/* GStreamer * Copyright (C) <2014> Wim Taymans * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include #include "resampler.h" typedef struct _ResamplerParams ResamplerParams; struct _ResamplerParams { GstResamplerMethod method; GstResamplerFlags flags; gdouble shift; gdouble (*get_tap) (ResamplerParams * params, gint l, gint xi, gdouble x); /* for cubic */ gdouble b, c; /* used by lanczos */ gdouble ex, fx, dx; /* extra params */ gdouble envelope; gdouble sharpness; gdouble sharpen; GstResampler *resampler; }; static double sinc (double x) { if (x == 0) return 1; return sin (G_PI * x) / (G_PI * x); } static double envelope (double x) { if (x <= -1 || x >= 1) return 0; return sinc (x); } static gdouble get_nearest_tap (ResamplerParams * params, gint l, gint xi, gdouble x) { return 1.0; } static gdouble get_linear_tap (ResamplerParams * params, gint l, gint xi, gdouble x) { gdouble n_taps; gdouble res, a; gint xl = xi + l; n_taps = (params->resampler->max_taps + 1) / 2; a = fabs (x - xl); if (a < n_taps) res = (n_taps - a) / (gdouble) n_taps; else res = 0.0; return res; } static gdouble bicubic (gdouble s, gdouble b, gdouble c) { gdouble s2, s3; s = fabs (s); s2 = s * s; s3 = s2 * s; if (s <= 1.0) return ((12.0 - 9.0 * b - 6.0 * c) * s3 + (-18.0 + 12.0 * b + 6.0 * c) * s2 + (6.0 - 2.0 * b)) / 6.0; else if (s <= 2.0) return ((-b - 6.0 * c) * s3 + (6.0 * b + 30.0 * c) * s2 + (-12.0 * b - 48.0 * c) * s + (8.0 * b + 24.0 * c)) / 6.0; else return 0.0; } static gdouble get_cubic_tap (ResamplerParams * params, gint l, gint xi, gdouble x) { gdouble a, b, c, res; a = x - (xi + 1); b = params->b; c = params->c; if (l == 0) res = bicubic (1.0 + a, b, c); else if (l == 1) res = bicubic (a, b, c); else if (l == 2) res = bicubic (1.0 - a, b, c); else res = bicubic (2.0 - a, b, c); return res; } static gdouble get_sinc_tap (ResamplerParams * params, gint l, gint xi, gdouble x) { gint xl = xi + l; return sinc (x - xl); } static gdouble get_lanczos_tap (ResamplerParams * params, gint l, gint xi, gdouble x) { gint xl = xi + l; gdouble env = envelope ((x - xl) * params->ex); return (sinc ((x - xl) * params->fx) - params->sharpen) * env; } static void resampler_calculate_taps (ResamplerParams * params) { GstResampler *resampler = params->resampler; gint j; guint32 *offset, *n_taps, *phase; gint tap_offs; gint max_taps; gint in_size, out_size; gdouble shift; gdouble corr; in_size = resampler->in_size; out_size = resampler->out_size; max_taps = resampler->max_taps; tap_offs = (max_taps - 1) / 2; corr = (max_taps == 1 ? 0.0 : 0.5); shift = params->shift; resampler->taps = g_malloc (sizeof (gdouble) * max_taps * out_size); n_taps = resampler->n_taps = g_malloc (sizeof (guint32) * out_size); offset = resampler->offset = g_malloc (sizeof (guint32) * out_size); phase = resampler->phase = g_malloc (sizeof (guint32) * out_size); for (j = 0; j < out_size; j++) { gdouble ox, x; gint xi; gint l; gdouble weight; gdouble *taps; /* center of the output pixel */ ox = (0.5 + (gdouble) j - shift) / out_size; /* x is the source pixel to use, can be fractional */ x = ox * (gdouble) in_size - corr; x = CLAMP (x, 0, in_size - 1); /* this is the first source pixel to use */ xi = floor (x - tap_offs); offset[j] = xi; phase[j] = j; n_taps[j] = max_taps; weight = 0; taps = resampler->taps + j * max_taps; for (l = 0; l < max_taps; l++) { taps[l] = params->get_tap (params, l, xi, x); weight += taps[l]; } for (l = 0; l < max_taps; l++) taps[l] /= weight; if (xi < 0) { gint sh = -xi; for (l = 0; l < sh; l++) { taps[sh] += taps[l]; } for (l = 0; l < max_taps - sh; l++) { taps[l] = taps[sh + l]; } for (; l < max_taps; l++) { taps[l] = 0; } offset[j] += sh; } if (xi > in_size - max_taps) { gint sh = xi - (in_size - max_taps); for (l = 0; l < sh; l++) { taps[max_taps - sh - 1] += taps[max_taps - sh + l]; } for (l = 0; l < max_taps - sh; l++) { taps[max_taps - 1 - l] = taps[max_taps - 1 - sh - l]; } for (l = 0; l < sh; l++) { taps[l] = 0; } offset[j] -= sh; } } } /** * gst_resampler_new: * @resampler: a #GstResampler * @method: a #GstResamplerMethod * @flags: #GstResamplerFlags * @n_phases: number of phases to use * @n_taps: number of taps to use * @in_size: number of source elements * @out_size: number of destination elements * @options: extra options * * Make a new resampler. @in_size source elements will * be resampled to @out_size destination elements. * * @n_taps specifies the amount of elements to use from the source for one output * element. If n_taps is 0, this function chooses a good value automatically based * on the @method and @in_size/@out_size. * * Returns: %TRUE on success * * Since: 1.6 */ gboolean gst_resampler_init (GstResampler * resampler, GstResamplerMethod method, GstResamplerFlags flags, guint n_phases, guint n_taps, gdouble shift, guint in_size, guint out_size, GstStructure * options) { ResamplerParams params; g_return_val_if_fail (in_size != 0, FALSE); g_return_val_if_fail (out_size != 0, FALSE); g_return_val_if_fail (n_phases == out_size, FALSE); resampler->in_size = in_size; resampler->out_size = out_size; resampler->n_phases = n_phases; params.method = method; params.flags = flags; params.shift = shift; params.resampler = resampler; GST_DEBUG ("%d %u %u->%u", method, n_taps, in_size, out_size); switch (method) { case GST_RESAMPLER_METHOD_NEAREST: params.get_tap = get_nearest_tap; if (n_taps == 0) n_taps = 1; break; case GST_RESAMPLER_METHOD_LINEAR: params.get_tap = get_linear_tap; if (n_taps == 0) n_taps = 2; break; case GST_RESAMPLER_METHOD_CUBIC: if (!options || !gst_structure_get_double (options, GST_RESAMPLER_OPT_CUBIC_B, ¶ms.b)) params.b = 1.0 / 3.0; if (!options || !gst_structure_get_double (options, GST_RESAMPLER_OPT_CUBIC_C, ¶ms.c)) params.c = 1.0 / 3.0; n_taps = 4; params.get_tap = get_cubic_tap; break; case GST_RESAMPLER_METHOD_SINC: params.get_tap = get_sinc_tap; if (n_taps == 0) n_taps = 4; break; case GST_RESAMPLER_METHOD_LANCZOS: { gdouble resample_inc = in_size / (gdouble) out_size; if (!options || !gst_structure_get_double (options, GST_RESAMPLER_OPT_ENVELOPE, ¶ms.envelope)) params.envelope = 2.0; if (!options || !gst_structure_get_double (options, GST_RESAMPLER_OPT_SHARPNESS, ¶ms.sharpness)) params.sharpness = 1.0; if (!options || !gst_structure_get_double (options, GST_RESAMPLER_OPT_SHARPEN, ¶ms.sharpen)) params.sharpen = 0.0; if (resample_inc > 1.0) { params.fx = (1.0 / resample_inc) * params.sharpness; } else { params.fx = (1.0) * params.sharpness; } params.ex = params.fx / params.envelope; params.dx = ceil (params.envelope / params.fx); if (n_taps == 0) n_taps = 2 * params.dx; params.get_tap = get_lanczos_tap; break; } default: break; } if (n_taps > in_size) n_taps = in_size; resampler->max_taps = n_taps; resampler_calculate_taps (¶ms); #if 0 { gint i, max_taps; max_taps = resampler->max_taps; for (i = 0; i < out_size; i++) { gint j, o, phase, n_taps; gdouble sum; o = resampler->offset[i]; n_taps = resampler->n_taps[i]; phase = resampler->phase[i]; printf ("%u: \t%d ", i, o); sum = 0; for (j = 0; j < n_taps; j++) { gdouble tap; tap = resampler->taps[phase * max_taps + j]; printf ("\t%f ", tap); sum += tap; } printf ("\t: sum %f\n", sum); } } #endif return TRUE; } /** * gst_resampler_clear: * @resampler: a #GstResampler * * Clear a previously initialized #GstResampler @resampler. * * Since: 1.6 */ void gst_resampler_clear (GstResampler * resampler) { g_return_if_fail (resampler != NULL); g_free (resampler->phase); g_free (resampler->offset); g_free (resampler->n_taps); g_free (resampler->taps); }