gstreamer/subprojects/gst-plugins-bad/sys/directshow/strmbase/baseclasses/winctrl.cpp

2081 lines
67 KiB
C++

//------------------------------------------------------------------------------
// File: WinCtrl.cpp
//
// Desc: DirectShow base classes - implements video control interface class.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#include <intsafe.h>
#include <checkbmi.h>
// The control interface methods require us to be connected
#define CheckConnected(pin,code) \
{ \
if (pin == NULL) { \
ASSERT(!TEXT("Pin not set")); \
} else if (pin->IsConnected() == FALSE) { \
return (code); \
} \
}
// This checks to see whether the window has a drain. An application can in
// most environments set the owner/parent of windows so that they appear in
// a compound document context (for example). In this case, the application
// would probably like to be told of any keyboard/mouse messages. Therefore
// we pass these messages on untranslated, returning TRUE if we're successful
BOOL WINAPI PossiblyEatMessage(HWND hwndDrain, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (hwndDrain != NULL && !InSendMessage())
{
switch (uMsg)
{
case WM_CHAR:
case WM_DEADCHAR:
case WM_KEYDOWN:
case WM_KEYUP:
case WM_LBUTTONDBLCLK:
case WM_LBUTTONDOWN:
case WM_LBUTTONUP:
case WM_MBUTTONDBLCLK:
case WM_MBUTTONDOWN:
case WM_MBUTTONUP:
case WM_MOUSEACTIVATE:
case WM_MOUSEMOVE:
// If we pass this on we don't get any mouse clicks
//case WM_NCHITTEST:
case WM_NCLBUTTONDBLCLK:
case WM_NCLBUTTONDOWN:
case WM_NCLBUTTONUP:
case WM_NCMBUTTONDBLCLK:
case WM_NCMBUTTONDOWN:
case WM_NCMBUTTONUP:
case WM_NCMOUSEMOVE:
case WM_NCRBUTTONDBLCLK:
case WM_NCRBUTTONDOWN:
case WM_NCRBUTTONUP:
case WM_RBUTTONDBLCLK:
case WM_RBUTTONDOWN:
case WM_RBUTTONUP:
case WM_SYSCHAR:
case WM_SYSDEADCHAR:
case WM_SYSKEYDOWN:
case WM_SYSKEYUP:
DbgLog((LOG_TRACE, 2, TEXT("Forwarding %x to drain")));
PostMessage(hwndDrain, uMsg, wParam, lParam);
return TRUE;
}
}
return FALSE;
}
// This class implements the IVideoWindow control functions (dual interface)
// we support a large number of properties and methods designed to allow the
// client (whether it be an automation controller or a C/C++ application) to
// set and get a number of window related properties such as it's position.
// We also support some methods that duplicate the properties but provide a
// more direct and efficient mechanism as many values may be changed in one
CBaseControlWindow::CBaseControlWindow(
__inout CBaseFilter *pFilter, // Owning filter
__in CCritSec *pInterfaceLock, // Locking object
__in_opt LPCTSTR pName, // Object description
__inout_opt LPUNKNOWN pUnk, // Normal COM ownership
__inout HRESULT *phr) : // OLE return code
CBaseVideoWindow(pName,pUnk),
m_pInterfaceLock(pInterfaceLock),
m_hwndOwner(NULL),
m_hwndDrain(NULL),
m_bAutoShow(TRUE),
m_pFilter(pFilter),
m_bCursorHidden(FALSE),
m_pPin(NULL)
{
ASSERT(m_pFilter);
ASSERT(m_pInterfaceLock);
ASSERT(phr);
m_BorderColour = VIDEO_COLOUR;
}
// Set the title caption on the base window, we don't do any field checking
// as we really don't care what title they intend to have. We can always get
// it back again later with GetWindowText. The only other complication is to
// do the necessary string conversions between ANSI and OLE Unicode strings
STDMETHODIMP CBaseControlWindow::put_Caption(__in BSTR strCaption)
{
CheckPointer((PVOID)strCaption,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
#ifdef UNICODE
SetWindowText(m_hwnd, strCaption);
#else
CHAR Caption[CAPTION];
WideCharToMultiByte(CP_ACP,0,strCaption,-1,Caption,CAPTION,NULL,NULL);
SetWindowText(m_hwnd, Caption);
#endif
return NOERROR;
}
// Get the current base window title caption, once again we do no real field
// checking. We allocate a string for the window title to be filled in with
// which ensures the interface doesn't fiddle around with getting memory. A
// BSTR is a normal C string with the length at position (-1), we use the
// WriteBSTR helper function to create the caption to try and avoid OLE32
STDMETHODIMP CBaseControlWindow::get_Caption(__out BSTR *pstrCaption)
{
CheckPointer(pstrCaption,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
WCHAR WideCaption[CAPTION];
#ifdef UNICODE
GetWindowText(m_hwnd,WideCaption,CAPTION);
#else
// Convert the ASCII caption to a UNICODE string
TCHAR Caption[CAPTION];
GetWindowText(m_hwnd,Caption,CAPTION);
MultiByteToWideChar(CP_ACP,0,Caption,-1,WideCaption,CAPTION);
#endif
return WriteBSTR(pstrCaption,WideCaption);
}
// Set the window style using GWL_EXSTYLE
STDMETHODIMP CBaseControlWindow::put_WindowStyleEx(long WindowStyleEx)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
// Should we be taking off WS_EX_TOPMOST
if (GetWindowLong(m_hwnd,GWL_EXSTYLE) & WS_EX_TOPMOST) {
if ((WindowStyleEx & WS_EX_TOPMOST) == 0) {
SendMessage(m_hwnd,m_ShowStageTop,(WPARAM) FALSE,(LPARAM) 0);
}
}
// Likewise should we be adding WS_EX_TOPMOST
if (WindowStyleEx & WS_EX_TOPMOST) {
SendMessage(m_hwnd,m_ShowStageTop,(WPARAM) TRUE,(LPARAM) 0);
WindowStyleEx &= (~WS_EX_TOPMOST);
if (WindowStyleEx == 0) return NOERROR;
}
return DoSetWindowStyle(WindowStyleEx,GWL_EXSTYLE);
}
// Gets the current GWL_EXSTYLE base window style
STDMETHODIMP CBaseControlWindow::get_WindowStyleEx(__out long *pWindowStyleEx)
{
CheckPointer(pWindowStyleEx,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
return DoGetWindowStyle(pWindowStyleEx,GWL_EXSTYLE);
}
// Set the window style using GWL_STYLE
STDMETHODIMP CBaseControlWindow::put_WindowStyle(long WindowStyle)
{
// These styles cannot be changed dynamically
if ((WindowStyle & WS_DISABLED) ||
(WindowStyle & WS_ICONIC) ||
(WindowStyle & WS_MAXIMIZE) ||
(WindowStyle & WS_MINIMIZE) ||
(WindowStyle & WS_HSCROLL) ||
(WindowStyle & WS_VSCROLL)) {
return E_INVALIDARG;
}
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
return DoSetWindowStyle(WindowStyle,GWL_STYLE);
}
// Get the current GWL_STYLE base window style
STDMETHODIMP CBaseControlWindow::get_WindowStyle(__out long *pWindowStyle)
{
CheckPointer(pWindowStyle,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
return DoGetWindowStyle(pWindowStyle,GWL_STYLE);
}
// Change the base window style or the extended styles depending on whether
// WindowLong is GWL_STYLE or GWL_EXSTYLE. We must call SetWindowPos to have
// the window displayed in it's new style after the change which is a little
// tricky if the window is not currently visible as we realise it offscreen.
