Add directshow strmbase library source code from Microsoft repo

Original repo is here:
https://github.com/microsoft/Windows-classic-samples

Part-of: <https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/1577>
This commit is contained in:
Loic Le Page 2022-01-26 20:43:09 +01:00 committed by Loïc Le Page
parent 42c6a26aea
commit 42bdeaf52c
73 changed files with 37934 additions and 3 deletions

View file

@ -99,6 +99,7 @@ option('dc1394', type : 'feature', value : 'auto', description : 'libdc1394 IIDC
option('decklink', type : 'feature', value : 'auto', description : 'DeckLink audio/video source/sink plugin')
option('directfb', type : 'feature', value : 'auto', description : 'DirectFB video sink plugin')
option('directsound', type : 'feature', value : 'auto', description : 'Directsound audio source plugin')
option('directshow', type : 'feature', value : 'auto', description : 'Directshow audio/video plugins')
option('dtls', type : 'feature', value : 'auto', description : 'DTLS encoder and decoder plugin')
option('dts', type : 'feature', value : 'auto', description : 'DTS audio decoder plugin (GPL - only built if gpl option is also enabled!)')
option('dvb', type : 'feature', value : 'auto', description : 'DVB video bin and source plugin')

View file

@ -0,0 +1,26 @@
if host_system == 'windows'
# Check whether we're building for UWP apps
code = '''
#include <windows.h>
#if !(WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) && !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP))
#error "Not building for UWP"
#endif'''
if cc.compiles(code, name : 'building for UWP')
if get_option('directshow').enabled()
error('directshow plugins cannot be built for UWP')
endif
subdir_done()
endif
endif
if cxx.get_id() != 'msvc' or get_option('directshow').disabled()
if get_option('directshow').enabled()
error('directshow plugins can only be built with MSVC')
endif
subdir_done()
endif
subdir('strmbase')
#subdir('dshowdecwrapper')
#subdir('dshowsrcwrapper')
#subdir('dshowvideosink')

View file

@ -0,0 +1,24 @@
The MIT License (MIT)
Copyright (c) Microsoft Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
Portions of this repo are provided under the SIL Open Font License.
See the LICENSE file in individual samples for additional details.

View file

@ -0,0 +1,111 @@
//------------------------------------------------------------------------------
// File: AMExtra.cpp
//
// Desc: DirectShow base classes - implements CRenderedInputPin class.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h> // DirectShow base class definitions
#include <mmsystem.h> // Needed for definition of timeGetTime
#include <limits.h> // Standard data type limit definitions
#include <measure.h> // Used for time critical log functions
#include "amextra.h"
#pragma warning(disable:4355)
// Implements CRenderedInputPin class
CRenderedInputPin::CRenderedInputPin(__in_opt LPCTSTR pObjectName,
__in CBaseFilter *pFilter,
__in CCritSec *pLock,
__inout HRESULT *phr,
__in_opt LPCWSTR pName) :
CBaseInputPin(pObjectName, pFilter, pLock, phr, pName),
m_bAtEndOfStream(FALSE),
m_bCompleteNotified(FALSE)
{
}
#ifdef UNICODE
CRenderedInputPin::CRenderedInputPin(__in_opt LPCSTR pObjectName,
__in CBaseFilter *pFilter,
__in CCritSec *pLock,
__inout HRESULT *phr,
__in_opt LPCWSTR pName) :
CBaseInputPin(pObjectName, pFilter, pLock, phr, pName),
m_bAtEndOfStream(FALSE),
m_bCompleteNotified(FALSE)
{
}
#endif
// Flush end of stream condition - caller should do any
// necessary stream level locking before calling this
STDMETHODIMP CRenderedInputPin::EndOfStream()
{
HRESULT hr = CheckStreaming();
// Do EC_COMPLETE handling for rendered pins
if (S_OK == hr && !m_bAtEndOfStream) {
m_bAtEndOfStream = TRUE;
FILTER_STATE fs;
EXECUTE_ASSERT(SUCCEEDED(m_pFilter->GetState(0, &fs)));
if (fs == State_Running) {
DoCompleteHandling();
}
}
return hr;
}
// Called to complete the flush
STDMETHODIMP CRenderedInputPin::EndFlush()
{
CAutoLock lck(m_pLock);
// Clean up renderer state
m_bAtEndOfStream = FALSE;
m_bCompleteNotified = FALSE;
return CBaseInputPin::EndFlush();
}
// Notify of Run() from filter
HRESULT CRenderedInputPin::Run(REFERENCE_TIME tStart)
{
UNREFERENCED_PARAMETER(tStart);
m_bCompleteNotified = FALSE;
if (m_bAtEndOfStream) {
DoCompleteHandling();
}
return S_OK;
}
// Clear status on going into paused state
HRESULT CRenderedInputPin::Active()
{
m_bAtEndOfStream = FALSE;
m_bCompleteNotified = FALSE;
return CBaseInputPin::Active();
}
// Do stuff to deliver end of stream
void CRenderedInputPin::DoCompleteHandling()
{
ASSERT(m_bAtEndOfStream);
if (!m_bCompleteNotified) {
m_bCompleteNotified = TRUE;
m_pFilter->NotifyEvent(EC_COMPLETE, S_OK, (LONG_PTR)(IBaseFilter *)m_pFilter);
}
}

View file

@ -0,0 +1,56 @@
//------------------------------------------------------------------------------
// File: AMExtra.h
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef __AMEXTRA__
#define __AMEXTRA__
// Simple rendered input pin
//
// NOTE if your filter queues stuff before rendering then it may not be
// appropriate to use this class
//
// In that case queue the end of stream condition until the last sample
// is actually rendered and flush the condition appropriately
class CRenderedInputPin : public CBaseInputPin
{
public:
CRenderedInputPin(__in_opt LPCTSTR pObjectName,
__in CBaseFilter *pFilter,
__in CCritSec *pLock,
__inout HRESULT *phr,
__in_opt LPCWSTR pName);
#ifdef UNICODE
CRenderedInputPin(__in_opt LPCSTR pObjectName,
__in CBaseFilter *pFilter,
__in CCritSec *pLock,
__inout HRESULT *phr,
__in_opt LPCWSTR pName);
#endif
// Override methods to track end of stream state
STDMETHODIMP EndOfStream();
STDMETHODIMP EndFlush();
HRESULT Active();
HRESULT Run(REFERENCE_TIME tStart);
protected:
// Member variables to track state
BOOL m_bAtEndOfStream; // Set by EndOfStream
BOOL m_bCompleteNotified; // Set when we notify for EC_COMPLETE
private:
void DoCompleteHandling();
};
#endif // __AMEXTRA__

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,275 @@
//------------------------------------------------------------------------------
// File: AMVideo.cpp
//
// Desc: DirectShow base classes - implements helper functions for
// bitmap formats.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#include <limits.h>
// These are bit field masks for true colour devices
const DWORD bits555[] = {0x007C00,0x0003E0,0x00001F};
const DWORD bits565[] = {0x00F800,0x0007E0,0x00001F};
const DWORD bits888[] = {0xFF0000,0x00FF00,0x0000FF};
// This maps bitmap subtypes into a bits per pixel value and also a
// name. unicode and ansi versions are stored because we have to
// return a pointer to a static string.
const struct {
const GUID *pSubtype;
WORD BitCount;
CHAR *pName;
WCHAR *wszName;
} BitCountMap[] = { &MEDIASUBTYPE_RGB1, 1, "RGB Monochrome", L"RGB Monochrome",
&MEDIASUBTYPE_RGB4, 4, "RGB VGA", L"RGB VGA",
&MEDIASUBTYPE_RGB8, 8, "RGB 8", L"RGB 8",
&MEDIASUBTYPE_RGB565, 16, "RGB 565 (16 bit)", L"RGB 565 (16 bit)",
&MEDIASUBTYPE_RGB555, 16, "RGB 555 (16 bit)", L"RGB 555 (16 bit)",
&MEDIASUBTYPE_RGB24, 24, "RGB 24", L"RGB 24",
&MEDIASUBTYPE_RGB32, 32, "RGB 32", L"RGB 32",
&MEDIASUBTYPE_ARGB32, 32, "ARGB 32", L"ARGB 32",
&MEDIASUBTYPE_Overlay, 0, "Overlay", L"Overlay",
&GUID_NULL, 0, "UNKNOWN", L"UNKNOWN"
};
// Return the size of the bitmap as defined by this header
STDAPI_(DWORD) GetBitmapSize(const BITMAPINFOHEADER *pHeader)
{
return DIBSIZE(*pHeader);
}
// This is called if the header has a 16 bit colour depth and needs to work
// out the detailed type from the bit fields (either RGB 565 or RGB 555)
STDAPI_(const GUID) GetTrueColorType(const BITMAPINFOHEADER *pbmiHeader)
{
BITMAPINFO *pbmInfo = (BITMAPINFO *) pbmiHeader;
ASSERT(pbmiHeader->biBitCount == 16);
// If its BI_RGB then it's RGB 555 by default
if (pbmiHeader->biCompression == BI_RGB) {
return MEDIASUBTYPE_RGB555;
}
// Compare the bit fields with RGB 555
DWORD *pMask = (DWORD *) pbmInfo->bmiColors;
if (pMask[0] == bits555[0]) {
if (pMask[1] == bits555[1]) {
if (pMask[2] == bits555[2]) {
return MEDIASUBTYPE_RGB555;
}
}
}
// Compare the bit fields with RGB 565
pMask = (DWORD *) pbmInfo->bmiColors;
if (pMask[0] == bits565[0]) {
if (pMask[1] == bits565[1]) {
if (pMask[2] == bits565[2]) {
return MEDIASUBTYPE_RGB565;
}
}
}
return GUID_NULL;
}
// Given a BITMAPINFOHEADER structure this returns the GUID sub type that is
// used to describe it in format negotiations. For example a video codec fills
// in the format block with a VIDEOINFO structure, it also fills in the major
// type with MEDIATYPE_VIDEO and the subtype with a GUID that matches the bit
// count, for example if it is an eight bit image then MEDIASUBTYPE_RGB8
STDAPI_(const GUID) GetBitmapSubtype(const BITMAPINFOHEADER *pbmiHeader)
{
ASSERT(pbmiHeader);
// If it's not RGB then create a GUID from the compression type
if (pbmiHeader->biCompression != BI_RGB) {
if (pbmiHeader->biCompression != BI_BITFIELDS) {
FOURCCMap FourCCMap(pbmiHeader->biCompression);
return (const GUID) FourCCMap;
}
}
// Map the RGB DIB bit depth to a image GUID
switch(pbmiHeader->biBitCount) {
case 1 : return MEDIASUBTYPE_RGB1;
case 4 : return MEDIASUBTYPE_RGB4;
case 8 : return MEDIASUBTYPE_RGB8;
case 16 : return GetTrueColorType(pbmiHeader);
case 24 : return MEDIASUBTYPE_RGB24;
case 32 : return MEDIASUBTYPE_RGB32;
}
return GUID_NULL;
}
// Given a video bitmap subtype we return the number of bits per pixel it uses
// We return a WORD bit count as thats what the BITMAPINFOHEADER uses. If the
// GUID subtype is not found in the table we return an invalid USHRT_MAX
STDAPI_(WORD) GetBitCount(const GUID *pSubtype)
{
ASSERT(pSubtype);
const GUID *pMediaSubtype;
INT iPosition = 0;
// Scan the mapping list seeing if the source GUID matches any known
// bitmap subtypes, the list is terminated by a GUID_NULL entry
while (TRUE) {
pMediaSubtype = BitCountMap[iPosition].pSubtype;
if (IsEqualGUID(*pMediaSubtype,GUID_NULL)) {
return USHRT_MAX;
}
if (IsEqualGUID(*pMediaSubtype,*pSubtype)) {
return BitCountMap[iPosition].BitCount;
}
iPosition++;
}
}
// Given a bitmap subtype we return a description name that can be used for
// debug purposes. In a retail build this function still returns the names
// If the subtype isn't found in the lookup table we return string UNKNOWN
int LocateSubtype(const GUID *pSubtype)
{
ASSERT(pSubtype);
const GUID *pMediaSubtype;
INT iPosition = 0;
// Scan the mapping list seeing if the source GUID matches any known
// bitmap subtypes, the list is terminated by a GUID_NULL entry
while (TRUE) {
pMediaSubtype = BitCountMap[iPosition].pSubtype;
if (IsEqualGUID(*pMediaSubtype,*pSubtype) ||
IsEqualGUID(*pMediaSubtype,GUID_NULL)
)
{
break;
}
iPosition++;
}
return iPosition;
}
STDAPI_(WCHAR *) GetSubtypeNameW(const GUID *pSubtype)
{
return BitCountMap[LocateSubtype(pSubtype)].wszName;
}
STDAPI_(CHAR *) GetSubtypeNameA(const GUID *pSubtype)
{
return BitCountMap[LocateSubtype(pSubtype)].pName;
}
#ifndef GetSubtypeName
#error wxutil.h should have defined GetSubtypeName
#endif
#undef GetSubtypeName
// this is here for people that linked to it directly; most people
// would use the header file that picks the A or W version.
STDAPI_(CHAR *) GetSubtypeName(const GUID *pSubtype)
{
return GetSubtypeNameA(pSubtype);
}
// The mechanism for describing a bitmap format is with the BITMAPINFOHEADER
// This is really messy to deal with because it invariably has fields that
// follow it holding bit fields, palettes and the rest. This function gives
// the number of bytes required to hold a VIDEOINFO that represents it. This
// count includes the prefix information (like the rcSource rectangle) the
// BITMAPINFOHEADER field, and any other colour information on the end.
//
// WARNING If you want to copy a BITMAPINFOHEADER into a VIDEOINFO always make
// sure that you use the HEADER macro because the BITMAPINFOHEADER field isn't
// right at the start of the VIDEOINFO (there are a number of other fields),
//
// CopyMemory(HEADER(pVideoInfo),pbmi,sizeof(BITMAPINFOHEADER));
//
STDAPI_(LONG) GetBitmapFormatSize(const BITMAPINFOHEADER *pHeader)
{
// Everyone has this to start with this
LONG Size = SIZE_PREHEADER + pHeader->biSize;
ASSERT(pHeader->biSize >= sizeof(BITMAPINFOHEADER));
// Does this format use a palette, if the number of colours actually used
// is zero then it is set to the maximum that are allowed for that colour
// depth (an example is 256 for eight bits). Truecolour formats may also
// pass a palette with them in which case the used count is non zero
// This would scare me.
ASSERT(pHeader->biBitCount <= iPALETTE || pHeader->biClrUsed == 0);
if (pHeader->biBitCount <= iPALETTE || pHeader->biClrUsed) {
LONG Entries = (DWORD) 1 << pHeader->biBitCount;
if (pHeader->biClrUsed) {
Entries = pHeader->biClrUsed;
}
Size += Entries * sizeof(RGBQUAD);
}
// Truecolour formats may have a BI_BITFIELDS specifier for compression
// type which means that room for three DWORDs should be allocated that
// specify where in each pixel the RGB colour components may be found
if (pHeader->biCompression == BI_BITFIELDS) {
Size += SIZE_MASKS;
}
// A BITMAPINFO for a palettised image may also contain a palette map that
// provides the information to map from a source palette to a destination
// palette during a BitBlt for example, because this information is only
// ever processed during drawing you don't normally store the palette map
// nor have any way of knowing if it is present in the data structure
return Size;
}
// Returns TRUE if the VIDEOINFO contains a palette
STDAPI_(BOOL) ContainsPalette(const VIDEOINFOHEADER *pVideoInfo)
{
if (PALETTISED(pVideoInfo) == FALSE) {
if (pVideoInfo->bmiHeader.biClrUsed == 0) {
return FALSE;
}
}
return TRUE;
}
// Return a pointer to the first entry in a palette
STDAPI_(const RGBQUAD *) GetBitmapPalette(const VIDEOINFOHEADER *pVideoInfo)
{
if (pVideoInfo->bmiHeader.biCompression == BI_BITFIELDS) {
return TRUECOLOR(pVideoInfo)->bmiColors;
}
return COLORS(pVideoInfo);
}

