAREST:
params.get_tap = get_nearest_tap;
if (n_taps == 0)
n_taps = 1;
break;
case GST_RESAMPLER_METHOD_LINEAR:
params.get_tap = get_linear_tap;
if (n_taps == 0)
n_taps = 2;
break;
case GST_RESAMPLER_METHOD_CUBIC:
if (!options
|| !gst_structure_get_double (options, GST_RESAMPLER_OPT_CUBIC_B,
&params.b))
params.b = 1.0 / 3.0;
if (!options
|| !gst_structure_get_double (options, GST_RESAMPLER_OPT_CUBIC_C,
&params.c))
params.c = 1.0 / 3.0;
n_taps = 4;
params.get_tap = get_cubic_tap;
break;
case GST_RESAMPLER_METHOD_SINC:
params.get_tap = get_sinc_tap;
if (n_taps == 0)
n_taps = 4;
break;
case GST_RESAMPLER_METHOD_LANCZOS:
{
gdouble resample_inc = in_size / (gdouble) out_size;
if (!options
|| !gst_structure_get_double (options, GST_RESAMPLER_OPT_ENVELOPE,
&params.envelope))
params.envelope = 2.0;
if (!options
|| !gst_structure_get_double (options, GST_RESAMPLER_OPT_SHARPNESS,
&params.sharpness))
params.sharpness = 1.0;
if (!options
|| !gst_structure_get_double (options, GST_RESAMPLER_OPT_SHARPEN,
&params.sharpen))
params.sharpen = 0.0;
if (resample_inc > 1.0) {
params.fx = (1.0 / resample_inc) * params.sharpness;
} else {
params.fx = (1.0) * params.sharpness;
}
params.ex = params.fx / params.envelope;
params.dx = ceil (params.envelope / params.fx);
if (n_taps == 0)
n_taps = 2 * params.dx;
params.get_tap = get_lanczos_tap;
break;
}
default:
break;
}
if (n_taps > in_size)
n_taps = in_size;
resampler->max_taps = n_taps;
resampler_calculate_taps (&params);
#if 0
{
gint i, max_taps;
max_taps = resampler->max_taps;
for (i = 0; i < out_size; i++) {
gint j, o, phase, n_taps;
gdouble sum;
o = resampler->offset[i];
n_taps = resampler->n_taps[i];
phase = resampler->phase[i];
printf ("%u: \t%d ", i, o);
sum = 0;
for (j = 0; j < n_taps; j++) {
gdouble tap;
tap = resampler->taps[phase * max_taps + j];
printf ("\t%f ", tap);
sum += tap;
}
printf ("\t: sum %f\n", sum);
}
}
#endif
return TRUE;
}
/**
* gst_resampler_clear:
* @resampler: a #GstResampler
*
* Clear a previously initialized #GstResampler @resampler.
*
* Since: 1.6
*/
void
gst_resampler_clear (GstResampler * resampler)
{
g_return_if_fail (resampler != NULL);
g_free (resampler->phase);
g_free (resampler->offset);
g_free (resampler->n_taps);
g_free (resampler->taps);
}