// In most cases the client will call get_WindowStyle before they call this
// and then AND and OR in extra bit settings according to the requirements
HRESULT CBaseControlWindow::DoSetWindowStyle(long Style,long WindowLong)
{
RECT WindowRect;
// Get the window's visibility before setting the style
BOOL bVisible = IsWindowVisible(m_hwnd);
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect));
// Set the new style flags for the window
SetWindowLong(m_hwnd,WindowLong,Style);
UINT WindowFlags = SWP_SHOWWINDOW | SWP_FRAMECHANGED | SWP_NOACTIVATE;
WindowFlags |= SWP_NOZORDER | SWP_NOSIZE | SWP_NOMOVE;
// Show the window again in the current position
if (bVisible == TRUE) {
SetWindowPos(m_hwnd, // Base window handle
HWND_TOP, // Just a place holder
0,0,0,0, // Leave size and position
WindowFlags); // Just draw it again
return NOERROR;
}
// Move the window offscreen so the user doesn't see the changes
MoveWindow((HWND) m_hwnd, // Base window handle
GetSystemMetrics(SM_CXSCREEN), // Current desktop width
GetSystemMetrics(SM_CYSCREEN), // Likewise it's height
WIDTH(&WindowRect), // Use the same width
HEIGHT(&WindowRect), // Keep height same to
TRUE); // May as well repaint
// Now show the previously hidden window
SetWindowPos(m_hwnd, // Base window handle
HWND_TOP, // Just a place holder
0,0,0,0, // Leave size and position
WindowFlags); // Just draw it again
ShowWindow(m_hwnd,SW_HIDE);
if (GetParent(m_hwnd)) {
MapWindowPoints(HWND_DESKTOP, GetParent(m_hwnd), (LPPOINT)&WindowRect, 2);
}
MoveWindow((HWND) m_hwnd, // Base window handle
WindowRect.left, // Existing x coordinate
WindowRect.top, // Existing y coordinate
WIDTH(&WindowRect), // Use the same width
HEIGHT(&WindowRect), // Keep height same to
TRUE); // May as well repaint
return NOERROR;
}
// Get the current base window style (either GWL_STYLE or GWL_EXSTYLE)
HRESULT CBaseControlWindow::DoGetWindowStyle(__out long *pStyle,long WindowLong)
{
*pStyle = GetWindowLong(m_hwnd,WindowLong);
return NOERROR;
}
// Change the visibility of the base window, this takes the same parameters
// as the ShowWindow Win32 API does, so the client can have the window hidden
// or shown, minimised to an icon, or maximised to play in full screen mode
// We pass the request on to the base window to actually make the change
STDMETHODIMP CBaseControlWindow::put_WindowState(long WindowState)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
DoShowWindow(WindowState);
return NOERROR;
}
// Get the current window state, this function returns a subset of the SW bit
// settings available in ShowWindow, if the window is visible then SW_SHOW is
// set, if it is hidden then the SW_HIDDEN is set, if it is either minimised
// or maximised then the SW_MINIMIZE or SW_MAXIMIZE is set respectively. The
// other SW bit settings are really set commands not readable output values
STDMETHODIMP CBaseControlWindow::get_WindowState(__out long *pWindowState)
{
CheckPointer(pWindowState,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
ASSERT(pWindowState);
*pWindowState = FALSE;
// Is the window visible, a window is termed visible if it is somewhere on
// the current desktop even if it is completely obscured by other windows
// so the flag is a style for each window set with the WS_VISIBLE bit
if (IsWindowVisible(m_hwnd) == TRUE) {
// Is the base window iconic
if (IsIconic(m_hwnd) == TRUE) {
*pWindowState |= SW_MINIMIZE;
}
// Has the window been maximised
else if (IsZoomed(m_hwnd) == TRUE) {
*pWindowState |= SW_MAXIMIZE;
}
// Window is normal
else {
*pWindowState |= SW_SHOW;
}
} else {
*pWindowState |= SW_HIDE;
}
return NOERROR;
}
// This makes sure that any palette we realise in the base window (through a
// media type or through the overlay interface) is done in the background and
// is therefore mapped to existing device entries rather than taking it over
// as it will do when we this window gets the keyboard focus. An application
// uses this to make sure it doesn't have it's palette removed by the window
STDMETHODIMP CBaseControlWindow::put_BackgroundPalette(long BackgroundPalette)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cWindowLock(&m_WindowLock);
// Check this is a valid automation boolean type
if (BackgroundPalette != OATRUE) {
if (BackgroundPalette != OAFALSE) {
return E_INVALIDARG;
}
}
// Make sure the window realises any palette it has again
m_bBackground = (BackgroundPalette == OATRUE ? TRUE : FALSE);
PostMessage(m_hwnd,m_RealizePalette,0,0);
PaintWindow(FALSE);
return NOERROR;
}
// This returns the current background realisation setting
STDMETHODIMP
CBaseControlWindow::get_BackgroundPalette(__out long *pBackgroundPalette)
{
CheckPointer(pBackgroundPalette,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cWindowLock(&m_WindowLock);
// Get the current background palette setting
*pBackgroundPalette = (m_bBackground == TRUE ? OATRUE : OAFALSE);
return NOERROR;
}
// Change the visibility of the base window
STDMETHODIMP CBaseControlWindow::put_Visible(long Visible)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
// Check this is a valid automation boolean type
if (Visible != OATRUE) {
if (Visible != OAFALSE) {
return E_INVALIDARG;
}
}
// Convert the boolean visibility into SW_SHOW and SW_HIDE
INT Mode = (Visible == OATRUE ? SW_SHOWNORMAL : SW_HIDE);
DoShowWindow(Mode);
return NOERROR;
}
// Return OATRUE if the window is currently visible otherwise OAFALSE
STDMETHODIMP CBaseControlWindow::get_Visible(__out long *pVisible)
{
CheckPointer(pVisible,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
// See if the base window has a WS_VISIBLE style - this will return TRUE
// even if the window is completely obscured by other desktop windows, we
// return FALSE if the window is not showing because of earlier calls
BOOL Mode = IsWindowVisible(m_hwnd);
*pVisible = (Mode == TRUE ? OATRUE : OAFALSE);
return NOERROR;
}
// Change the left position of the base window. This keeps the window width
// and height properties the same so it effectively shunts the window left or
// right accordingly - there is the Width property to change that dimension
STDMETHODIMP CBaseControlWindow::put_Left(long Left)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
BOOL bSuccess;
RECT WindowRect;
// Get the current window position in a RECT
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect));
if (GetParent(m_hwnd)) {
MapWindowPoints(HWND_DESKTOP, GetParent(m_hwnd), (LPPOINT)&WindowRect, 2);
}
// Adjust the coordinates ready for SetWindowPos, the window rectangle we
// get back from GetWindowRect is in left,top,right and bottom while the
// coordinates SetWindowPos wants are left,top,width and height values
WindowRect.bottom = WindowRect.bottom - WindowRect.top;
WindowRect.right = WindowRect.right - WindowRect.left;
UINT WindowFlags = SWP_NOZORDER | SWP_FRAMECHANGED | SWP_NOACTIVATE;
bSuccess = SetWindowPos(m_hwnd, // Window handle
HWND_TOP, // Put it at the top
Left, // New left position
WindowRect.top, // Leave top alone
WindowRect.right, // The WIDTH (not right)
WindowRect.bottom, // The HEIGHT (not bottom)
WindowFlags); // Show window options
if (bSuccess == FALSE) {
return E_INVALIDARG;
}
return NOERROR;
}
// Return the current base window left position
STDMETHODIMP CBaseControlWindow::get_Left(__out long *pLeft)
{
CheckPointer(pLeft,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
RECT WindowRect;
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect));
*pLeft = WindowRect.left;
return NOERROR;
}
// Change the current width of the base window. This property complements the
// left position property so we must keep the left edge constant and expand or
// contract to the right, the alternative would be to change the left edge so
// keeping the right edge constant but this is maybe a little more intuitive
STDMETHODIMP CBaseControlWindow::put_Width(long Width)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
BOOL bSuccess;
RECT WindowRect;
// Adjust the coordinates ready for SetWindowPos, the window rectangle we
// get back from GetWindowRect is in left,top,right and bottom while the
// coordinates SetWindowPos wants are left,top,width and height values
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect));