View file

@ -0,0 +1,360 @@
//------------------------------------------------------------------------------
// File: ArithUtil.cpp
//
// Desc: DirectShow base classes - implements helper classes for building
// multimedia filters.
//
// Copyright (c) 1992-2004 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
//
// Declare function from largeint.h we need so that PPC can build
//
//
// Enlarged integer divide - 64-bits / 32-bits > 32-bits
//
#ifndef _X86_
#define LLtoU64(x) (*(unsigned __int64*)(void*)(&(x)))
__inline
ULONG
WINAPI
EnlargedUnsignedDivide (
IN ULARGE_INTEGER Dividend,
IN ULONG Divisor,
IN PULONG Remainder
)
{
// return remainder if necessary
if (Remainder != NULL)
*Remainder = (ULONG)(LLtoU64(Dividend) % Divisor);
return (ULONG)(LLtoU64(Dividend) / Divisor);
}
#else
__inline
ULONG
WINAPI
EnlargedUnsignedDivide (
IN ULARGE_INTEGER Dividend,
IN ULONG Divisor,
IN PULONG Remainder
)
{
ULONG ulResult;
_asm {
mov eax,Dividend.LowPart
mov edx,Dividend.HighPart
mov ecx,Remainder
div Divisor
or ecx,ecx
jz short label
mov [ecx],edx
label:
mov ulResult,eax
}
return ulResult;
}
#endif
/* Arithmetic functions to help with time format conversions
*/
#ifdef _M_ALPHA
// work around bug in version 12.00.8385 of the alpha compiler where
// UInt32x32To64 sign-extends its arguments (?)
#undef UInt32x32To64
#define UInt32x32To64(a, b) (((ULONGLONG)((ULONG)(a)) & 0xffffffff) * ((ULONGLONG)((ULONG)(b)) & 0xffffffff))
#endif
/* Compute (a * b + d) / c */
LONGLONG WINAPI llMulDiv(LONGLONG a, LONGLONG b, LONGLONG c, LONGLONG d)
{
/* Compute the absolute values to avoid signed arithmetic problems */
ULARGE_INTEGER ua, ub;
DWORDLONG uc;
ua.QuadPart = (DWORDLONG)(a >= 0 ? a : -a);
ub.QuadPart = (DWORDLONG)(b >= 0 ? b : -b);
uc = (DWORDLONG)(c >= 0 ? c : -c);
BOOL bSign = (a < 0) ^ (b < 0);
/* Do long multiplication */
ULARGE_INTEGER p[2];
p[0].QuadPart = UInt32x32To64(ua.LowPart, ub.LowPart);
/* This next computation cannot overflow into p[1].HighPart because
the max number we can compute here is:
(2 ** 32 - 1) * (2 ** 32 - 1) + // ua.LowPart * ub.LowPart
(2 ** 32) * (2 ** 31) * (2 ** 32 - 1) * 2 // x.LowPart * y.HighPart * 2
== 2 ** 96 - 2 ** 64 + (2 ** 64 - 2 ** 33 + 1)
== 2 ** 96 - 2 ** 33 + 1
< 2 ** 96
*/
ULARGE_INTEGER x;
x.QuadPart = UInt32x32To64(ua.LowPart, ub.HighPart) +
UInt32x32To64(ua.HighPart, ub.LowPart) +
p[0].HighPart;
p[0].HighPart = x.LowPart;
p[1].QuadPart = UInt32x32To64(ua.HighPart, ub.HighPart) + x.HighPart;
if (d != 0) {
ULARGE_INTEGER ud[2];
if (bSign) {
ud[0].QuadPart = (DWORDLONG)(-d);
if (d > 0) {
/* -d < 0 */
ud[1].QuadPart = (DWORDLONG)(LONGLONG)-1;
} else {
ud[1].QuadPart = (DWORDLONG)0;
}
} else {
ud[0].QuadPart = (DWORDLONG)d;
if (d < 0) {
ud[1].QuadPart = (DWORDLONG)(LONGLONG)-1;
} else {
ud[1].QuadPart = (DWORDLONG)0;
}
}
/* Now do extended addition */
ULARGE_INTEGER uliTotal;
/* Add ls DWORDs */
uliTotal.QuadPart = (DWORDLONG)ud[0].LowPart + p[0].LowPart;
p[0].LowPart = uliTotal.LowPart;
/* Propagate carry */
uliTotal.LowPart = uliTotal.HighPart;
uliTotal.HighPart = 0;
/* Add 2nd most ls DWORDs */
uliTotal.QuadPart += (DWORDLONG)ud[0].HighPart + p[0].HighPart;
p[0].HighPart = uliTotal.LowPart;
/* Propagate carry */
uliTotal.LowPart = uliTotal.HighPart;
uliTotal.HighPart = 0;
/* Add MS DWORDLONGs - no carry expected */
p[1].QuadPart += ud[1].QuadPart + uliTotal.QuadPart;
/* Now see if we got a sign change from the addition */
if ((LONG)p[1].HighPart < 0) {
bSign = !bSign;
/* Negate the current value (ugh!) */
p[0].QuadPart = ~p[0].QuadPart;
p[1].QuadPart = ~p[1].QuadPart;
p[0].QuadPart += 1;
p[1].QuadPart += (p[0].QuadPart == 0);
}
}
/* Now for the division */
if (c < 0) {
bSign = !bSign;
}
/* This will catch c == 0 and overflow */
if (uc <= p[1].QuadPart) {
return bSign ? (LONGLONG)0x8000000000000000 :
(LONGLONG)0x7FFFFFFFFFFFFFFF;
}
DWORDLONG ullResult;
/* Do the division */
/* If the dividend is a DWORD_LONG use the compiler */
if (p[1].QuadPart == 0) {
ullResult = p[0].QuadPart / uc;
return bSign ? -(LONGLONG)ullResult : (LONGLONG)ullResult;
}
/* If the divisor is a DWORD then its simpler */
ULARGE_INTEGER ulic;
ulic.QuadPart = uc;
if (ulic.HighPart == 0) {
ULARGE_INTEGER uliDividend;
ULARGE_INTEGER uliResult;
DWORD dwDivisor = (DWORD)uc;
// ASSERT(p[1].HighPart == 0 && p[1].LowPart < dwDivisor);
uliDividend.HighPart = p[1].LowPart;
uliDividend.LowPart = p[0].HighPart;
#ifndef USE_LARGEINT
uliResult.HighPart = (DWORD)(uliDividend.QuadPart / dwDivisor);
p[0].HighPart = (DWORD)(uliDividend.QuadPart % dwDivisor);
uliResult.LowPart = 0;
uliResult.QuadPart = p[0].QuadPart / dwDivisor + uliResult.QuadPart;
#else
/* NOTE - this routine will take exceptions if
the result does not fit in a DWORD
*/
if (uliDividend.QuadPart >= (DWORDLONG)dwDivisor) {
uliResult.HighPart = EnlargedUnsignedDivide(
uliDividend,
dwDivisor,
&p[0].HighPart);
} else {
uliResult.HighPart = 0;
}
uliResult.LowPart = EnlargedUnsignedDivide(
p[0],
dwDivisor,
NULL);
#endif
return bSign ? -(LONGLONG)uliResult.QuadPart :
(LONGLONG)uliResult.QuadPart;
}
ullResult = 0;
/* OK - do long division */
for (int i = 0; i < 64; i++) {
ullResult <<= 1;
/* Shift 128 bit p left 1 */
p[1].QuadPart <<= 1;
if ((p[0].HighPart & 0x80000000) != 0) {
p[1].LowPart++;
}
p[0].QuadPart <<= 1;
/* Compare */
if (uc <= p[1].QuadPart) {
p[1].QuadPart -= uc;
ullResult += 1;
}
}
return bSign ? - (LONGLONG)ullResult : (LONGLONG)ullResult;
}
LONGLONG WINAPI Int64x32Div32(LONGLONG a, LONG b, LONG c, LONG d)
{
ULARGE_INTEGER ua;
DWORD ub;
DWORD uc;
/* Compute the absolute values to avoid signed arithmetic problems */
ua.QuadPart = (DWORDLONG)(a >= 0 ? a : -a);
ub = (DWORD)(b >= 0 ? b : -b);
uc = (DWORD)(c >= 0 ? c : -c);
BOOL bSign = (a < 0) ^ (b < 0);
/* Do long multiplication */
ULARGE_INTEGER p0;
DWORD p1;
p0.QuadPart = UInt32x32To64(ua.LowPart, ub);
if (ua.HighPart != 0) {
ULARGE_INTEGER x;
x.QuadPart = UInt32x32To64(ua.HighPart, ub) + p0.HighPart;
p0.HighPart = x.LowPart;
p1 = x.HighPart;
} else {
p1 = 0;
}
if (d != 0) {
ULARGE_INTEGER ud0;
DWORD ud1;
if (bSign) {
//
// Cast d to LONGLONG first otherwise -0x80000000 sign extends
// incorrectly
//
ud0.QuadPart = (DWORDLONG)(-(LONGLONG)d);
if (d > 0) {
/* -d < 0 */
ud1 = (DWORD)-1;
} else {
ud1 = (DWORD)0;
}
} else {
ud0.QuadPart = (DWORDLONG)d;
if (d < 0) {
ud1 = (DWORD)-1;
} else {
ud1 = (DWORD)0;
}
}
/* Now do extended addition */
ULARGE_INTEGER uliTotal;
/* Add ls DWORDs */
uliTotal.QuadPart = (DWORDLONG)ud0.LowPart + p0.LowPart;
p0.LowPart = uliTotal.LowPart;
/* Propagate carry */
uliTotal.LowPart = uliTotal.HighPart;
uliTotal.HighPart = 0;
/* Add 2nd most ls DWORDs */
uliTotal.QuadPart += (DWORDLONG)ud0.HighPart + p0.HighPart;
p0.HighPart = uliTotal.LowPart;
/* Add MS DWORDLONGs - no carry expected */
p1 += ud1 + uliTotal.HighPart;
/* Now see if we got a sign change from the addition */
if ((LONG)p1 < 0) {
bSign = !bSign;
/* Negate the current value (ugh!) */
p0.QuadPart = ~p0.QuadPart;
p1 = ~p1;
p0.QuadPart += 1;
p1 += (p0.QuadPart == 0);
}
}
/* Now for the division */
if (c < 0) {
bSign = !bSign;
}
/* This will catch c == 0 and overflow */
if (uc <= p1) {
return bSign ? (LONGLONG)0x8000000000000000 :
(LONGLONG)0x7FFFFFFFFFFFFFFF;
}
/* Do the division */
/* If the divisor is a DWORD then its simpler */
ULARGE_INTEGER uliDividend;
ULARGE_INTEGER uliResult;
DWORD dwDivisor = uc;
uliDividend.HighPart = p1;
uliDividend.LowPart = p0.HighPart;
/* NOTE - this routine will take exceptions if
the result does not fit in a DWORD
*/
if (uliDividend.QuadPart >= (DWORDLONG)dwDivisor) {
uliResult.HighPart = EnlargedUnsignedDivide(
uliDividend,
dwDivisor,
&p0.HighPart);
} else {
uliResult.HighPart = 0;
}
uliResult.LowPart = EnlargedUnsignedDivide(
p0,
dwDivisor,
NULL);
return bSign ? -(LONGLONG)uliResult.QuadPart :
(LONGLONG)uliResult.QuadPart;
}