if (GetParent(m_hwnd)) {
MapWindowPoints(HWND_DESKTOP, GetParent(m_hwnd), (LPPOINT)&WindowRect, 2);
}
WindowRect.bottom = WindowRect.bottom - WindowRect.top;
UINT WindowFlags = SWP_NOZORDER | SWP_FRAMECHANGED | SWP_NOACTIVATE;
// This seems to have a bug in that calling SetWindowPos on a window with
// just the width changing causes it to ignore the width that you pass in
// and sets it to a mimimum value of 110 pixels wide (Windows NT 3.51)
bSuccess = SetWindowPos(m_hwnd, // Window handle
HWND_TOP, // Put it at the top
WindowRect.left, // Leave left alone
WindowRect.top, // Leave top alone
Width, // New WIDTH dimension
WindowRect.bottom, // The HEIGHT (not bottom)
WindowFlags); // Show window options
if (bSuccess == FALSE) {
return E_INVALIDARG;
}
return NOERROR;
}
// Return the current base window width
STDMETHODIMP CBaseControlWindow::get_Width(__out long *pWidth)
{
CheckPointer(pWidth,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
RECT WindowRect;
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect));
*pWidth = WindowRect.right - WindowRect.left;
return NOERROR;
}
// This allows the client program to change the top position for the window in
// the same way that changing the left position does not affect the width of
// the image so changing the top position does not affect the window height
STDMETHODIMP CBaseControlWindow::put_Top(long Top)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
BOOL bSuccess;
RECT WindowRect;
// Get the current window position in a RECT
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect));
if (GetParent(m_hwnd)) {
MapWindowPoints(HWND_DESKTOP, GetParent(m_hwnd), (LPPOINT)&WindowRect, 2);
}
// Adjust the coordinates ready for SetWindowPos, the window rectangle we
// get back from GetWindowRect is in left,top,right and bottom while the
// coordinates SetWindowPos wants are left,top,width and height values
WindowRect.bottom = WindowRect.bottom - WindowRect.top;
WindowRect.right = WindowRect.right - WindowRect.left;
UINT WindowFlags = SWP_NOZORDER | SWP_FRAMECHANGED | SWP_NOACTIVATE;
bSuccess = SetWindowPos(m_hwnd, // Window handle
HWND_TOP, // Put it at the top
WindowRect.left, // Leave left alone
Top, // New top position
WindowRect.right, // The WIDTH (not right)
WindowRect.bottom, // The HEIGHT (not bottom)
WindowFlags); // Show window flags
if (bSuccess == FALSE) {
return E_INVALIDARG;
}
return NOERROR;
}
// Return the current base window top position
STDMETHODIMP CBaseControlWindow::get_Top(long *pTop)
{
CheckPointer(pTop,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
RECT WindowRect;
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect));
*pTop = WindowRect.top;
return NOERROR;
}
// Change the height of the window, this complements the top property so when
// we change this we must keep the top position for the base window, as said
// before we could keep the bottom and grow upwards although this is perhaps
// a little more intuitive since we already have a top position property
STDMETHODIMP CBaseControlWindow::put_Height(long Height)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
BOOL bSuccess;
RECT WindowRect;
// Adjust the coordinates ready for SetWindowPos, the window rectangle we
// get back from GetWindowRect is in left,top,right and bottom while the
// coordinates SetWindowPos wants are left,top,width and height values
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect));
if (GetParent(m_hwnd)) {
MapWindowPoints(HWND_DESKTOP, GetParent(m_hwnd), (LPPOINT)&WindowRect, 2);
}
WindowRect.right = WindowRect.right - WindowRect.left;
UINT WindowFlags = SWP_NOZORDER | SWP_FRAMECHANGED | SWP_NOACTIVATE;
bSuccess = SetWindowPos(m_hwnd, // Window handle
HWND_TOP, // Put it at the top
WindowRect.left, // Leave left alone
WindowRect.top, // Leave top alone
WindowRect.right, // The WIDTH (not right)
Height, // New height dimension
WindowFlags); // Show window flags
if (bSuccess == FALSE) {
return E_INVALIDARG;
}
return NOERROR;
}
// Return the current base window height
STDMETHODIMP CBaseControlWindow::get_Height(__out long *pHeight)
{
CheckPointer(pHeight,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
RECT WindowRect;
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect));
*pHeight = WindowRect.bottom - WindowRect.top;
return NOERROR;
}
// This can be called to change the owning window. Setting the owner is done
// through this function, however to make the window a true child window the
// style must also be set to WS_CHILD. After resetting the owner to NULL an
// application should also set the style to WS_OVERLAPPED | WS_CLIPCHILDREN.
// We cannot lock the object here because the SetParent causes an interthread
// SendMessage to the owner window. If they are in GetState we will sit here
// incomplete with the critical section locked therefore blocking out source
// filter threads from accessing us. Because the source thread can't enter us
// it can't get buffers or call EndOfStream so the GetState will not complete
STDMETHODIMP CBaseControlWindow::put_Owner(OAHWND Owner)
{
// Check we are connected otherwise reject the call
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
m_hwndOwner = (HWND) Owner;
HWND hwndParent = m_hwndOwner;
// Add or remove WS_CHILD as appropriate
LONG Style = GetWindowLong(m_hwnd,GWL_STYLE);
if (Owner == NULL) {
Style &= (~WS_CHILD);
} else {
Style |= (WS_CHILD);
}
SetWindowLong(m_hwnd,GWL_STYLE,Style);
// Don't call this with the filter locked
SetParent(m_hwnd,hwndParent);
PaintWindow(TRUE);
NOTE1("Changed parent %lx",hwndParent);
return NOERROR;
}
// This complements the put_Owner to get the current owning window property
// we always return NOERROR although the returned window handle may be NULL
// to indicate no owning window (the desktop window doesn't qualify as one)
// If an application sets the owner we call SetParent, however that returns
// NULL until the WS_CHILD bit is set on, so we store the owner internally
STDMETHODIMP CBaseControlWindow::get_Owner(__out OAHWND *Owner)
{
CheckPointer(Owner,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
*Owner = (OAHWND) m_hwndOwner;
return NOERROR;
}
// And renderer supporting IVideoWindow may have an HWND set who will get any
// keyboard and mouse messages we receive posted on to them. This is separate
// from setting an owning window. By separating the two, applications may get
// messages sent on even when they have set no owner (perhaps it's maximised)
STDMETHODIMP CBaseControlWindow::put_MessageDrain(OAHWND Drain)
{
// Check we are connected otherwise reject the call
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
m_hwndDrain = (HWND) Drain;
return NOERROR;
}
// Return the current message drain
STDMETHODIMP CBaseControlWindow::get_MessageDrain(__out OAHWND *Drain)
{
CheckPointer(Drain,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
*Drain = (OAHWND) m_hwndDrain;
return NOERROR;
}
// This is called by the filter graph to inform us of a message we should know
// is being sent to our owning window. We have this because as a child window
// we do not get certain messages that are only sent to top level windows. We
// must see the palette changed/changing/query messages so that we know if we
// have the foreground palette or not. We pass the message on to our window
// using SendMessage - this will cause an interthread send message to occur
STDMETHODIMP
CBaseControlWindow::NotifyOwnerMessage(OAHWND hwnd, // Window handle
long uMsg, // Message ID
LONG_PTR wParam, // Parameters
LONG_PTR lParam) // for message
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
// Only interested in these Windows messages
switch (uMsg) {
case WM_SYSCOLORCHANGE:
case WM_PALETTECHANGED:
case WM_PALETTEISCHANGING:
case WM_QUERYNEWPALETTE:
case WM_DEVMODECHANGE:
case WM_DISPLAYCHANGE:
case WM_ACTIVATEAPP:
// If we do not have an owner then ignore
if (m_hwndOwner == NULL) {
return NOERROR;
}
SendMessage(m_hwnd,uMsg,(WPARAM)wParam,(LPARAM)lParam);
break;
// do NOT fwd WM_MOVE. the parameters are the location of the parent
// window, NOT what the renderer should be looking at. But we need
// to make sure the overlay is moved with the parent window, so we
// do this.
case WM_MOVE:
PostMessage(m_hwnd,WM_PAINT,0,0);
break;
}
return NOERROR;
}
// Allow an application to have us set the base window in the foreground. We
// have this because it is difficult for one thread to do do this to a window
// owned by another thread. We ask the base window class to do the real work
STDMETHODIMP CBaseControlWindow::SetWindowForeground(long Focus)
{
// Check this is a valid automation boolean type
if (Focus != OATRUE) {
if (Focus != OAFALSE) {
return E_INVALIDARG;
}
}
// We shouldn't lock as this sends a message
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
BOOL bFocus = (Focus == OATRUE ? TRUE : FALSE);
DoSetWindowForeground(bFocus);
return NOERROR;
}
// This allows a client to set the complete window size and position in one
// atomic operation. The same affect can be had by changing each dimension
// in turn through their individual properties although some flashing will
// occur as each of them gets updated (they are better set at design time)
STDMETHODIMP
CBaseControlWindow::SetWindowPosition(long Left,long Top,long Width,long Height)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
BOOL bSuccess;
// Set the new size and position
UINT WindowFlags = SWP_NOZORDER | SWP_FRAMECHANGED | SWP_NOACTIVATE;
ASSERT(IsWindow(m_hwnd));
bSuccess = SetWindowPos(m_hwnd, // Window handle
HWND_TOP, // Put it at the top
Left, // Left position
Top, // Top position
Width, // Window width
Height, // Window height
WindowFlags); // Show window flags
ASSERT(bSuccess);
#ifdef DEBUG
DbgLog((LOG_TRACE, 1, TEXT("SWP failed error %d"), GetLastError()));
#endif
if (bSuccess == FALSE) {
return E_INVALIDARG;
}
return NOERROR;
}
// This complements the SetWindowPosition to return the current window place
// in device coordinates. As before the same information can be retrived by
// calling the property get functions individually but this is atomic and is
// therefore more suitable to a live environment rather than design time
STDMETHODIMP
CBaseControlWindow::GetWindowPosition(__out long *pLeft,__out long *pTop,__out long *pWidth,__out long *pHeight)
{
// Should check the pointers are not NULL
CheckPointer(pLeft,E_POINTER);
CheckPointer(pTop,E_POINTER);
CheckPointer(pWidth,E_POINTER);
CheckPointer(pHeight,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
RECT WindowRect;
// Get the current window coordinates
EXECUTE_ASSERT(GetWindowRect(m_hwnd,&WindowRect));
// Convert the RECT into left,top,width and height values
*pLeft = WindowRect.left;
*pTop = WindowRect.top;
*pWidth = WindowRect.right - WindowRect.left;
*pHeight = WindowRect.bottom - WindowRect.top;
return NOERROR;
}
// When a window is maximised or iconic calling GetWindowPosition will return
// the current window position (likewise for the properties). However if the
// restored size (ie the size we'll return to when normally shown) is needed
// then this should be used. When in a normal position (neither iconic nor
// maximised) then this returns the same coordinates as GetWindowPosition
STDMETHODIMP
CBaseControlWindow::GetRestorePosition(__out long *pLeft,__out long *pTop,__out long *pWidth,__out long *pHeight)
{
// Should check the pointers are not NULL
CheckPointer(pLeft,E_POINTER);
CheckPointer(pTop,E_POINTER);
CheckPointer(pWidth,E_POINTER);
CheckPointer(pHeight,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
// Use GetWindowPlacement to find the restore position
WINDOWPLACEMENT Place;
Place.length = sizeof(WINDOWPLACEMENT);
EXECUTE_ASSERT(GetWindowPlacement(m_hwnd,&Place));
RECT WorkArea;
// We must take into account any task bar present
if (SystemParametersInfo(SPI_GETWORKAREA,0,&WorkArea,FALSE) == TRUE) {
if (GetParent(m_hwnd) == NULL) {
Place.rcNormalPosition.top += WorkArea.top;
Place.rcNormalPosition.bottom += WorkArea.top;
Place.rcNormalPosition.left += WorkArea.left;
Place.rcNormalPosition.right += WorkArea.left;
}
}
// Convert the RECT into left,top,width and height values
*pLeft = Place.rcNormalPosition.left;
*pTop = Place.rcNormalPosition.top;
*pWidth = Place.rcNormalPosition.right - Place.rcNormalPosition.left;
*pHeight = Place.rcNormalPosition.bottom - Place.rcNormalPosition.top;
return NOERROR;
}
// Return the current border colour, if we are playing something to a subset
// of the base window display there is an outside area exposed. The default
// action is to paint this colour in the Windows background colour (defined
// as value COLOR_WINDOW) We reset to this default when we're disconnected
STDMETHODIMP CBaseControlWindow::get_BorderColor(__out long *Color)
{
CheckPointer(Color,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
*Color = (long) m_BorderColour;
return NOERROR;
}
// This can be called to set the current border colour
STDMETHODIMP CBaseControlWindow::put_BorderColor(long Color)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
// Have the window repainted with the new border colour
m_BorderColour = (COLORREF) Color;
PaintWindow(TRUE);
return NOERROR;
}
// Delegate fullscreen handling to plug in distributor
STDMETHODIMP CBaseControlWindow::get_FullScreenMode(__out long *FullScreenMode)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CheckPointer(FullScreenMode,E_POINTER);
return E_NOTIMPL;
}
// Delegate fullscreen handling to plug in distributor
STDMETHODIMP CBaseControlWindow::put_FullScreenMode(long FullScreenMode)
{
return E_NOTIMPL;
}
// This sets the auto show property, this property causes the base window to
// be displayed whenever we change state. This allows an application to have
// to do nothing to have the window appear but still allow them to change the
// default behaviour if for example they want to keep it hidden for longer
STDMETHODIMP CBaseControlWindow::put_AutoShow(long AutoShow)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
// Check this is a valid automation boolean type
if (AutoShow != OATRUE) {
if (AutoShow != OAFALSE) {
return E_INVALIDARG;
}
}
m_bAutoShow = (AutoShow == OATRUE ? TRUE : FALSE);
return NOERROR;
}
// This can be called to get the current auto show flag. The flag is updated
// when we connect and disconnect and through this interface all of which are
// controlled and serialised by means of the main renderer critical section
STDMETHODIMP CBaseControlWindow::get_AutoShow(__out long *AutoShow)
{
CheckPointer(AutoShow,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
*AutoShow = (m_bAutoShow == TRUE ? OATRUE : OAFALSE);
return NOERROR;
}
// Return the minimum ideal image size for the current video. This may differ
// to the actual video dimensions because we may be using DirectDraw hardware
// that has specific stretching requirements. For example the Cirrus Logic
// cards have a minimum stretch factor depending on the overlay surface size
STDMETHODIMP
CBaseControlWindow::GetMinIdealImageSize(__out long *pWidth,__out long *pHeight)