View file

@ -0,0 +1,74 @@
//------------------------------------------------------------------------------
// File: Cache.h
//
// Desc: DirectShow base classes - efines a non-MFC generic cache class.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
/* This class implements a simple cache. A cache object is instantiated
with the number of items it is to hold. An item is a pointer to an
object derived from CBaseObject (helps reduce memory leaks). The cache
can then have objects added to it and removed from it. The cache size
is fixed at construction time and may therefore run out or be flooded.
If it runs out it returns a NULL pointer, if it fills up it also returns
a NULL pointer instead of a pointer to the object just inserted */
/* Making these classes inherit from CBaseObject does nothing for their
functionality but it allows us to check there are no memory leaks */
/* WARNING Be very careful when using this class, what it lets you do is
store and retrieve objects so that you can minimise object creation
which in turns improves efficiency. However the object you store is
exactly the same as the object you get back which means that it short
circuits the constructor initialisation phase. This means any class
variables the object has (eg pointers) are highly likely to be invalid.
Therefore ensure you reinitialise the object before using it again */
#ifndef __CACHE__
#define __CACHE__
class CCache : CBaseObject {
/* Make copy constructor and assignment operator inaccessible */
CCache(const CCache &refCache);
CCache &operator=(const CCache &refCache);
private:
/* These are initialised in the constructor. The first variable points to
an array of pointers, each of which points to a CBaseObject derived
object. The m_iCacheSize is the static fixed size for the cache and the
m_iUsed defines the number of places filled with objects at any time.
We fill the array of pointers from the start (ie m_ppObjects[0] first)
and then only add and remove objects from the end position, so in this
respect the array of object pointers should be treated as a stack */
CBaseObject **m_ppObjects;
const INT m_iCacheSize;
INT m_iUsed;
public:
CCache(__in_opt LPCTSTR pName,INT iItems);
virtual ~CCache();
/* Add an item to the cache */
CBaseObject *AddToCache(__in CBaseObject *pObject);
/* Remove an item from the cache */
CBaseObject *RemoveFromCache();
/* Delete all the objects held in the cache */
void RemoveAll(void);
/* Return the cache size which is set during construction */
INT GetCacheSize(void) const {return m_iCacheSize;};
};
#endif /* __CACHE__ */

View file

@ -0,0 +1,120 @@
// Copyright (c) 1992 - 1997 Microsoft Corporation. All Rights Reserved.
#ifndef _CHECKBMI_H_
#define _CHECKBMI_H_
#ifdef __cplusplus
extern "C" {
#endif
// Helper
__inline BOOL MultiplyCheckOverflow(DWORD a, DWORD b, __deref_out_range(==, a * b) DWORD *pab) {
*pab = a * b;
if ((a == 0) || (((*pab) / a) == b)) {
return TRUE;
}
return FALSE;
}
// Checks if the fields in a BITMAPINFOHEADER won't generate
// overlows and buffer overruns
// This is not a complete check and does not guarantee code using this structure will be secure
// from attack
// Bugs this is guarding against:
// 1. Total structure size calculation overflowing
// 2. biClrUsed > 256 for 8-bit palettized content
// 3. Total bitmap size in bytes overflowing
// 4. biSize < size of the base structure leading to accessessing random memory
// 5. Total structure size exceeding know size of data
//
__success(return != 0) __inline BOOL ValidateBitmapInfoHeader(
const BITMAPINFOHEADER *pbmi, // pointer to structure to check
__out_range(>=, sizeof(BITMAPINFOHEADER)) DWORD cbSize // size of memory block containing structure
)
{
DWORD dwWidthInBytes;
DWORD dwBpp;
DWORD dwWidthInBits;
DWORD dwHeight;
DWORD dwSizeImage;
DWORD dwClrUsed;
// Reject bad parameters - do the size check first to avoid reading bad memory
if (cbSize < sizeof(BITMAPINFOHEADER) ||
pbmi->biSize < sizeof(BITMAPINFOHEADER) ||
pbmi->biSize > 4096) {
return FALSE;
}
// Reject 0 size
if (pbmi->biWidth == 0 || pbmi->biHeight == 0) {
return FALSE;
}
// Use bpp of 200 for validating against further overflows if not set for compressed format
dwBpp = 200;
if (pbmi->biBitCount > dwBpp) {
return FALSE;
}
// Strictly speaking abs can overflow so cast explicitly to DWORD
dwHeight = (DWORD)abs(pbmi->biHeight);
if (!MultiplyCheckOverflow(dwBpp, (DWORD)pbmi->biWidth, &dwWidthInBits)) {
return FALSE;
}
// Compute correct width in bytes - rounding up to 4 bytes
dwWidthInBytes = (dwWidthInBits / 8 + 3) & ~3;
if (!MultiplyCheckOverflow(dwWidthInBytes, dwHeight, &dwSizeImage)) {
return FALSE;
}
// Fail if total size is 0 - this catches indivual quantities being 0
// Also don't allow huge values > 1GB which might cause arithmetic
// errors for users
if (dwSizeImage > 0x40000000 ||
pbmi->biSizeImage > 0x40000000) {
return FALSE;
}
// Fail if biClrUsed looks bad
if (pbmi->biClrUsed > 256) {
return FALSE;
}
if (pbmi->biClrUsed == 0 && pbmi->biBitCount <= 8 && pbmi->biBitCount > 0) {
dwClrUsed = (1 << pbmi->biBitCount);
} else {
dwClrUsed = pbmi->biClrUsed;
}
// Check total size
if (cbSize < pbmi->biSize + dwClrUsed * sizeof(RGBQUAD) +
(pbmi->biCompression == BI_BITFIELDS ? 3 * sizeof(DWORD) : 0)) {
return FALSE;
}
// If it is RGB validate biSizeImage - lots of code assumes the size is correct
if (pbmi->biCompression == BI_RGB || pbmi->biCompression == BI_BITFIELDS) {
if (pbmi->biSizeImage != 0) {
DWORD dwBits = (DWORD)pbmi->biWidth * (DWORD)pbmi->biBitCount;
DWORD dwWidthInBytes = ((DWORD)((dwBits+31) & (~31)) / 8);
DWORD dwTotalSize = (DWORD)abs(pbmi->biHeight) * dwWidthInBytes;
if (dwTotalSize > pbmi->biSizeImage) {
return FALSE;
}
}
}
return TRUE;
}
#ifdef __cplusplus
}
#endif
#endif // _CHECKBMI_H_

View file

@ -0,0 +1,265 @@
//------------------------------------------------------------------------------
// File: ComBase.cpp
//
// Desc: DirectShow base classes - implements class hierarchy for creating
// COM objects.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#pragma warning( disable : 4514 ) // Disable warnings re unused inline functions
/* Define the static member variable */
LONG CBaseObject::m_cObjects = 0;
/* Constructor */
CBaseObject::CBaseObject(__in_opt LPCTSTR pName)
{
/* Increment the number of active objects */
InterlockedIncrement(&m_cObjects);
#ifdef DEBUG
#ifdef UNICODE
m_dwCookie = DbgRegisterObjectCreation(0, pName);
#else
m_dwCookie = DbgRegisterObjectCreation(pName, 0);
#endif
#endif
}
#ifdef UNICODE
CBaseObject::CBaseObject(const char *pName)
{
/* Increment the number of active objects */
InterlockedIncrement(&m_cObjects);
#ifdef DEBUG
m_dwCookie = DbgRegisterObjectCreation(pName, 0);
#endif
}
#endif
HINSTANCE hlibOLEAut32;
/* Destructor */
CBaseObject::~CBaseObject()
{
/* Decrement the number of objects active */
if (InterlockedDecrement(&m_cObjects) == 0) {
if (hlibOLEAut32) {
FreeLibrary(hlibOLEAut32);
hlibOLEAut32 = 0;
}
};
#ifdef DEBUG
DbgRegisterObjectDestruction(m_dwCookie);
#endif
}
static const TCHAR szOle32Aut[] = TEXT("OleAut32.dll");
HINSTANCE LoadOLEAut32()
{
if (hlibOLEAut32 == 0) {
hlibOLEAut32 = LoadLibrary(szOle32Aut);
}
return hlibOLEAut32;
}
/* Constructor */
// We know we use "this" in the initialization list, we also know we don't modify *phr.
#pragma warning( disable : 4355 4100 )
CUnknown::CUnknown(__in_opt LPCTSTR pName, __in_opt LPUNKNOWN pUnk)
: CBaseObject(pName)
/* Start the object with a reference count of zero - when the */
/* object is queried for it's first interface this may be */
/* incremented depending on whether or not this object is */
/* currently being aggregated upon */
, m_cRef(0)
/* Set our pointer to our IUnknown interface. */
/* If we have an outer, use its, otherwise use ours. */
/* This pointer effectivly points to the owner of */
/* this object and can be accessed by the GetOwner() method. */
, m_pUnknown( pUnk != 0 ? pUnk : reinterpret_cast<LPUNKNOWN>( static_cast<PNDUNKNOWN>(this) ) )
/* Why the double cast? Well, the inner cast is a type-safe cast */
/* to pointer to a type from which we inherit. The second is */
/* type-unsafe but works because INonDelegatingUnknown "behaves */
/* like" IUnknown. (Only the names on the methods change.) */
{
// Everything we need to do has been done in the initializer list
}
// This does the same as above except it has a useless HRESULT argument
// use the previous constructor, this is just left for compatibility...
CUnknown::CUnknown(__in_opt LPCTSTR pName, __in_opt LPUNKNOWN pUnk, __inout_opt HRESULT *phr) :
CBaseObject(pName),
m_cRef(0),
m_pUnknown( pUnk != 0 ? pUnk : reinterpret_cast<LPUNKNOWN>( static_cast<PNDUNKNOWN>(this) ) )
{
}
#ifdef UNICODE
CUnknown::CUnknown(__in_opt LPCSTR pName, __in_opt LPUNKNOWN pUnk)
: CBaseObject(pName), m_cRef(0),
m_pUnknown( pUnk != 0 ? pUnk : reinterpret_cast<LPUNKNOWN>( static_cast<PNDUNKNOWN>(this) ) )
{ }
CUnknown::CUnknown(__in_opt LPCSTR pName, __in_opt LPUNKNOWN pUnk, __inout_opt HRESULT *phr) :
CBaseObject(pName), m_cRef(0),
m_pUnknown( pUnk != 0 ? pUnk : reinterpret_cast<LPUNKNOWN>( static_cast<PNDUNKNOWN>(this) ) )
{ }
#endif
#pragma warning( default : 4355 4100 )
/* QueryInterface */
STDMETHODIMP CUnknown::NonDelegatingQueryInterface(REFIID riid, __deref_out void ** ppv)
{
CheckPointer(ppv,E_POINTER);
ValidateReadWritePtr(ppv,sizeof(PVOID));
/* We know only about IUnknown */
if (riid == IID_IUnknown) {
GetInterface((LPUNKNOWN) (PNDUNKNOWN) this, ppv);
return NOERROR;
} else {
*ppv = NULL;
return E_NOINTERFACE;
}
}
/* We have to ensure that we DON'T use a max macro, since these will typically */
/* lead to one of the parameters being evaluated twice. Since we are worried */
/* about concurrency, we can't afford to access the m_cRef twice since we can't */
/* afford to run the risk that its value having changed between accesses. */
template<class T> inline static T ourmax( const T & a, const T & b )
{
return a > b ? a : b;
}
/* AddRef */
STDMETHODIMP_(ULONG) CUnknown::NonDelegatingAddRef()
{
LONG lRef = InterlockedIncrement( &m_cRef );
ASSERT(lRef > 0);
DbgLog((LOG_MEMORY,3,TEXT(" Obj %d ref++ = %d"),
m_dwCookie, m_cRef));
return ourmax(ULONG(m_cRef), 1ul);
}
/* Release */
STDMETHODIMP_(ULONG) CUnknown::NonDelegatingRelease()
{
/* If the reference count drops to zero delete ourselves */
LONG lRef = InterlockedDecrement( &m_cRef );
ASSERT(lRef >= 0);
DbgLog((LOG_MEMORY,3,TEXT(" Object %d ref-- = %d"),
m_dwCookie, m_cRef));
if (lRef == 0) {
// COM rules say we must protect against re-entrancy.
// If we are an aggregator and we hold our own interfaces
// on the aggregatee, the QI for these interfaces will
// addref ourselves. So after doing the QI we must release
// a ref count on ourselves. Then, before releasing the
// private interface, we must addref ourselves. When we do
// this from the destructor here it will result in the ref
// count going to 1 and then back to 0 causing us to
// re-enter the destructor. Hence we add an extra refcount here
// once we know we will delete the object.
// for an example aggregator see filgraph\distrib.cpp.
m_cRef++;
delete this;
return ULONG(0);
} else {
// Don't touch m_cRef again even in this leg as the object
// may have just been released on another thread too
return ourmax(ULONG(lRef), 1ul);
}
}
/* Return an interface pointer to a requesting client
performing a thread safe AddRef as necessary */
STDAPI GetInterface(LPUNKNOWN pUnk, __out void **ppv)
{
CheckPointer(ppv, E_POINTER);
*ppv = pUnk;
pUnk->AddRef();
return NOERROR;
}
/* Compares two interfaces and returns TRUE if they are on the same object */
BOOL WINAPI IsEqualObject(IUnknown *pFirst, IUnknown *pSecond)
{
/* Different objects can't have the same interface pointer for
any interface
*/
if (pFirst == pSecond) {
return TRUE;
}
/* OK - do it the hard way - check if they have the same
IUnknown pointers - a single object can only have one of these
*/
LPUNKNOWN pUnknown1; // Retrieve the IUnknown interface
LPUNKNOWN pUnknown2; // Retrieve the other IUnknown interface
HRESULT hr; // General OLE return code
ASSERT(pFirst);
ASSERT(pSecond);
/* See if the IUnknown pointers match */
hr = pFirst->QueryInterface(IID_IUnknown,(void **) &pUnknown1);
if (FAILED(hr)) {
return FALSE;
}
ASSERT(pUnknown1);
/* Release the extra interface we hold */
pUnknown1->Release();
hr = pSecond->QueryInterface(IID_IUnknown,(void **) &pUnknown2);
if (FAILED(hr)) {
return FALSE;
}
ASSERT(pUnknown2);
/* Release the extra interface we hold */
pUnknown2->Release();
return (pUnknown1 == pUnknown2);
}

View file

@ -0,0 +1,305 @@
//------------------------------------------------------------------------------
// File: ComBase.h
//
// Desc: DirectShow base classes - defines a class hierarchy for creating
// COM objects.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
/*
a. Derive your COM object from CUnknown
b. Make a static CreateInstance function that takes an LPUNKNOWN, an HRESULT *
and a TCHAR *. The LPUNKNOWN defines the object to delegate IUnknown calls
to. The HRESULT * allows error codes to be passed around constructors and
the TCHAR * is a descriptive name that can be printed on the debugger.
It is important that constructors only change the HRESULT * if they have
to set an ERROR code, if it was successful then leave it alone or you may
overwrite an error code from an object previously created.
When you call a constructor the descriptive name should be in static store
as we do not copy the string. To stop large amounts of memory being used
in retail builds by all these static strings use the NAME macro,
CMyFilter = new CImplFilter(NAME("My filter"),pUnknown,phr);
if (FAILED(hr)) {
return hr;
}
In retail builds NAME(_x_) compiles to NULL, the base CBaseObject class
knows not to do anything with objects that don't have a name.
c. Have a constructor for your object that passes the LPUNKNOWN, HRESULT * and
TCHAR * to the CUnknown constructor. You can set the HRESULT if you have an
error, or just simply pass it through to the constructor.
The object creation will fail in the class factory if the HRESULT indicates
an error (ie FAILED(HRESULT) == TRUE)
d. Create a FactoryTemplate with your object's class id and CreateInstance
function.
Then (for each interface) either
Multiple inheritance
1. Also derive it from ISomeInterface
2. Include DECLARE_IUNKNOWN in your class definition to declare
implementations of QueryInterface, AddRef and Release that
call the outer unknown
3. Override NonDelegatingQueryInterface to expose ISomeInterface by
code something like
if (riid == IID_ISomeInterface) {
return GetInterface((ISomeInterface *) this, ppv);
} else {
return CUnknown::NonDelegatingQueryInterface(riid, ppv);
}
4. Declare and implement the member functions of ISomeInterface.
or: Nested interfaces
1. Declare a class derived from CUnknown
2. Include DECLARE_IUNKNOWN in your class definition
3. Override NonDelegatingQueryInterface to expose ISomeInterface by
code something like
if (riid == IID_ISomeInterface) {
return GetInterface((ISomeInterface *) this, ppv);
} else {
return CUnknown::NonDelegatingQueryInterface(riid, ppv);
}
4. Implement the member functions of ISomeInterface. Use GetOwner() to
access the COM object class.
And in your COM object class:
5. Make the nested class a friend of the COM object class, and declare
an instance of the nested class as a member of the COM object class.
NOTE that because you must always pass the outer unknown and an hResult
to the CUnknown constructor you cannot use a default constructor, in
other words you will have to make the member variable a pointer to the
class and make a NEW call in your constructor to actually create it.
6. override the NonDelegatingQueryInterface with code like this:
if (riid == IID_ISomeInterface) {
return m_pImplFilter->
NonDelegatingQueryInterface(IID_ISomeInterface, ppv);
} else {
return CUnknown::NonDelegatingQueryInterface(riid, ppv);
}
You can have mixed classes which support some interfaces via multiple
inheritance and some via nested classes
*/
#ifndef __COMBASE__
#define __COMBASE__
// Filter Setup data structures no defined in axextend.idl
typedef REGPINTYPES
AMOVIESETUP_MEDIATYPE, * PAMOVIESETUP_MEDIATYPE, * FAR LPAMOVIESETUP_MEDIATYPE;
typedef REGFILTERPINS
AMOVIESETUP_PIN, * PAMOVIESETUP_PIN, * FAR LPAMOVIESETUP_PIN;
typedef struct _AMOVIESETUP_FILTER
{
const CLSID * clsID;
const WCHAR * strName;
DWORD dwMerit;
UINT nPins;
const AMOVIESETUP_PIN * lpPin;
}
AMOVIESETUP_FILTER, * PAMOVIESETUP_FILTER, * FAR LPAMOVIESETUP_FILTER;
/* The DLLENTRY module initialises the module handle on loading */
extern HINSTANCE g_hInst;
/* On DLL load remember which platform we are running on */
extern DWORD g_amPlatform;
extern OSVERSIONINFO g_osInfo; // Filled in by GetVersionEx
/* Version of IUnknown that is renamed to allow a class to support both
non delegating and delegating IUnknowns in the same COM object */
#ifndef INONDELEGATINGUNKNOWN_DEFINED
DECLARE_INTERFACE(INonDelegatingUnknown)
{
STDMETHOD(NonDelegatingQueryInterface) (THIS_ REFIID, LPVOID *) PURE;
STDMETHOD_(ULONG, NonDelegatingAddRef)(THIS) PURE;
STDMETHOD_(ULONG, NonDelegatingRelease)(THIS) PURE;
};
#define INONDELEGATINGUNKNOWN_DEFINED
#endif
typedef INonDelegatingUnknown *PNDUNKNOWN;
/* This is the base object class that supports active object counting. As
part of the debug facilities we trace every time a C++ object is created
or destroyed. The name of the object has to be passed up through the class
derivation list during construction as you cannot call virtual functions
in the constructor. The downside of all this is that every single object
constructor has to take an object name parameter that describes it */
class CBaseObject
{
private:
// Disable the copy constructor and assignment by default so you will get
// compiler errors instead of unexpected behaviour if you pass objects
// by value or assign objects.
CBaseObject(const CBaseObject& objectSrc); // no implementation
void operator=(const CBaseObject& objectSrc); // no implementation
private:
static LONG m_cObjects; /* Total number of objects active */
protected:
#ifdef DEBUG
DWORD m_dwCookie; /* Cookie identifying this object */
#endif
public:
/* These increment and decrement the number of active objects */
CBaseObject(__in_opt LPCTSTR pName);
#ifdef UNICODE
CBaseObject(__in_opt LPCSTR pName);
#endif
~CBaseObject();
/* Call this to find if there are any CUnknown derived objects active */
static LONG ObjectsActive() {
return m_cObjects;
};
};
/* An object that supports one or more COM interfaces will be based on
this class. It supports counting of total objects for DLLCanUnloadNow
support, and an implementation of the core non delegating IUnknown */
class AM_NOVTABLE CUnknown : public INonDelegatingUnknown,
public CBaseObject
{
private:
const LPUNKNOWN m_pUnknown; /* Owner of this object */
protected: /* So we can override NonDelegatingRelease() */
volatile LONG m_cRef; /* Number of reference counts */
public:
CUnknown(__in_opt LPCTSTR pName, __in_opt LPUNKNOWN pUnk);
virtual ~CUnknown() {};
// This is redundant, just use the other constructor
// as we never touch the HRESULT in this anyway
CUnknown(__in_opt LPCTSTR Name, __in_opt LPUNKNOWN pUnk, __inout_opt HRESULT *phr);
#ifdef UNICODE
CUnknown(__in_opt LPCSTR pName, __in_opt LPUNKNOWN pUnk);
CUnknown(__in_opt LPCSTR pName, __in_opt LPUNKNOWN pUnk,__inout_opt HRESULT *phr);
#endif
/* Return the owner of this object */
LPUNKNOWN GetOwner() const {
return m_pUnknown;
};
/* Called from the class factory to create a new instance, it is
pure virtual so it must be overriden in your derived class */
/* static CUnknown *CreateInstance(LPUNKNOWN, HRESULT *) */
/* Non delegating unknown implementation */
STDMETHODIMP NonDelegatingQueryInterface(REFIID, __deref_out void **);
STDMETHODIMP_(ULONG) NonDelegatingAddRef();
STDMETHODIMP_(ULONG) NonDelegatingRelease();
};
/* Return an interface pointer to a requesting client
performing a thread safe AddRef as necessary */
STDAPI GetInterface(LPUNKNOWN pUnk, __out void **ppv);
/* A function that can create a new COM object */
typedef CUnknown *(CALLBACK *LPFNNewCOMObject)(__in_opt LPUNKNOWN pUnkOuter, __inout_opt HRESULT *phr);
/* A function (can be NULL) which is called from the DLL entrypoint
routine for each factory template:
bLoading - TRUE on DLL load, FALSE on DLL unload
rclsid - the m_ClsID of the entry
*/
typedef void (CALLBACK *LPFNInitRoutine)(BOOL bLoading, const CLSID *rclsid);
/* Create one of these per object class in an array so that
the default class factory code can create new instances */
class CFactoryTemplate {
public:
const WCHAR * m_Name;
const CLSID * m_ClsID;
LPFNNewCOMObject m_lpfnNew;
LPFNInitRoutine m_lpfnInit;
const AMOVIESETUP_FILTER * m_pAMovieSetup_Filter;
BOOL IsClassID(REFCLSID rclsid) const {
return (IsEqualCLSID(*m_ClsID,rclsid));
};
CUnknown *CreateInstance(__inout_opt LPUNKNOWN pUnk, __inout_opt HRESULT *phr) const {
CheckPointer(phr,NULL);
return m_lpfnNew(pUnk, phr);
};
};
/* You must override the (pure virtual) NonDelegatingQueryInterface to return
interface pointers (using GetInterface) to the interfaces your derived
class supports (the default implementation only supports IUnknown) */
#define DECLARE_IUNKNOWN \
STDMETHODIMP QueryInterface(REFIID riid, __deref_out void **ppv) { \
return GetOwner()->QueryInterface(riid,ppv); \
}; \
STDMETHODIMP_(ULONG) AddRef() { \
return GetOwner()->AddRef(); \
}; \
STDMETHODIMP_(ULONG) Release() { \
return GetOwner()->Release(); \
};
HINSTANCE LoadOLEAut32();
#endif /* __COMBASE__ */