{
CheckPointer(pWidth,E_POINTER);
CheckPointer(pHeight,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
FILTER_STATE State;
// Must not be stopped for this to work correctly
m_pFilter->GetState(0,&State);
if (State == State_Stopped) {
return VFW_E_WRONG_STATE;
}
RECT DefaultRect = GetDefaultRect();
*pWidth = WIDTH(&DefaultRect);
*pHeight = HEIGHT(&DefaultRect);
return NOERROR;
}
// Return the maximum ideal image size for the current video. This may differ
// to the actual video dimensions because we may be using DirectDraw hardware
// that has specific stretching requirements. For example the Cirrus Logic
// cards have a maximum stretch factor depending on the overlay surface size
STDMETHODIMP
CBaseControlWindow::GetMaxIdealImageSize(__out long *pWidth,__out long *pHeight)
{
CheckPointer(pWidth,E_POINTER);
CheckPointer(pHeight,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
FILTER_STATE State;
// Must not be stopped for this to work correctly
m_pFilter->GetState(0,&State);
if (State == State_Stopped) {
return VFW_E_WRONG_STATE;
}
RECT DefaultRect = GetDefaultRect();
*pWidth = WIDTH(&DefaultRect);
*pHeight = HEIGHT(&DefaultRect);
return NOERROR;
}
// Allow an application to hide the cursor on our window
STDMETHODIMP
CBaseControlWindow::HideCursor(long HideCursor)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
// Check this is a valid automation boolean type
if (HideCursor != OATRUE) {
if (HideCursor != OAFALSE) {
return E_INVALIDARG;
}
}
m_bCursorHidden = (HideCursor == OATRUE ? TRUE : FALSE);
return NOERROR;
}
// Returns whether we have the cursor hidden or not
STDMETHODIMP CBaseControlWindow::IsCursorHidden(__out long *CursorHidden)
{
CheckPointer(CursorHidden,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
*CursorHidden = (m_bCursorHidden == TRUE ? OATRUE : OAFALSE);
return NOERROR;
}
// This class implements the IBasicVideo control functions (dual interface)
// we support a large number of properties and methods designed to allow the
// client (whether it be an automation controller or a C/C++ application) to
// set and get a number of video related properties such as the native video
// size. We support some methods that duplicate the properties but provide a
// more direct and efficient mechanism as many values may be changed in one
CBaseControlVideo::CBaseControlVideo(
__inout CBaseFilter *pFilter, // Owning filter
__in CCritSec *pInterfaceLock, // Locking object
__in_opt LPCTSTR pName, // Object description
__inout_opt LPUNKNOWN pUnk, // Normal COM ownership
__inout HRESULT *phr) : // OLE return code
CBaseBasicVideo(pName,pUnk),
m_pFilter(pFilter),
m_pInterfaceLock(pInterfaceLock),
m_pPin(NULL)
{
ASSERT(m_pFilter);
ASSERT(m_pInterfaceLock);
ASSERT(phr);
}
// Return an approximate average time per frame
STDMETHODIMP CBaseControlVideo::get_AvgTimePerFrame(__out REFTIME *pAvgTimePerFrame)
{
CheckPointer(pAvgTimePerFrame,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat();
if (pVideoInfo == NULL)
return E_OUTOFMEMORY;
COARefTime AvgTime(pVideoInfo->AvgTimePerFrame);
*pAvgTimePerFrame = (REFTIME) AvgTime;
return NOERROR;
}
// Return an approximate bit rate for the video
STDMETHODIMP CBaseControlVideo::get_BitRate(__out long *pBitRate)
{
CheckPointer(pBitRate,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat();
if (pVideoInfo == NULL)
return E_OUTOFMEMORY;
*pBitRate = pVideoInfo->dwBitRate;
return NOERROR;
}
// Return an approximate bit error rate
STDMETHODIMP CBaseControlVideo::get_BitErrorRate(__out long *pBitErrorRate)
{
CheckPointer(pBitErrorRate,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat();
if (pVideoInfo == NULL)
return E_OUTOFMEMORY;
*pBitErrorRate = pVideoInfo->dwBitErrorRate;
return NOERROR;
}
// This returns the current video width
STDMETHODIMP CBaseControlVideo::get_VideoWidth(__out long *pVideoWidth)
{
CheckPointer(pVideoWidth,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat();
if (pVideoInfo == NULL)
return E_OUTOFMEMORY;
*pVideoWidth = pVideoInfo->bmiHeader.biWidth;
return NOERROR;
}
// This returns the current video height
STDMETHODIMP CBaseControlVideo::get_VideoHeight(__out long *pVideoHeight)
{
CheckPointer(pVideoHeight,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat();
if (pVideoInfo == NULL)
return E_OUTOFMEMORY;
*pVideoHeight = pVideoInfo->bmiHeader.biHeight;
return NOERROR;
}
// This returns the current palette the video is using as an array allocated
// by the user. To remain consistent we use PALETTEENTRY fields to return the
// colours in rather than RGBQUADs that multimedia decided to use. The memory
// is allocated by the user so we simple copy each in turn. We check that the
// number of entries requested and the start position offset are both valid
// If the number of entries evaluates to zero then we return an S_FALSE code
STDMETHODIMP CBaseControlVideo::GetVideoPaletteEntries(long StartIndex,
long Entries,
__out long *pRetrieved,
__out_ecount_part(Entries, *pRetrieved) long *pPalette)
{
CheckPointer(pRetrieved,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
CMediaType MediaType;
// Get the video format from the derived class
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat();
if (pVideoInfo == NULL)
return E_OUTOFMEMORY;
BITMAPINFOHEADER *pHeader = HEADER(pVideoInfo);
// Is the current format palettised
if (PALETTISED(pVideoInfo) == FALSE) {
*pRetrieved = 0;
return VFW_E_NO_PALETTE_AVAILABLE;
}
// Do they just want to know how many are available
if (pPalette == NULL) {
*pRetrieved = pHeader->biClrUsed;
return NOERROR;
}
// Make sure the start position is a valid offset
if (StartIndex >= (LONG) pHeader->biClrUsed || StartIndex < 0) {
*pRetrieved = 0;
return E_INVALIDARG;
}
// Correct the number we can retrieve
LONG Available = (LONG) pHeader->biClrUsed - StartIndex;
*pRetrieved = max(0,min(Available,Entries));
if (*pRetrieved == 0) {
return S_FALSE;
}
// Copy the palette entries to the output buffer
PALETTEENTRY *pEntries = (PALETTEENTRY *) pPalette;
RGBQUAD *pColours = COLORS(pVideoInfo) + StartIndex;
for (LONG Count = 0;Count < *pRetrieved;Count++) {
pEntries[Count].peRed = pColours[Count].rgbRed;
pEntries[Count].peGreen = pColours[Count].rgbGreen;
pEntries[Count].peBlue = pColours[Count].rgbBlue;
pEntries[Count].peFlags = 0;
}
return NOERROR;
}
// This returns the current video dimensions as a method rather than a number
// of individual property get calls. For the same reasons as said before we
// cannot access the renderer media type directly as the window object thread
// may be updating it since dynamic format changes may change these values
STDMETHODIMP CBaseControlVideo::GetVideoSize(__out long *pWidth,__out long *pHeight)
{
CheckPointer(pWidth,E_POINTER);
CheckPointer(pHeight,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
// Get the video format from the derived class