View file

@ -0,0 +1,383 @@
//------------------------------------------------------------------------------
// File: CProp.cpp
//
// Desc: DirectShow base classes - implements CBasePropertyPage class.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
// Constructor for the base property page class. As described in the header
// file we must be initialised with dialog and title resource identifiers.
// The class supports IPropertyPage and overrides AddRef and Release calls
// to keep track of the reference counts. When the last count is released
// we call SetPageSite(NULL) and SetObjects(0,NULL) to release interfaces
// previously obtained by the property page when it had SetObjects called
CBasePropertyPage::CBasePropertyPage(__in_opt LPCTSTR pName, // Debug only name
__inout_opt LPUNKNOWN pUnk, // COM Delegator
int DialogId, // Resource ID
int TitleId) : // To get tital
CUnknown(pName,pUnk),
m_DialogId(DialogId),
m_TitleId(TitleId),
m_hwnd(NULL),
m_Dlg(NULL),
m_pPageSite(NULL),
m_bObjectSet(FALSE),
m_bDirty(FALSE)
{
}
#ifdef UNICODE
CBasePropertyPage::CBasePropertyPage(__in_opt LPCSTR pName, // Debug only name
__inout_opt LPUNKNOWN pUnk, // COM Delegator
int DialogId, // Resource ID
int TitleId) : // To get tital
CUnknown(pName,pUnk),
m_DialogId(DialogId),
m_TitleId(TitleId),
m_hwnd(NULL),
m_Dlg(NULL),
m_pPageSite(NULL),
m_bObjectSet(FALSE),
m_bDirty(FALSE)
{
}
#endif
// Increment our reference count
STDMETHODIMP_(ULONG) CBasePropertyPage::NonDelegatingAddRef()
{
LONG lRef = InterlockedIncrement(&m_cRef);
ASSERT(lRef > 0);
return max(ULONG(m_cRef),1ul);
}
// Release a reference count and protect against reentrancy
STDMETHODIMP_(ULONG) CBasePropertyPage::NonDelegatingRelease()
{
// If the reference count drops to zero delete ourselves
LONG lRef = InterlockedDecrement(&m_cRef);
if (lRef == 0) {
m_cRef++;
SetPageSite(NULL);
SetObjects(0,NULL);
delete this;
return ULONG(0);
} else {
// Don't touch m_cRef again here!
return max(ULONG(lRef),1ul);
}
}
// Expose our IPropertyPage interface
STDMETHODIMP
CBasePropertyPage::NonDelegatingQueryInterface(REFIID riid,__deref_out void **ppv)
{
if (riid == IID_IPropertyPage) {
return GetInterface((IPropertyPage *)this,ppv);
} else {
return CUnknown::NonDelegatingQueryInterface(riid,ppv);
}
}
// Get the page info so that the page site can size itself
STDMETHODIMP CBasePropertyPage::GetPageInfo(__out LPPROPPAGEINFO pPageInfo)
{
CheckPointer(pPageInfo,E_POINTER);
WCHAR wszTitle[STR_MAX_LENGTH];
WideStringFromResource(wszTitle,m_TitleId);
// Allocate dynamic memory for the property page title
LPOLESTR pszTitle;
HRESULT hr = AMGetWideString(wszTitle, &pszTitle);
if (FAILED(hr)) {
NOTE("No caption memory");
return hr;
}
pPageInfo->cb = sizeof(PROPPAGEINFO);
pPageInfo->pszTitle = pszTitle;
pPageInfo->pszDocString = NULL;
pPageInfo->pszHelpFile = NULL;
pPageInfo->dwHelpContext = 0;
// Set defaults in case GetDialogSize fails
pPageInfo->size.cx = 340;
pPageInfo->size.cy = 150;
GetDialogSize(m_DialogId, DialogProc,0L,&pPageInfo->size);
return NOERROR;
}
// Handles the messages for our property window
INT_PTR CALLBACK CBasePropertyPage::DialogProc(HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam)
{
CBasePropertyPage *pPropertyPage;
switch (uMsg) {
case WM_INITDIALOG:
_SetWindowLongPtr(hwnd, DWLP_USER, lParam);
// This pointer may be NULL when calculating size
pPropertyPage = (CBasePropertyPage *) lParam;
if (pPropertyPage == NULL) {
return (LRESULT) 1;
}
pPropertyPage->m_Dlg = hwnd;
}
// This pointer may be NULL when calculating size
pPropertyPage = _GetWindowLongPtr<CBasePropertyPage*>(hwnd, DWLP_USER);
if (pPropertyPage == NULL) {
return (LRESULT) 1;
}
return pPropertyPage->OnReceiveMessage(hwnd,uMsg,wParam,lParam);
}
// Tells us the object that should be informed of the property changes
STDMETHODIMP CBasePropertyPage::SetObjects(ULONG cObjects,__in_ecount_opt(cObjects) LPUNKNOWN *ppUnk)
{
if (cObjects == 1) {
if ((ppUnk == NULL) || (*ppUnk == NULL)) {
return E_POINTER;
}
// Set a flag to say that we have set the Object
m_bObjectSet = TRUE ;
return OnConnect(*ppUnk);
} else if (cObjects == 0) {
// Set a flag to say that we have not set the Object for the page
m_bObjectSet = FALSE ;
return OnDisconnect();
}
DbgBreak("No support for more than one object");
return E_UNEXPECTED;
}
// Create the window we will use to edit properties
STDMETHODIMP CBasePropertyPage::Activate(HWND hwndParent,
LPCRECT pRect,
BOOL fModal)
{
CheckPointer(pRect,E_POINTER);
// Return failure if SetObject has not been called.
if (m_bObjectSet == FALSE) {
return E_UNEXPECTED;
}
if (m_hwnd) {
return E_UNEXPECTED;
}
m_hwnd = CreateDialogParam(g_hInst,
MAKEINTRESOURCE(m_DialogId),
hwndParent,
DialogProc,
(LPARAM) this);
if (m_hwnd == NULL) {
return E_OUTOFMEMORY;
}
OnActivate();
Move(pRect);
return Show(SW_SHOWNORMAL);
}
// Set the position of the property page
STDMETHODIMP CBasePropertyPage::Move(LPCRECT pRect)
{
CheckPointer(pRect,E_POINTER);
if (m_hwnd == NULL) {
return E_UNEXPECTED;
}
MoveWindow(m_hwnd, // Property page handle
pRect->left, // x coordinate
pRect->top, // y coordinate
WIDTH(pRect), // Overall window width
HEIGHT(pRect), // And likewise height
TRUE); // Should we repaint it
return NOERROR;
}
// Display the property dialog
STDMETHODIMP CBasePropertyPage::Show(UINT nCmdShow)
{
// Have we been activated yet
if (m_hwnd == NULL) {
return E_UNEXPECTED;
}
// Ignore wrong show flags
if ((nCmdShow != SW_SHOW) && (nCmdShow != SW_SHOWNORMAL) && (nCmdShow != SW_HIDE)) {
return E_INVALIDARG;
}
ShowWindow(m_hwnd,nCmdShow);
InvalidateRect(m_hwnd,NULL,TRUE);
return NOERROR;
}
// Destroy the property page dialog
STDMETHODIMP CBasePropertyPage::Deactivate(void)
{
if (m_hwnd == NULL) {
return E_UNEXPECTED;
}
// Remove WS_EX_CONTROLPARENT before DestroyWindow call
DWORD dwStyle = GetWindowLong(m_hwnd, GWL_EXSTYLE);
dwStyle = dwStyle & (~WS_EX_CONTROLPARENT);
// Set m_hwnd to be NULL temporarily so the message handler
// for WM_STYLECHANGING doesn't add the WS_EX_CONTROLPARENT
// style back in
HWND hwnd = m_hwnd;
m_hwnd = NULL;
SetWindowLong(hwnd, GWL_EXSTYLE, dwStyle);
m_hwnd = hwnd;
OnDeactivate();
// Destroy the dialog window
DestroyWindow(m_hwnd);
m_hwnd = NULL;
return NOERROR;
}
// Tells the application property page site
STDMETHODIMP CBasePropertyPage::SetPageSite(__in_opt LPPROPERTYPAGESITE pPageSite)
{
if (pPageSite) {
if (m_pPageSite) {
return E_UNEXPECTED;
}
m_pPageSite = pPageSite;
m_pPageSite->AddRef();
} else {
if (m_pPageSite == NULL) {
return E_UNEXPECTED;
}
m_pPageSite->Release();
m_pPageSite = NULL;
}
return NOERROR;
}
// Apply any changes so far made
STDMETHODIMP CBasePropertyPage::Apply()
{
// In ActiveMovie 1.0 we used to check whether we had been activated or
// not. This is too constrictive. Apply should be allowed as long as
// SetObject was called to set an object. So we will no longer check to
// see if we have been activated (ie., m_hWnd != NULL), but instead
// make sure that m_bObjectSet is TRUE (ie., SetObject has been called).
if (m_bObjectSet == FALSE) {
return E_UNEXPECTED;
}
// Must have had a site set
if (m_pPageSite == NULL) {
return E_UNEXPECTED;
}
// Has anything changed
if (m_bDirty == FALSE) {
return NOERROR;
}
// Commit derived class changes
HRESULT hr = OnApplyChanges();
if (SUCCEEDED(hr)) {
m_bDirty = FALSE;
}
return hr;
}
// Base class definition for message handling
INT_PTR CBasePropertyPage::OnReceiveMessage(HWND hwnd,UINT uMsg,WPARAM wParam,LPARAM lParam)
{
// we would like the TAB key to move around the tab stops in our property
// page, but for some reason OleCreatePropertyFrame clears the CONTROLPARENT
// style behind our back, so we need to switch it back on now behind its
// back. Otherwise the tab key will be useless in every page.
//
CBasePropertyPage *pPropertyPage;
{
pPropertyPage = _GetWindowLongPtr<CBasePropertyPage*>(hwnd, DWLP_USER);
if (pPropertyPage->m_hwnd == NULL) {
return 0;
}
switch (uMsg) {
case WM_STYLECHANGING:
if (wParam == GWL_EXSTYLE) {
LPSTYLESTRUCT lpss = (LPSTYLESTRUCT)lParam;
lpss->styleNew |= WS_EX_CONTROLPARENT;
return 0;
}
}
}
return DefWindowProc(hwnd,uMsg,wParam,lParam);
}

View file

@ -0,0 +1,95 @@
//------------------------------------------------------------------------------
// File: CProp.h
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef __CPROP__
#define __CPROP__
// Base property page class. Filters typically expose custom properties by
// implementing special control interfaces, examples are IDirectDrawVideo
// and IQualProp on renderers. This allows property pages to be built that
// use the given interface. Applications such as the ActiveMovie OCX query
// filters for the property pages they support and expose them to the user
//
// This class provides all the framework for a property page. A property
// page is a COM object that supports IPropertyPage. We should be created
// with a resource ID for the dialog which we will load when required. We
// should also be given in the constructor a resource ID for a title string
// we will load from the DLLs STRINGTABLE. The property page titles must be
// stored in resource files so that they can be easily internationalised
//
// We have a number of virtual methods (not PURE) that may be overriden in
// derived classes to query for interfaces and so on. These functions have
// simple implementations here that just return NOERROR. Derived classes
// will almost definately have to override the message handler method called
// OnReceiveMessage. We have a static dialog procedure that calls the method
// so that derived classes don't have to fiddle around with the this pointer
class AM_NOVTABLE CBasePropertyPage : public IPropertyPage, public CUnknown
{
protected:
LPPROPERTYPAGESITE m_pPageSite; // Details for our property site
HWND m_hwnd; // Window handle for the page
HWND m_Dlg; // Actual dialog window handle
BOOL m_bDirty; // Has anything been changed
int m_TitleId; // Resource identifier for title
int m_DialogId; // Dialog resource identifier
static INT_PTR CALLBACK DialogProc(HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam);
private:
BOOL m_bObjectSet ; // SetObject has been called or not.
public:
CBasePropertyPage(__in_opt LPCTSTR pName, // Debug only name
__inout_opt LPUNKNOWN pUnk, // COM Delegator
int DialogId, // Resource ID
int TitleId); // To get tital
#ifdef UNICODE
CBasePropertyPage(__in_opt LPCSTR pName,
__inout_opt LPUNKNOWN pUnk,
int DialogId,
int TitleId);
#endif
virtual ~CBasePropertyPage() { };
DECLARE_IUNKNOWN
// Override these virtual methods
virtual HRESULT OnConnect(IUnknown *pUnknown) { return NOERROR; };
virtual HRESULT OnDisconnect() { return NOERROR; };
virtual HRESULT OnActivate() { return NOERROR; };
virtual HRESULT OnDeactivate() { return NOERROR; };
virtual HRESULT OnApplyChanges() { return NOERROR; };
virtual INT_PTR OnReceiveMessage(HWND hwnd,UINT uMsg,WPARAM wParam,LPARAM lParam);
// These implement an IPropertyPage interface
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid, __deref_out void **ppv);
STDMETHODIMP_(ULONG) NonDelegatingRelease();
STDMETHODIMP_(ULONG) NonDelegatingAddRef();
STDMETHODIMP SetPageSite(__in_opt LPPROPERTYPAGESITE pPageSite);
STDMETHODIMP Activate(HWND hwndParent, LPCRECT prect,BOOL fModal);
STDMETHODIMP Deactivate(void);
STDMETHODIMP GetPageInfo(__out LPPROPPAGEINFO pPageInfo);
STDMETHODIMP SetObjects(ULONG cObjects, __in_ecount_opt(cObjects) LPUNKNOWN *ppUnk);
STDMETHODIMP Show(UINT nCmdShow);
STDMETHODIMP Move(LPCRECT prect);
STDMETHODIMP IsPageDirty(void) { return m_bDirty ? S_OK : S_FALSE; }
STDMETHODIMP Apply(void);
STDMETHODIMP Help(LPCWSTR lpszHelpDir) { return E_NOTIMPL; }
STDMETHODIMP TranslateAccelerator(__inout LPMSG lpMsg) { return E_NOTIMPL; }
};
#endif // __CPROP__

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,923 @@
//------------------------------------------------------------------------------
// File: CtlUtil.h
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
// Base classes implementing IDispatch parsing for the basic control dual
// interfaces. Derive from these and implement just the custom method and
// property methods. We also implement CPosPassThru that can be used by
// renderers and transforms to pass by IMediaPosition and IMediaSeeking
#ifndef __CTLUTIL__
#define __CTLUTIL__
// OLE Automation has different ideas of TRUE and FALSE
#define OATRUE (-1)
#define OAFALSE (0)
// It's possible that we could replace this class with CreateStdDispatch
class CBaseDispatch
{
ITypeInfo * m_pti;
public:
CBaseDispatch() : m_pti(NULL) {}
~CBaseDispatch();
/* IDispatch methods */
STDMETHODIMP GetTypeInfoCount(__out UINT * pctinfo);
STDMETHODIMP GetTypeInfo(
REFIID riid,
UINT itinfo,
LCID lcid,
__deref_out ITypeInfo ** pptinfo);
STDMETHODIMP GetIDsOfNames(
REFIID riid,
__in_ecount(cNames) LPOLESTR * rgszNames,
UINT cNames,
LCID lcid,
__out_ecount(cNames) DISPID * rgdispid);
};
class AM_NOVTABLE CMediaControl :
public IMediaControl,
public CUnknown
{
CBaseDispatch m_basedisp;
public:
CMediaControl(const TCHAR *, LPUNKNOWN);
DECLARE_IUNKNOWN
// override this to publicise our interfaces
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid, __deref_out void **ppv);
/* IDispatch methods */
STDMETHODIMP GetTypeInfoCount(__out UINT * pctinfo);
STDMETHODIMP GetTypeInfo(
UINT itinfo,
LCID lcid,
__deref_out ITypeInfo ** pptinfo);
STDMETHODIMP GetIDsOfNames(
REFIID riid,
__in_ecount(cNames) LPOLESTR * rgszNames,
UINT cNames,
LCID lcid,
__out_ecount(cNames) DISPID * rgdispid);
STDMETHODIMP Invoke(
DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wFlags,
__in DISPPARAMS * pdispparams,
__out_opt VARIANT * pvarResult,
__out_opt EXCEPINFO * pexcepinfo,
__out_opt UINT * puArgErr);
};
class AM_NOVTABLE CMediaEvent :
public IMediaEventEx,
public CUnknown
{
CBaseDispatch m_basedisp;
public:
CMediaEvent(__in_opt LPCTSTR, __in_opt LPUNKNOWN);
DECLARE_IUNKNOWN
// override this to publicise our interfaces
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid, __deref_out void **ppv);
/* IDispatch methods */
STDMETHODIMP GetTypeInfoCount(__out UINT * pctinfo);
STDMETHODIMP GetTypeInfo(
UINT itinfo,
LCID lcid,
__deref_out ITypeInfo ** pptinfo);
STDMETHODIMP GetIDsOfNames(
REFIID riid,
__in_ecount(cNames) LPOLESTR * rgszNames,
UINT cNames,
LCID lcid,
__out_ecount(cNames) DISPID * rgdispid);
STDMETHODIMP Invoke(
DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wFlags,
__in DISPPARAMS * pdispparams,
__out_opt VARIANT * pvarResult,
__out_opt EXCEPINFO * pexcepinfo,
__out_opt UINT * puArgErr);
};
class AM_NOVTABLE CMediaPosition :
public IMediaPosition,
public CUnknown
{
CBaseDispatch m_basedisp;
public:
CMediaPosition(__in_opt LPCTSTR, __in_opt LPUNKNOWN);
CMediaPosition(__in_opt LPCTSTR, __in_opt LPUNKNOWN, __inout HRESULT *phr);
DECLARE_IUNKNOWN
// override this to publicise our interfaces
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid, __deref_out void **ppv);
/* IDispatch methods */
STDMETHODIMP GetTypeInfoCount(__out UINT * pctinfo);
STDMETHODIMP GetTypeInfo(
UINT itinfo,
LCID lcid,
__deref_out ITypeInfo ** pptinfo);
STDMETHODIMP GetIDsOfNames(
REFIID riid,
__in_ecount(cNames) LPOLESTR * rgszNames,
UINT cNames,
LCID lcid,
__out_ecount(cNames) DISPID * rgdispid);
STDMETHODIMP Invoke(
DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wFlags,
__in DISPPARAMS * pdispparams,
__out_opt VARIANT * pvarResult,
__out_opt EXCEPINFO * pexcepinfo,
__out_opt UINT * puArgErr);
};
// OA-compatibility means that we must use double as the RefTime value,
// and REFERENCE_TIME (essentially a LONGLONG) within filters.
// this class converts between the two
class COARefTime : public CRefTime {
public:
COARefTime() {
};
COARefTime(CRefTime t)
: CRefTime(t)
{
};
COARefTime(REFERENCE_TIME t)
: CRefTime(t)
{
};
COARefTime(double d) {
m_time = (LONGLONG) (d * 10000000);
};
operator double() {
return double(m_time) / 10000000;
};
operator REFERENCE_TIME() {
return m_time;
};
COARefTime& operator=(const double& rd) {
m_time = (LONGLONG) (rd * 10000000);
return *this;
}
COARefTime& operator=(const REFERENCE_TIME& rt) {
m_time = rt;
return *this;
}
inline BOOL operator==(const COARefTime& rt)
{
return m_time == rt.m_time;
};
inline BOOL operator!=(const COARefTime& rt)
{
return m_time != rt.m_time;
};
inline BOOL operator < (const COARefTime& rt)
{
return m_time < rt.m_time;
};
inline BOOL operator > (const COARefTime& rt)
{
return m_time > rt.m_time;
};
inline BOOL operator >= (const COARefTime& rt)
{
return m_time >= rt.m_time;
};
inline BOOL operator <= (const COARefTime& rt)
{
return m_time <= rt.m_time;
};
inline COARefTime operator+(const COARefTime& rt)
{
return COARefTime(m_time + rt.m_time);
};
inline COARefTime operator-(const COARefTime& rt)
{
return COARefTime(m_time - rt.m_time);
};
inline COARefTime operator*(LONG l)
{
return COARefTime(m_time * l);
};
inline COARefTime operator/(LONG l)
{
return COARefTime(m_time / l);
};
private:
// Prevent bugs from constructing from LONG (which gets
// converted to double and then multiplied by 10000000
COARefTime(LONG);
LONG operator=(LONG);
};
// A utility class that handles IMediaPosition and IMediaSeeking on behalf
// of single-input pin renderers, or transform filters.
//
// Renderers will expose this from the filter; transform filters will
// expose it from the output pin and not the renderer.
//
// Create one of these, giving it your IPin* for your input pin, and delegate
// all IMediaPosition methods to it. It will query the input pin for
// IMediaPosition and respond appropriately.
//
// Call ForceRefresh if the pin connection changes.
//
// This class no longer caches the upstream IMediaPosition or IMediaSeeking
// it acquires it on each method call. This means ForceRefresh is not needed.
// The method is kept for source compatibility and to minimise the changes
// if we need to put it back later for performance reasons.
class CPosPassThru : public IMediaSeeking, public CMediaPosition
{
IPin *m_pPin;
HRESULT GetPeer(__deref_out IMediaPosition **ppMP);
HRESULT GetPeerSeeking(__deref_out IMediaSeeking **ppMS);
public:
CPosPassThru(__in_opt LPCTSTR, __in_opt LPUNKNOWN, __inout HRESULT*, IPin *);
DECLARE_IUNKNOWN
HRESULT ForceRefresh() {
return S_OK;
};
// override to return an accurate current position
virtual HRESULT GetMediaTime(__out LONGLONG *pStartTime, __out_opt LONGLONG *pEndTime) {
return E_FAIL;
}
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid,__deref_out void **ppv);
// IMediaSeeking methods
STDMETHODIMP GetCapabilities( __out DWORD * pCapabilities );
STDMETHODIMP CheckCapabilities( __inout DWORD * pCapabilities );
STDMETHODIMP SetTimeFormat(const GUID * pFormat);
STDMETHODIMP GetTimeFormat(__out GUID *pFormat);
STDMETHODIMP IsUsingTimeFormat(const GUID * pFormat);
STDMETHODIMP IsFormatSupported( const GUID * pFormat);
STDMETHODIMP QueryPreferredFormat( __out GUID *pFormat);
STDMETHODIMP ConvertTimeFormat(__out LONGLONG * pTarget,
__in_opt const GUID * pTargetFormat,
LONGLONG Source,
__in_opt const GUID * pSourceFormat );
STDMETHODIMP SetPositions( __inout_opt LONGLONG * pCurrent, DWORD CurrentFlags
, __inout_opt LONGLONG * pStop, DWORD StopFlags );
STDMETHODIMP GetPositions( __out_opt LONGLONG * pCurrent, __out_opt LONGLONG * pStop );
STDMETHODIMP GetCurrentPosition( __out LONGLONG * pCurrent );
STDMETHODIMP GetStopPosition( __out LONGLONG * pStop );
STDMETHODIMP SetRate( double dRate);
STDMETHODIMP GetRate( __out double * pdRate);
STDMETHODIMP GetDuration( __out LONGLONG *pDuration);
STDMETHODIMP GetAvailable( __out_opt LONGLONG *pEarliest, __out_opt LONGLONG *pLatest );
STDMETHODIMP GetPreroll( __out LONGLONG *pllPreroll );
// IMediaPosition properties
STDMETHODIMP get_Duration(__out REFTIME * plength);
STDMETHODIMP put_CurrentPosition(REFTIME llTime);
STDMETHODIMP get_StopTime(__out REFTIME * pllTime);
STDMETHODIMP put_StopTime(REFTIME llTime);
STDMETHODIMP get_PrerollTime(__out REFTIME * pllTime);
STDMETHODIMP put_PrerollTime(REFTIME llTime);
STDMETHODIMP get_Rate(__out double * pdRate);
STDMETHODIMP put_Rate(double dRate);
STDMETHODIMP get_CurrentPosition(__out REFTIME * pllTime);
STDMETHODIMP CanSeekForward(__out LONG *pCanSeekForward);
STDMETHODIMP CanSeekBackward(__out LONG *pCanSeekBackward);
private:
HRESULT GetSeekingLongLong( HRESULT (__stdcall IMediaSeeking::*pMethod)( LONGLONG * ),
__out LONGLONG * pll );
};
// Adds the ability to return a current position
class CRendererPosPassThru : public CPosPassThru
{
CCritSec m_PositionLock; // Locks access to our position
LONGLONG m_StartMedia; // Start media time last seen
LONGLONG m_EndMedia; // And likewise the end media
BOOL m_bReset; // Have media times been set
public:
// Used to help with passing media times through graph
CRendererPosPassThru(__in_opt LPCTSTR, __in_opt LPUNKNOWN, __inout HRESULT*, IPin *);
HRESULT RegisterMediaTime(IMediaSample *pMediaSample);
HRESULT RegisterMediaTime(LONGLONG StartTime,LONGLONG EndTime);
HRESULT GetMediaTime(__out LONGLONG *pStartTime,__out_opt LONGLONG *pEndTime);
HRESULT ResetMediaTime();
HRESULT EOS();
};
STDAPI CreatePosPassThru(
__in_opt LPUNKNOWN pAgg,
BOOL bRenderer,
IPin *pPin,
__deref_out IUnknown **ppPassThru
);
// A class that handles the IDispatch part of IBasicAudio and leaves the
// properties and methods themselves pure virtual.
class AM_NOVTABLE CBasicAudio : public IBasicAudio, public CUnknown
{
CBaseDispatch m_basedisp;
public:
CBasicAudio(__in_opt LPCTSTR, __in_opt LPUNKNOWN);
DECLARE_IUNKNOWN
// override this to publicise our interfaces
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid, __deref_out void **ppv);
/* IDispatch methods */
STDMETHODIMP GetTypeInfoCount(__out UINT * pctinfo);
STDMETHODIMP GetTypeInfo(
UINT itinfo,
LCID lcid,
__deref_out ITypeInfo ** pptinfo);
STDMETHODIMP GetIDsOfNames(
REFIID riid,
__in_ecount(cNames) LPOLESTR * rgszNames,
UINT cNames,
LCID lcid,
__out_ecount(cNames) DISPID * rgdispid);
STDMETHODIMP Invoke(
DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wFlags,
__in DISPPARAMS * pdispparams,
__out_opt VARIANT * pvarResult,
__out_opt EXCEPINFO * pexcepinfo,
__out_opt UINT * puArgErr);
};
// A class that handles the IDispatch part of IBasicVideo and leaves the
// properties and methods themselves pure virtual.
class AM_NOVTABLE CBaseBasicVideo : public IBasicVideo2, public CUnknown
{
CBaseDispatch m_basedisp;
public:
CBaseBasicVideo(__in_opt LPCTSTR, __in_opt LPUNKNOWN);
DECLARE_IUNKNOWN
// override this to publicise our interfaces
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid, __deref_out void **ppv);
/* IDispatch methods */
STDMETHODIMP GetTypeInfoCount(__out UINT * pctinfo);
STDMETHODIMP GetTypeInfo(
UINT itinfo,
LCID lcid,
__deref_out ITypeInfo ** pptinfo);
STDMETHODIMP GetIDsOfNames(
REFIID riid,
__in_ecount(cNames) LPOLESTR * rgszNames,
UINT cNames,
LCID lcid,
__out_ecount(cNames) DISPID * rgdispid);
STDMETHODIMP Invoke(
DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wFlags,
__in DISPPARAMS * pdispparams,
__out_opt VARIANT * pvarResult,
__out_opt EXCEPINFO * pexcepinfo,
__out_opt UINT * puArgErr);
STDMETHODIMP GetPreferredAspectRatio(
__out long *plAspectX,
__out long *plAspectY)
{
return E_NOTIMPL;
}
};
// A class that handles the IDispatch part of IVideoWindow and leaves the
// properties and methods themselves pure virtual.
class AM_NOVTABLE CBaseVideoWindow : public IVideoWindow, public CUnknown
{
CBaseDispatch m_basedisp;
public:
CBaseVideoWindow(__in_opt LPCTSTR, __in_opt LPUNKNOWN);
DECLARE_IUNKNOWN
// override this to publicise our interfaces
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid, __deref_out void **ppv);
/* IDispatch methods */
STDMETHODIMP GetTypeInfoCount(__out UINT * pctinfo);
STDMETHODIMP GetTypeInfo(
UINT itinfo,
LCID lcid,
__deref_out ITypeInfo ** pptinfo);
STDMETHODIMP GetIDsOfNames(
REFIID riid,
__in_ecount(cNames) LPOLESTR * rgszNames,
UINT cNames,
LCID lcid,
__out_ecount(cNames) DISPID * rgdispid);
STDMETHODIMP Invoke(
DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wFlags,
__in DISPPARAMS * pdispparams,
__out_opt VARIANT * pvarResult,
__out_opt EXCEPINFO * pexcepinfo,
__out_opt UINT * puArgErr);
};
// abstract class to help source filters with their implementation
// of IMediaPosition. Derive from this and set the duration (and stop
// position). Also override NotifyChange to do something when the properties
// change.
class AM_NOVTABLE CSourcePosition : public CMediaPosition
{
public:
CSourcePosition(__in_opt LPCTSTR, __in_opt LPUNKNOWN, __inout HRESULT*, __in CCritSec *);
// IMediaPosition methods
STDMETHODIMP get_Duration(__out REFTIME * plength);
STDMETHODIMP put_CurrentPosition(REFTIME llTime);
STDMETHODIMP get_StopTime(__out REFTIME * pllTime);
STDMETHODIMP put_StopTime(REFTIME llTime);
STDMETHODIMP get_PrerollTime(__out REFTIME * pllTime);
STDMETHODIMP put_PrerollTime(REFTIME llTime);
STDMETHODIMP get_Rate(__out double * pdRate);
STDMETHODIMP put_Rate(double dRate);
STDMETHODIMP CanSeekForward(__out LONG *pCanSeekForward);
STDMETHODIMP CanSeekBackward(__out LONG *pCanSeekBackward);
// override if you can return the data you are actually working on
STDMETHODIMP get_CurrentPosition(__out REFTIME * pllTime) {
return E_NOTIMPL;
};
protected:
// we call this to notify changes. Override to handle them
virtual HRESULT ChangeStart() PURE;
virtual HRESULT ChangeStop() PURE;
virtual HRESULT ChangeRate() PURE;
COARefTime m_Duration;
COARefTime m_Start;
COARefTime m_Stop;
double m_Rate;
CCritSec * m_pLock;
};
class AM_NOVTABLE CSourceSeeking :
public IMediaSeeking,
public CUnknown
{
public:
DECLARE_IUNKNOWN;
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid, __deref_out void **ppv);
// IMediaSeeking methods
STDMETHODIMP IsFormatSupported(const GUID * pFormat);
STDMETHODIMP QueryPreferredFormat(__out GUID *pFormat);
STDMETHODIMP SetTimeFormat(const GUID * pFormat);
STDMETHODIMP IsUsingTimeFormat(const GUID * pFormat);
STDMETHODIMP GetTimeFormat(__out GUID *pFormat);
STDMETHODIMP GetDuration(__out LONGLONG *pDuration);
STDMETHODIMP GetStopPosition(__out LONGLONG *pStop);
STDMETHODIMP GetCurrentPosition(__out LONGLONG *pCurrent);
STDMETHODIMP GetCapabilities( __out DWORD * pCapabilities );
STDMETHODIMP CheckCapabilities( __inout DWORD * pCapabilities );
STDMETHODIMP ConvertTimeFormat( __out LONGLONG * pTarget,
__in_opt const GUID * pTargetFormat,
LONGLONG Source,
__in_opt const GUID * pSourceFormat );
STDMETHODIMP SetPositions( __inout_opt LONGLONG * pCurrent, DWORD CurrentFlags
, __inout_opt LONGLONG * pStop, DWORD StopFlags );
STDMETHODIMP GetPositions( __out_opt LONGLONG * pCurrent, __out_opt LONGLONG * pStop );
STDMETHODIMP GetAvailable( __out_opt LONGLONG * pEarliest, __out_opt LONGLONG * pLatest );
STDMETHODIMP SetRate( double dRate);
STDMETHODIMP GetRate( __out double * pdRate);
STDMETHODIMP GetPreroll(__out LONGLONG *pPreroll);
protected:
// ctor
CSourceSeeking(__in_opt LPCTSTR, __in_opt LPUNKNOWN, __inout HRESULT*, __in CCritSec *);
// we call this to notify changes. Override to handle them
virtual HRESULT ChangeStart() PURE;
virtual HRESULT ChangeStop() PURE;
virtual HRESULT ChangeRate() PURE;
CRefTime m_rtDuration; // length of stream
CRefTime m_rtStart; // source will start here
CRefTime m_rtStop; // source will stop here
double m_dRateSeeking;
// seeking capabilities
DWORD m_dwSeekingCaps;
CCritSec * m_pLock;
};
// Base classes supporting Deferred commands.
// Deferred commands are queued by calls to methods on the IQueueCommand
// interface, exposed by the filtergraph and by some filters. A successful
// call to one of these methods will return an IDeferredCommand interface
// representing the queued command.
//
// A CDeferredCommand object represents a single deferred command, and exposes
// the IDeferredCommand interface as well as other methods permitting time
// checks and actual execution. It contains a reference to the CCommandQueue
// object on which it is queued.
//
// CCommandQueue is a base class providing a queue of CDeferredCommand
// objects, and methods to add, remove, check status and invoke the queued
// commands. A CCommandQueue object would be part of an object that
// implemented IQueueCommand.
class CCmdQueue;
// take a copy of the params and store them. Release any allocated
// memory in destructor
class CDispParams : public DISPPARAMS
{
public:
CDispParams(UINT nArgs, __in_ecount(nArgs) VARIANT* pArgs, __inout_opt HRESULT *phr = NULL);
~CDispParams();
};
// CDeferredCommand lifetime is controlled by refcounts. Caller of
// InvokeAt.. gets a refcounted interface pointer, and the CCmdQueue
// object also holds a refcount on us. Calling Cancel or Invoke takes
// us off the CCmdQueue and thus reduces the refcount by 1. Once taken
// off the queue we cannot be put back on the queue.
class CDeferredCommand
: public CUnknown,
public IDeferredCommand
{
public:
CDeferredCommand(
__inout CCmdQueue * pQ,
__in_opt LPUNKNOWN pUnk, // aggregation outer unk
__inout HRESULT * phr,
__in LPUNKNOWN pUnkExecutor, // object that will execute this cmd
REFTIME time,
__in GUID* iid,
long dispidMethod,
short wFlags,
long cArgs,
__in_ecount(cArgs) VARIANT* pDispParams,
__out VARIANT* pvarResult,
__out short* puArgErr,
BOOL bStream
);
DECLARE_IUNKNOWN
// override this to publicise our interfaces
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid, __out void **ppv);
// IDeferredCommand methods
STDMETHODIMP Cancel();
STDMETHODIMP Confidence(
__out LONG* pConfidence);
STDMETHODIMP Postpone(
REFTIME newtime);
STDMETHODIMP GetHResult(
__out HRESULT* phrResult);
// other public methods
HRESULT Invoke();
// access methods
// returns TRUE if streamtime, FALSE if presentation time
BOOL IsStreamTime() {
return m_bStream;
};
CRefTime GetTime() {
return m_time;
};
REFIID GetIID() {
return *m_iid;
};
long GetMethod() {
return m_dispidMethod;
};
short GetFlags() {
return m_wFlags;
};
DISPPARAMS* GetParams() {
return &m_DispParams;
};
VARIANT* GetResult() {
return m_pvarResult;
};
protected:
CCmdQueue* m_pQueue;
// pUnk for the interface that we will execute the command on
LPUNKNOWN m_pUnk;
// stored command data
REFERENCE_TIME m_time;
GUID* m_iid;
long m_dispidMethod;
short m_wFlags;
VARIANT* m_pvarResult;
BOOL m_bStream;
CDispParams m_DispParams;
DISPID m_DispId; // For get and put
// we use this for ITypeInfo access
CBaseDispatch m_Dispatch;
// save retval here
HRESULT m_hrResult;
};
// a list of CDeferredCommand objects. this is a base class providing
// the basics of access to the list. If you want to use CDeferredCommand
// objects then your queue needs to be derived from this class.
class AM_NOVTABLE CCmdQueue
{
public:
CCmdQueue(__inout_opt HRESULT *phr = NULL);
virtual ~CCmdQueue();
// returns a new CDeferredCommand object that will be initialised with
// the parameters and will be added to the queue during construction.
// returns S_OK if successfully created otherwise an error and
// no object has been queued.
virtual HRESULT New(
__out CDeferredCommand **ppCmd,
__in LPUNKNOWN pUnk,
REFTIME time,
__in GUID* iid,
long dispidMethod,
short wFlags,
long cArgs,
__in_ecount(cArgs) VARIANT* pDispParams,
__out VARIANT* pvarResult,
__out short* puArgErr,
BOOL bStream
);
// called by the CDeferredCommand object to add and remove itself
// from the queue
virtual HRESULT Insert(__in CDeferredCommand* pCmd);
virtual HRESULT Remove(__in CDeferredCommand* pCmd);
// Command-Due Checking
//
// There are two schemes of synchronisation: coarse and accurate. In
// coarse mode, you wait till the time arrives and then execute the cmd.
// In accurate mode, you wait until you are processing the sample that
// will appear at the time, and then execute the command. It's up to the
// filter which one it will implement. The filtergraph will always
// implement coarse mode for commands queued at the filtergraph.
//
// If you want coarse sync, you probably want to wait until there is a
// command due, and then execute it. You can do this by calling
// GetDueCommand. If you have several things to wait for, get the
// event handle from GetDueHandle() and when this is signalled then call
// GetDueCommand. Stream time will only advance between calls to Run and
// EndRun. Note that to avoid an extra thread there is no guarantee that
// if the handle is set there will be a command ready. Each time the
// event is signalled, call GetDueCommand (probably with a 0 timeout);
// This may return E_ABORT.
//
// If you want accurate sync, you must call GetCommandDueFor, passing
// as a parameter the stream time of the samples you are about to process.
// This will return:
// -- a stream-time command due at or before that stream time
// -- a presentation-time command due at or before the
// time that stream time will be presented (only between Run
// and EndRun calls, since outside of this, the mapping from
// stream time to presentation time is not known.
// -- any presentation-time command due now.
// This means that if you want accurate synchronisation on samples that
// might be processed during Paused mode, you need to use
// stream-time commands.
//
// In all cases, commands remain queued until Invoked or Cancelled. The
// setting and resetting of the event handle is managed entirely by this
// queue object.
// set the clock used for timing
virtual HRESULT SetSyncSource(__in_opt IReferenceClock*);
// switch to run mode. Streamtime to Presentation time mapping known.
virtual HRESULT Run(REFERENCE_TIME tStreamTimeOffset);
// switch to Stopped or Paused mode. Time mapping not known.
virtual HRESULT EndRun();
// return a pointer to the next due command. Blocks for msTimeout
// milliseconds until there is a due command.
// Stream-time commands will only become due between Run and Endrun calls.
// The command remains queued until invoked or cancelled.
// Returns E_ABORT if timeout occurs, otherwise S_OK (or other error).
// Returns an AddRef-ed object
virtual HRESULT GetDueCommand(__out CDeferredCommand ** ppCmd, long msTimeout);
// return the event handle that will be signalled whenever
// there are deferred commands due for execution (when GetDueCommand
// will not block).
HANDLE GetDueHandle() {
return HANDLE(m_evDue);
};
// return a pointer to a command that will be due for a given time.
// Pass in a stream time here. The stream time offset will be passed
// in via the Run method.
// Commands remain queued until invoked or cancelled.
// This method will not block. It will report VFW_E_NOT_FOUND if there
// are no commands due yet.
// Returns an AddRef-ed object
virtual HRESULT GetCommandDueFor(REFERENCE_TIME tStream, __out CDeferredCommand**ppCmd);
// check if a given time is due (TRUE if it is due yet)
BOOL CheckTime(CRefTime time, BOOL bStream) {
// if no clock, nothing is due!
if (!m_pClock) {
return FALSE;
}
// stream time
if (bStream) {
// not valid if not running
if (!m_bRunning) {
return FALSE;
}
// add on known stream time offset to get presentation time
time += m_StreamTimeOffset;
}
CRefTime Now;
m_pClock->GetTime((REFERENCE_TIME*)&Now);
return (time <= Now);
};
protected:
// protect access to lists etc
CCritSec m_Lock;
// commands queued in presentation time are stored here
CGenericList<CDeferredCommand> m_listPresentation;
// commands queued in stream time are stored here
CGenericList<CDeferredCommand> m_listStream;
// set when any commands are due
CAMEvent m_evDue;
// creates an advise for the earliest time required, if any
void SetTimeAdvise(void);
// advise id from reference clock (0 if no outstanding advise)
DWORD_PTR m_dwAdvise;
// advise time is for this presentation time
CRefTime m_tCurrentAdvise;
// the reference clock we are using (addrefed)
IReferenceClock* m_pClock;
// true when running
BOOL m_bRunning;
// contains stream time offset when m_bRunning is true
CRefTime m_StreamTimeOffset;
};
#endif // __CTLUTIL__