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat();
if (pVideoInfo == NULL)
return E_OUTOFMEMORY;
*pWidth = pVideoInfo->bmiHeader.biWidth;
*pHeight = pVideoInfo->bmiHeader.biHeight;
return NOERROR;
}
// Set the source video rectangle as left,top,right and bottom coordinates
// rather than left,top,width and height as per OLE automation interfaces
// Then pass the rectangle on to the window object to set the source
STDMETHODIMP
CBaseControlVideo::SetSourcePosition(long Left,long Top,long Width,long Height)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT SourceRect;
SourceRect.left = Left;
SourceRect.top = Top;
SourceRect.right = Left + Width;
SourceRect.bottom = Top + Height;
// Check the source rectangle is valid
HRESULT hr = CheckSourceRect(&SourceRect);
if (FAILED(hr)) {
return hr;
}
// Now set the source rectangle
hr = SetSourceRect(&SourceRect);
if (FAILED(hr)) {
return hr;
}
return OnUpdateRectangles();
}
// Return the source rectangle in left,top,width and height rather than the
// left,top,right and bottom values that RECT uses (and which the window
// object returns through GetSourceRect) which requires a little work
STDMETHODIMP
CBaseControlVideo::GetSourcePosition(__out long *pLeft,__out long *pTop,__out long *pWidth,__out long *pHeight)
{
// Should check the pointers are non NULL
CheckPointer(pLeft,E_POINTER);
CheckPointer(pTop,E_POINTER);
CheckPointer(pWidth,E_POINTER);
CheckPointer(pHeight,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
RECT SourceRect;
CAutoLock cInterfaceLock(m_pInterfaceLock);
GetSourceRect(&SourceRect);
*pLeft = SourceRect.left;
*pTop = SourceRect.top;
*pWidth = WIDTH(&SourceRect);
*pHeight = HEIGHT(&SourceRect);
return NOERROR;
}
// Set the video destination as left,top,right and bottom coordinates rather
// than the left,top,width and height uses as per OLE automation interfaces
// Then pass the rectangle on to the window object to set the destination
STDMETHODIMP
CBaseControlVideo::SetDestinationPosition(long Left,long Top,long Width,long Height)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT DestinationRect;
DestinationRect.left = Left;
DestinationRect.top = Top;
DestinationRect.right = Left + Width;
DestinationRect.bottom = Top + Height;
// Check the target rectangle is valid
HRESULT hr = CheckTargetRect(&DestinationRect);
if (FAILED(hr)) {
return hr;
}
// Now set the new target rectangle
hr = SetTargetRect(&DestinationRect);
if (FAILED(hr)) {
return hr;
}
return OnUpdateRectangles();
}
// Return the destination rectangle in left,top,width and height rather than
// the left,top,right and bottom values that RECT uses (and which the window
// object returns through GetDestinationRect) which requires a little work
STDMETHODIMP
CBaseControlVideo::GetDestinationPosition(__out long *pLeft,__out long *pTop,__out long *pWidth,__out long *pHeight)
{
// Should check the pointers are not NULL
CheckPointer(pLeft,E_POINTER);
CheckPointer(pTop,E_POINTER);
CheckPointer(pWidth,E_POINTER);
CheckPointer(pHeight,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
RECT DestinationRect;
CAutoLock cInterfaceLock(m_pInterfaceLock);
GetTargetRect(&DestinationRect);
*pLeft = DestinationRect.left;
*pTop = DestinationRect.top;
*pWidth = WIDTH(&DestinationRect);
*pHeight = HEIGHT(&DestinationRect);
return NOERROR;
}
// Set the source left position, the source rectangle we get back from the
// window object is a true rectangle in left,top,right and bottom positions
// so all we have to do is to update the left position and pass it back. We
// must keep the current width constant when we're updating this property
STDMETHODIMP CBaseControlVideo::put_SourceLeft(long SourceLeft)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT SourceRect;
GetSourceRect(&SourceRect);
SourceRect.right = SourceLeft + WIDTH(&SourceRect);
SourceRect.left = SourceLeft;
// Check the source rectangle is valid
HRESULT hr = CheckSourceRect(&SourceRect);
if (FAILED(hr)) {
return hr;
}
// Now set the source rectangle
hr = SetSourceRect(&SourceRect);
if (FAILED(hr)) {
return hr;
}
return OnUpdateRectangles();
}
// Return the current left source video position
STDMETHODIMP CBaseControlVideo::get_SourceLeft(__out long *pSourceLeft)
{
CheckPointer(pSourceLeft,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT SourceRect;
GetSourceRect(&SourceRect);
*pSourceLeft = SourceRect.left;
return NOERROR;
}
// Set the source width, we get the current source rectangle and then update
// the right position to be the left position (thereby keeping it constant)
// plus the new source width we are passed in (it expands to the right)
STDMETHODIMP CBaseControlVideo::put_SourceWidth(long SourceWidth)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT SourceRect;
GetSourceRect(&SourceRect);
SourceRect.right = SourceRect.left + SourceWidth;
// Check the source rectangle is valid
HRESULT hr = CheckSourceRect(&SourceRect);
if (FAILED(hr)) {
return hr;
}
// Now set the source rectangle
hr = SetSourceRect(&SourceRect);
if (FAILED(hr)) {
return hr;
}
return OnUpdateRectangles();
}
// Return the current source width
STDMETHODIMP CBaseControlVideo::get_SourceWidth(__out long *pSourceWidth)
{
CheckPointer(pSourceWidth,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT SourceRect;
GetSourceRect(&SourceRect);
*pSourceWidth = WIDTH(&SourceRect);
return NOERROR;
}
// Set the source top position - changing this property does not affect the
// current source height. So changing this shunts the source rectangle up and
// down appropriately. Changing the height complements this functionality by
// keeping the top position constant and simply changing the source height
STDMETHODIMP CBaseControlVideo::put_SourceTop(long SourceTop)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT SourceRect;
GetSourceRect(&SourceRect);
SourceRect.bottom = SourceTop + HEIGHT(&SourceRect);
SourceRect.top = SourceTop;
// Check the source rectangle is valid
HRESULT hr = CheckSourceRect(&SourceRect);
if (FAILED(hr)) {
return hr;
}
// Now set the source rectangle
hr = SetSourceRect(&SourceRect);
if (FAILED(hr)) {
return hr;
}
return OnUpdateRectangles();
}
// Return the current top position
STDMETHODIMP CBaseControlVideo::get_SourceTop(__out long *pSourceTop)
{
CheckPointer(pSourceTop,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT SourceRect;
GetSourceRect(&SourceRect);
*pSourceTop = SourceRect.top;
return NOERROR;
}
// Set the source height
STDMETHODIMP CBaseControlVideo::put_SourceHeight(long SourceHeight)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT SourceRect;
GetSourceRect(&SourceRect);
SourceRect.bottom = SourceRect.top + SourceHeight;
// Check the source rectangle is valid
HRESULT hr = CheckSourceRect(&SourceRect);
if (FAILED(hr)) {
return hr;
}
// Now set the source rectangle
hr = SetSourceRect(&SourceRect);
if (FAILED(hr)) {
return hr;
}
return OnUpdateRectangles();
}
// Return the current source height
STDMETHODIMP CBaseControlVideo::get_SourceHeight(__out long *pSourceHeight)
{
CheckPointer(pSourceHeight,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT SourceRect;
GetSourceRect(&SourceRect);
*pSourceHeight = HEIGHT(&SourceRect);
return NOERROR;
}
// Set the target left position, the target rectangle we get back from the
// window object is a true rectangle in left,top,right and bottom positions
// so all we have to do is to update the left position and pass it back. We
// must keep the current width constant when we're updating this property
STDMETHODIMP CBaseControlVideo::put_DestinationLeft(long DestinationLeft)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT DestinationRect;
GetTargetRect(&DestinationRect);
DestinationRect.right = DestinationLeft + WIDTH(&DestinationRect);
DestinationRect.left = DestinationLeft;
// Check the target rectangle is valid
HRESULT hr = CheckTargetRect(&DestinationRect);
if (FAILED(hr)) {
return hr;
}
// Now set the new target rectangle
hr = SetTargetRect(&DestinationRect);
if (FAILED(hr)) {
return hr;
}
return OnUpdateRectangles();
}
// Return the left position for the destination rectangle
STDMETHODIMP CBaseControlVideo::get_DestinationLeft(__out long *pDestinationLeft)
{
CheckPointer(pDestinationLeft,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT DestinationRect;
GetTargetRect(&DestinationRect);
*pDestinationLeft = DestinationRect.left;
return NOERROR;
}
// Set the destination width
STDMETHODIMP CBaseControlVideo::put_DestinationWidth(long DestinationWidth)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT DestinationRect;
GetTargetRect(&DestinationRect);
DestinationRect.right = DestinationRect.left + DestinationWidth;
// Check the target rectangle is valid
HRESULT hr = CheckTargetRect(&DestinationRect);
if (FAILED(hr)) {
return hr;
}
// Now set the new target rectangle
hr = SetTargetRect(&DestinationRect);
if (FAILED(hr)) {
return hr;
}
return OnUpdateRectangles();
}
// Return the width for the destination rectangle
STDMETHODIMP CBaseControlVideo::get_DestinationWidth(__out long *pDestinationWidth)
{
CheckPointer(pDestinationWidth,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT DestinationRect;
GetTargetRect(&DestinationRect);
*pDestinationWidth = WIDTH(&DestinationRect);
return NOERROR;
}
// Set the target top position - changing this property does not affect the
// current target height. So changing this shunts the target rectangle up and
// down appropriately. Changing the height complements this functionality by
// keeping the top position constant and simply changing the target height
STDMETHODIMP CBaseControlVideo::put_DestinationTop(long DestinationTop)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT DestinationRect;
GetTargetRect(&DestinationRect);
DestinationRect.bottom = DestinationTop + HEIGHT(&DestinationRect);
DestinationRect.top = DestinationTop;
// Check the target rectangle is valid
HRESULT hr = CheckTargetRect(&DestinationRect);
if (FAILED(hr)) {
return hr;
}
// Now set the new target rectangle
hr = SetTargetRect(&DestinationRect);
if (FAILED(hr)) {
return hr;
}
return OnUpdateRectangles();
}
// Return the top position for the destination rectangle
STDMETHODIMP CBaseControlVideo::get_DestinationTop(__out long *pDestinationTop)
{
CheckPointer(pDestinationTop,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT DestinationRect;
GetTargetRect(&DestinationRect);
*pDestinationTop = DestinationRect.top;
return NOERROR;
}
// Set the destination height
STDMETHODIMP CBaseControlVideo::put_DestinationHeight(long DestinationHeight)
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT DestinationRect;
GetTargetRect(&DestinationRect);
DestinationRect.bottom = DestinationRect.top + DestinationHeight;
// Check the target rectangle is valid
HRESULT hr = CheckTargetRect(&DestinationRect);
if (FAILED(hr)) {
return hr;
}
// Now set the new target rectangle
hr = SetTargetRect(&DestinationRect);
if (FAILED(hr)) {
return hr;
}
return OnUpdateRectangles();
}
// Return the height for the destination rectangle
STDMETHODIMP CBaseControlVideo::get_DestinationHeight(__out long *pDestinationHeight)
{
CheckPointer(pDestinationHeight,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
RECT DestinationRect;
GetTargetRect(&DestinationRect);
*pDestinationHeight = HEIGHT(&DestinationRect);
return NOERROR;
}
// Reset the source rectangle to the full video dimensions
STDMETHODIMP CBaseControlVideo::SetDefaultSourcePosition()
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
HRESULT hr = SetDefaultSourceRect();
if (FAILED(hr)) {
return hr;
}
return OnUpdateRectangles();
}
// Return S_OK if we're using the default source otherwise S_FALSE
STDMETHODIMP CBaseControlVideo::IsUsingDefaultSource()
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
return IsDefaultSourceRect();
}
// Reset the video renderer to use the entire playback area
STDMETHODIMP CBaseControlVideo::SetDefaultDestinationPosition()
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
HRESULT hr = SetDefaultTargetRect();
if (FAILED(hr)) {
return hr;
}
return OnUpdateRectangles();
}
// Return S_OK if we're using the default target otherwise S_FALSE
STDMETHODIMP CBaseControlVideo::IsUsingDefaultDestination()
{
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
return IsDefaultTargetRect();
}
// Return a copy of the current image in the video renderer
STDMETHODIMP
CBaseControlVideo::GetCurrentImage(__inout long *pBufferSize,__out_bcount_part(*pBufferSize, *pBufferSize) long *pVideoImage)
{
CheckPointer(pBufferSize,E_POINTER);
CheckConnected(m_pPin,VFW_E_NOT_CONNECTED);
CAutoLock cInterfaceLock(m_pInterfaceLock);
FILTER_STATE State;
// Make sure we are in a paused state
if (pVideoImage != NULL) {
m_pFilter->GetState(0,&State);
if (State != State_Paused) {
return VFW_E_NOT_PAUSED;
}
return GetStaticImage(pBufferSize,pVideoImage);
}
// Just return the memory required
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat();
if (pVideoInfo == NULL)
return E_OUTOFMEMORY;
RECT SourceRect;
GetSourceRect(&SourceRect);
return GetImageSize(pVideoInfo,pBufferSize,&SourceRect);
}
// An application has two ways of using GetCurrentImage, one is to pass a real
// buffer which should be filled with the current image. The other is to pass
// a NULL buffer pointer which is interpreted as asking us to return how much
// memory is required for the image. The constraints for when the latter can
// be called are much looser. To calculate the memory required we synthesize
// a VIDEOINFO that takes into account the source rectangle that's being used
HRESULT CBaseControlVideo::GetImageSize(__in VIDEOINFOHEADER *pVideoInfo,
__out long *pBufferSize,
__in RECT *pSourceRect)
{