View file

@ -0,0 +1,129 @@
//------------------------------------------------------------------------------
// File: DDMM.cpp
//
// Desc: DirectShow base classes - implements routines for using DirectDraw
// on a multimonitor system.
//
// Copyright (c) 1995-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#include <ddraw.h>
#include "ddmm.h"
/*
* FindDeviceCallback
*/
typedef struct {
LPSTR szDevice;
GUID* lpGUID;
GUID GUID;
BOOL fFound;
} FindDeviceData;
BOOL CALLBACK FindDeviceCallback(__in_opt GUID* lpGUID, __in LPSTR szName, __in LPSTR szDevice, __in LPVOID lParam)
{
FindDeviceData *p = (FindDeviceData*)lParam;
if (lstrcmpiA(p->szDevice, szDevice) == 0) {
if (lpGUID) {
p->GUID = *lpGUID;
p->lpGUID = &p->GUID;
} else {
p->lpGUID = NULL;
}
p->fFound = TRUE;
return FALSE;
}
return TRUE;
}
BOOL CALLBACK FindDeviceCallbackEx(__in_opt GUID* lpGUID, __in LPSTR szName, __in LPSTR szDevice, __in LPVOID lParam, HMONITOR hMonitor)
{
FindDeviceData *p = (FindDeviceData*)lParam;
if (lstrcmpiA(p->szDevice, szDevice) == 0) {
if (lpGUID) {
p->GUID = *lpGUID;
p->lpGUID = &p->GUID;
} else {
p->lpGUID = NULL;
}
p->fFound = TRUE;
return FALSE;
}
return TRUE;
}
/*
* DirectDrawCreateFromDevice
*
* create a DirectDraw object for a particular device
*/
IDirectDraw * DirectDrawCreateFromDevice(__in_opt LPSTR szDevice, PDRAWCREATE DirectDrawCreateP, PDRAWENUM DirectDrawEnumerateP)
{
IDirectDraw* pdd = NULL;
FindDeviceData find;
if (szDevice == NULL) {
DirectDrawCreateP(NULL, &pdd, NULL);
return pdd;
}
find.szDevice = szDevice;
find.fFound = FALSE;
DirectDrawEnumerateP(FindDeviceCallback, (LPVOID)&find);
if (find.fFound)
{
//
// In 4bpp mode the following DDraw call causes a message box to be popped
// up by DDraw (!?!). It's DDraw's fault, but we don't like it. So we
// make sure it doesn't happen.
//
UINT ErrorMode = SetErrorMode(SEM_FAILCRITICALERRORS);
DirectDrawCreateP(find.lpGUID, &pdd, NULL);
SetErrorMode(ErrorMode);
}
return pdd;
}
/*
* DirectDrawCreateFromDeviceEx
*
* create a DirectDraw object for a particular device
*/
IDirectDraw * DirectDrawCreateFromDeviceEx(__in_opt LPSTR szDevice, PDRAWCREATE DirectDrawCreateP, LPDIRECTDRAWENUMERATEEXA DirectDrawEnumerateExP)
{
IDirectDraw* pdd = NULL;
FindDeviceData find;
if (szDevice == NULL) {
DirectDrawCreateP(NULL, &pdd, NULL);
return pdd;
}
find.szDevice = szDevice;
find.fFound = FALSE;
DirectDrawEnumerateExP(FindDeviceCallbackEx, (LPVOID)&find,
DDENUM_ATTACHEDSECONDARYDEVICES);
if (find.fFound)
{
//
// In 4bpp mode the following DDraw call causes a message box to be popped
// up by DDraw (!?!). It's DDraw's fault, but we don't like it. So we
// make sure it doesn't happen.
//
UINT ErrorMode = SetErrorMode(SEM_FAILCRITICALERRORS);
DirectDrawCreateP(find.lpGUID, &pdd, NULL);
SetErrorMode(ErrorMode);
}
return pdd;
}