NOTE("Entering GetImageSize");
ASSERT(pSourceRect);
// Check we have the correct input parameters
if (pSourceRect == NULL ||
pVideoInfo == NULL ||
pBufferSize == NULL) {
return E_UNEXPECTED;
}
// Is the data format compatible
if (pVideoInfo->bmiHeader.biCompression != BI_RGB) {
if (pVideoInfo->bmiHeader.biCompression != BI_BITFIELDS) {
return E_INVALIDARG;
}
}
ASSERT(IsRectEmpty(pSourceRect) == FALSE);
BITMAPINFOHEADER bih;
bih.biWidth = WIDTH(pSourceRect);
bih.biHeight = HEIGHT(pSourceRect);
bih.biBitCount = pVideoInfo->bmiHeader.biBitCount;
LONG Size = DIBSIZE(bih);
Size += GetBitmapFormatSize(HEADER(pVideoInfo)) - SIZE_PREHEADER;
*pBufferSize = Size;
return NOERROR;
}
// Given an IMediaSample containing a linear buffer with an image and a type
// describing the bitmap make a rendering of the image into the output buffer
// This may be called by derived classes who render typical video images to
// handle the IBasicVideo GetCurrentImage method. The pVideoImage pointer may
// be NULL when passed to GetCurrentImage in which case GetImageSize will be
// called instead, which will just do the calculation of the memory required
HRESULT CBaseControlVideo::CopyImage(IMediaSample *pMediaSample,
__in VIDEOINFOHEADER *pVideoInfo,
__inout long *pBufferSize,
__out_bcount_part(*pBufferSize, *pBufferSize) BYTE *pVideoImage,
__in RECT *pSourceRect)
{
NOTE("Entering CopyImage");
ASSERT(pSourceRect);
BYTE *pCurrentImage;
// Check we have an image to copy
if (pMediaSample == NULL || pSourceRect == NULL ||
pVideoInfo == NULL || pVideoImage == NULL ||
pBufferSize == NULL) {
return E_UNEXPECTED;
}
// Is the data format compatible
if (pVideoInfo->bmiHeader.biCompression != BI_RGB) {
if (pVideoInfo->bmiHeader.biCompression != BI_BITFIELDS) {
return E_INVALIDARG;
}
}
if (*pBufferSize < 0) {
return E_INVALIDARG;
}
// Arbitrarily large size to prevent integer overflow problems
if (pVideoInfo->bmiHeader.biSize > 4096)
{
return E_INVALIDARG;
}
ASSERT(IsRectEmpty(pSourceRect) == FALSE);
BITMAPINFOHEADER bih;
bih.biWidth = WIDTH(pSourceRect);
bih.biHeight = HEIGHT(pSourceRect);
bih.biBitCount = pVideoInfo->bmiHeader.biBitCount;
DWORD Size = GetBitmapFormatSize(HEADER(pVideoInfo)) - SIZE_PREHEADER;
DWORD Total;
DWORD dwDibSize;
if( !ValidateBitmapInfoHeader( HEADER(pVideoInfo), Size)) {
return E_INVALIDARG;
}
// ValidateBitmapInfoHeader checks this but for some reason code scanning
// tools aren't picking up the annotation
__analysis_assume(Size >= sizeof(BITMAPINFOHEADER));
if (FAILED(SAFE_DIBSIZE(&bih, &dwDibSize))) {
return E_INVALIDARG;
}
if (FAILED(DWordAdd(Size, dwDibSize, &Total))) {
return E_INVALIDARG;
}
// Make sure we have a large enough buffer
if ((DWORD)*pBufferSize < Total) {
return E_OUTOFMEMORY;
}
// Copy the BITMAPINFO
CopyMemory((PVOID)pVideoImage, (PVOID)&pVideoInfo->bmiHeader, Size);
((BITMAPINFOHEADER *)pVideoImage)->biWidth = WIDTH(pSourceRect);
((BITMAPINFOHEADER *)pVideoImage)->biHeight = HEIGHT(pSourceRect);
((BITMAPINFOHEADER *)pVideoImage)->biSizeImage = DIBSIZE(bih);
BYTE *pImageData = pVideoImage + Size;
// Get the pointer to it's image data
HRESULT hr = pMediaSample->GetPointer(&pCurrentImage);
if (FAILED(hr)) {
return hr;
}
// Now we are ready to start copying the source scan lines
LONG ScanLine = (pVideoInfo->bmiHeader.biBitCount / 8) * WIDTH(pSourceRect);
LONG LinesToSkip = pVideoInfo->bmiHeader.biHeight;
LinesToSkip -= pSourceRect->top + HEIGHT(pSourceRect);
pCurrentImage += LinesToSkip * DIBWIDTHBYTES(pVideoInfo->bmiHeader);
pCurrentImage += pSourceRect->left * (pVideoInfo->bmiHeader.biBitCount / 8);
// Even money on this GP faulting sometime...
for (LONG Line = 0;Line < HEIGHT(pSourceRect);Line++) {
CopyMemory((PVOID)pImageData, (PVOID)pCurrentImage, ScanLine);
pImageData += DIBWIDTHBYTES(*(BITMAPINFOHEADER *)pVideoImage);
pCurrentImage += DIBWIDTHBYTES(pVideoInfo->bmiHeader);
}
return NOERROR;
}
// Called when we change media types either during connection or dynamically
// We inform the filter graph and therefore the application that the video
// size may have changed, we don't bother looking to see if it really has as
// we leave that to the application - the dimensions are the event parameters
HRESULT CBaseControlVideo::OnVideoSizeChange()
{
// Get the video format from the derived class
VIDEOINFOHEADER *pVideoInfo = GetVideoFormat();
if (pVideoInfo == NULL)
return E_OUTOFMEMORY;
WORD Width = (WORD) pVideoInfo->bmiHeader.biWidth;
WORD Height = (WORD) pVideoInfo->bmiHeader.biHeight;
return m_pFilter->NotifyEvent(EC_VIDEO_SIZE_CHANGED,
MAKELPARAM(Width,Height),
MAKEWPARAM(0,0));
}
// Set the video source rectangle. We must check the source rectangle against
// the actual video dimensions otherwise when we come to draw the pictures we
// get access violations as GDI tries to touch data outside of the image data
// Although we store the rectangle in left, top, right and bottom coordinates
// instead of left, top, width and height as OLE uses we do take into account
// that the rectangle is used up to, but not including, the right column and
// bottom row of pixels, see the Win32 documentation on RECT for more details
HRESULT CBaseControlVideo::CheckSourceRect(__in RECT *pSourceRect)
{
CheckPointer(pSourceRect,E_POINTER);
LONG Width,Height;
GetVideoSize(&Width,&Height);
// Check the coordinates are greater than zero
// and that the rectangle is valid (left<right, top<bottom)
if ((pSourceRect->left >= pSourceRect->right) ||
(pSourceRect->left < 0) ||
(pSourceRect->top >= pSourceRect->bottom) ||
(pSourceRect->top < 0)) {
return E_INVALIDARG;
}
// Check the coordinates are less than the extents
if ((pSourceRect->right > Width) ||
(pSourceRect->bottom > Height)) {
return E_INVALIDARG;
}
return NOERROR;
}
// Check the target rectangle has some valid coordinates, which amounts to
// little more than checking the destination rectangle isn't empty. Derived
// classes may call this when they have their SetTargetRect method called to
// check the rectangle validity, we do not update the rectangles passed in
// Although we store the rectangle in left, top, right and bottom coordinates
// instead of left, top, width and height as OLE uses we do take into account
// that the rectangle is used up to, but not including, the right column and
// bottom row of pixels, see the Win32 documentation on RECT for more details
HRESULT CBaseControlVideo::CheckTargetRect(__in RECT *pTargetRect)
{
// Check the pointer is valid
if (pTargetRect == NULL) {
return E_POINTER;
}
// These overflow the WIDTH and HEIGHT checks
if (pTargetRect->left > pTargetRect->right ||
pTargetRect->top > pTargetRect->bottom) {
return E_INVALIDARG;
}
// Check the rectangle has valid coordinates
if (WIDTH(pTargetRect) <= 0 || HEIGHT(pTargetRect) <= 0) {
return E_INVALIDARG;
}
ASSERT(IsRectEmpty(pTargetRect) == FALSE);
return NOERROR;
}