View file

@ -0,0 +1,28 @@
//------------------------------------------------------------------------------
// File: DDMM.h
//
// Desc: DirectShow base classes - efines routines for using DirectDraw
// on a multimonitor system.
//
// Copyright (c) 1995-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifdef __cplusplus
extern "C" { /* Assume C declarations for C++ */
#endif /* __cplusplus */
// DDRAW.H might not include these
#ifndef DDENUM_ATTACHEDSECONDARYDEVICES
#define DDENUM_ATTACHEDSECONDARYDEVICES 0x00000001L
#endif
typedef HRESULT (*PDRAWCREATE)(IID *,LPDIRECTDRAW *,LPUNKNOWN);
typedef HRESULT (*PDRAWENUM)(LPDDENUMCALLBACKA, LPVOID);
IDirectDraw * DirectDrawCreateFromDevice(__in_opt LPSTR, PDRAWCREATE, PDRAWENUM);
IDirectDraw * DirectDrawCreateFromDeviceEx(__in_opt LPSTR, PDRAWCREATE, LPDIRECTDRAWENUMERATEEXA);
#ifdef __cplusplus
}
#endif /* __cplusplus */

View file

@ -0,0 +1,367 @@
//------------------------------------------------------------------------------
// File: DlleEntry.cpp
//
// Desc: DirectShow base classes - implements classes used to support dll
// entry points for COM objects.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#include <initguid.h>
#ifdef DEBUG
#ifdef UNICODE
#ifndef _UNICODE
#define _UNICODE
#endif // _UNICODE
#endif // UNICODE
#include <tchar.h>
#endif // DEBUG
#include <strsafe.h>
extern CFactoryTemplate g_Templates[];
extern int g_cTemplates;
HINSTANCE g_hInst;
DWORD g_amPlatform; // VER_PLATFORM_WIN32_WINDOWS etc... (from GetVersionEx)
OSVERSIONINFO g_osInfo;
//
// an instance of this is created by the DLLGetClassObject entrypoint
// it uses the CFactoryTemplate object it is given to support the
// IClassFactory interface
class CClassFactory : public IClassFactory, public CBaseObject
{
private:
const CFactoryTemplate *const m_pTemplate;
ULONG m_cRef;
static int m_cLocked;
public:
CClassFactory(const CFactoryTemplate *);
// IUnknown
STDMETHODIMP QueryInterface(REFIID riid, __deref_out void ** ppv);
STDMETHODIMP_(ULONG)AddRef();
STDMETHODIMP_(ULONG)Release();
// IClassFactory
STDMETHODIMP CreateInstance(LPUNKNOWN pUnkOuter, REFIID riid, __deref_out void **pv);
STDMETHODIMP LockServer(BOOL fLock);
// allow DLLGetClassObject to know about global server lock status
static BOOL IsLocked() {
return (m_cLocked > 0);
};
};
// process-wide dll locked state
int CClassFactory::m_cLocked = 0;
CClassFactory::CClassFactory(const CFactoryTemplate *pTemplate)
: CBaseObject(NAME("Class Factory"))
, m_cRef(0)
, m_pTemplate(pTemplate)
{
}
STDMETHODIMP
CClassFactory::QueryInterface(REFIID riid,__deref_out void **ppv)
{
CheckPointer(ppv,E_POINTER)
ValidateReadWritePtr(ppv,sizeof(PVOID));
*ppv = NULL;
// any interface on this object is the object pointer.
if ((riid == IID_IUnknown) || (riid == IID_IClassFactory)) {
*ppv = (LPVOID) this;
// AddRef returned interface pointer
((LPUNKNOWN) *ppv)->AddRef();
return NOERROR;
}
return ResultFromScode(E_NOINTERFACE);
}
STDMETHODIMP_(ULONG)
CClassFactory::AddRef()
{
return ++m_cRef;
}
STDMETHODIMP_(ULONG)
CClassFactory::Release()
{
LONG lRef = InterlockedDecrement((volatile LONG *)&m_cRef);
if (lRef == 0) {
delete this;
return 0;
} else {
return lRef;
}
}
STDMETHODIMP
CClassFactory::CreateInstance(
LPUNKNOWN pUnkOuter,
REFIID riid,
__deref_out void **pv)
{
CheckPointer(pv,E_POINTER)
ValidateReadWritePtr(pv,sizeof(void *));
*pv = NULL;
/* Enforce the normal OLE rules regarding interfaces and delegation */
if (pUnkOuter != NULL) {
if (IsEqualIID(riid,IID_IUnknown) == FALSE) {
*pv = NULL;
return ResultFromScode(E_NOINTERFACE);
}
}
/* Create the new object through the derived class's create function */
HRESULT hr = NOERROR;
CUnknown *pObj = m_pTemplate->CreateInstance(pUnkOuter, &hr);
if (pObj == NULL) {
*pv = NULL;
if (SUCCEEDED(hr)) {
hr = E_OUTOFMEMORY;
}
return hr;
}
/* Delete the object if we got a construction error */
if (FAILED(hr)) {
delete pObj;
*pv = NULL;
return hr;
}
/* Get a reference counted interface on the object */
/* We wrap the non-delegating QI with NDAddRef & NDRelease. */
/* This protects any outer object from being prematurely */
/* released by an inner object that may have to be created */
/* in order to supply the requested interface. */
pObj->NonDelegatingAddRef();
hr = pObj->NonDelegatingQueryInterface(riid, pv);
pObj->NonDelegatingRelease();
/* Note that if NonDelegatingQueryInterface fails, it will */
/* not increment the ref count, so the NonDelegatingRelease */
/* will drop the ref back to zero and the object will "self-*/
/* destruct". Hence we don't need additional tidy-up code */
/* to cope with NonDelegatingQueryInterface failing. */
if (SUCCEEDED(hr)) {
ASSERT(*pv);
}
return hr;
}
STDMETHODIMP
CClassFactory::LockServer(BOOL fLock)
{
if (fLock) {
m_cLocked++;
} else {
m_cLocked--;
}
return NOERROR;
}
// --- COM entrypoints -----------------------------------------
//called by COM to get the class factory object for a given class
__control_entrypoint(DllExport) STDAPI
DllGetClassObject(
__in REFCLSID rClsID,
__in REFIID riid,
__deref_out void **pv)
{
*pv = NULL;
if (!(riid == IID_IUnknown) && !(riid == IID_IClassFactory)) {
return E_NOINTERFACE;
}
// traverse the array of templates looking for one with this
// class id
for (int i = 0; i < g_cTemplates; i++) {
const CFactoryTemplate * pT = &g_Templates[i];
if (pT->IsClassID(rClsID)) {
// found a template - make a class factory based on this
// template
*pv = (LPVOID) (LPUNKNOWN) new CClassFactory(pT);
if (*pv == NULL) {
return E_OUTOFMEMORY;
}
((LPUNKNOWN)*pv)->AddRef();
return NOERROR;
}
}
return CLASS_E_CLASSNOTAVAILABLE;
}
//
// Call any initialization routines
//
void
DllInitClasses(BOOL bLoading)
{
int i;
// traverse the array of templates calling the init routine
// if they have one
for (i = 0; i < g_cTemplates; i++) {
const CFactoryTemplate * pT = &g_Templates[i];
if (pT->m_lpfnInit != NULL) {
(*pT->m_lpfnInit)(bLoading, pT->m_ClsID);
}
}
}
// called by COM to determine if this dll can be unloaded
// return ok unless there are outstanding objects or a lock requested
// by IClassFactory::LockServer
//
// CClassFactory has a static function that can tell us about the locks,
// and CCOMObject has a static function that can tell us about the active
// object count
STDAPI
DllCanUnloadNow()
{
DbgLog((LOG_MEMORY,2,TEXT("DLLCanUnloadNow called - IsLocked = %d, Active objects = %d"),
CClassFactory::IsLocked(),
CBaseObject::ObjectsActive()));
if (CClassFactory::IsLocked() || CBaseObject::ObjectsActive()) {
return S_FALSE;
} else {
return S_OK;
}
}
// --- standard WIN32 entrypoints --------------------------------------
extern "C" void __cdecl __security_init_cookie(void);
extern "C" BOOL WINAPI _DllEntryPoint(HINSTANCE, ULONG, __inout_opt LPVOID);
#pragma comment(linker, "/merge:.CRT=.rdata")
extern "C"
DECLSPEC_NOINLINE
BOOL
WINAPI
DllEntryPoint(
HINSTANCE hInstance,
ULONG ulReason,
__inout_opt LPVOID pv
)
{
if ( ulReason == DLL_PROCESS_ATTACH ) {
// Must happen before any other code is executed. Thankfully - it's re-entrant
__security_init_cookie();
}
return _DllEntryPoint(hInstance, ulReason, pv);
}
DECLSPEC_NOINLINE
BOOL
WINAPI
_DllEntryPoint(
HINSTANCE hInstance,
ULONG ulReason,
__inout_opt LPVOID pv
)
{
#ifdef DEBUG
extern bool g_fDbgInDllEntryPoint;
g_fDbgInDllEntryPoint = true;
#endif
switch (ulReason)
{
case DLL_PROCESS_ATTACH:
DisableThreadLibraryCalls(hInstance);
DbgInitialise(hInstance);
{
// The platform identifier is used to work out whether
// full unicode support is available or not. Hence the
// default will be the lowest common denominator - i.e. N/A
g_amPlatform = VER_PLATFORM_WIN32_WINDOWS; // win95 assumed in case GetVersionEx fails
g_osInfo.dwOSVersionInfoSize = sizeof(g_osInfo);
if (GetVersionEx(&g_osInfo)) {
g_amPlatform = g_osInfo.dwPlatformId;
} else {
DbgLog((LOG_ERROR, 1, TEXT("Failed to get the OS platform, assuming Win95")));
}
}
g_hInst = hInstance;
DllInitClasses(TRUE);
break;
case DLL_PROCESS_DETACH:
DllInitClasses(FALSE);
#ifdef DEBUG
if (CBaseObject::ObjectsActive()) {
DbgSetModuleLevel(LOG_MEMORY, 2);
TCHAR szInfo[512];
extern TCHAR m_ModuleName[]; // Cut down module name
TCHAR FullName[_MAX_PATH]; // Load the full path and module name
TCHAR *pName; // Searches from the end for a backslash
GetModuleFileName(NULL,FullName,_MAX_PATH);
pName = _tcsrchr(FullName,'\\');
if (pName == NULL) {
pName = FullName;
} else {
pName++;
}
(void)StringCchPrintf(szInfo, NUMELMS(szInfo), TEXT("Executable: %s Pid %x Tid %x. "),
pName, GetCurrentProcessId(), GetCurrentThreadId());
(void)StringCchPrintf(szInfo+lstrlen(szInfo), NUMELMS(szInfo) - lstrlen(szInfo), TEXT("Module %s, %d objects left active!"),
m_ModuleName, CBaseObject::ObjectsActive());
DbgAssert(szInfo, TEXT(__FILE__),__LINE__);
// If running remotely wait for the Assert to be acknowledged
// before dumping out the object register
DbgDumpObjectRegister();
}
DbgTerminate();
#endif
break;
}
#ifdef DEBUG
g_fDbgInDllEntryPoint = false;
#endif
return TRUE;
}

View file

@ -0,0 +1,693 @@
//------------------------------------------------------------------------------
// File: DllSetup.cpp
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#include <strsafe.h>
//---------------------------------------------------------------------------
// defines
#define MAX_KEY_LEN 260
//---------------------------------------------------------------------------
// externally defined functions/variable
extern int g_cTemplates;
extern CFactoryTemplate g_Templates[];
//---------------------------------------------------------------------------
//
// EliminateSubKey
//
// Try to enumerate all keys under this one.
// if we find anything, delete it completely.
// Otherwise just delete it.
//
// note - this was pinched/duplicated from
// Filgraph\Mapper.cpp - so should it be in
// a lib somewhere?
//
//---------------------------------------------------------------------------
STDAPI
EliminateSubKey( HKEY hkey, LPCTSTR strSubKey )
{
HKEY hk;
if (0 == lstrlen(strSubKey) ) {
// defensive approach
return E_FAIL;
}
LONG lreturn = RegOpenKeyEx( hkey
, strSubKey
, 0
, MAXIMUM_ALLOWED
, &hk );
ASSERT( lreturn == ERROR_SUCCESS
|| lreturn == ERROR_FILE_NOT_FOUND
|| lreturn == ERROR_INVALID_HANDLE );
if( ERROR_SUCCESS == lreturn )
{
// Keep on enumerating the first (zero-th)
// key and deleting that
for( ; ; )
{
TCHAR Buffer[MAX_KEY_LEN];
DWORD dw = MAX_KEY_LEN;
FILETIME ft;
lreturn = RegEnumKeyEx( hk
, 0
, Buffer
, &dw
, NULL
, NULL
, NULL
, &ft);
ASSERT( lreturn == ERROR_SUCCESS
|| lreturn == ERROR_NO_MORE_ITEMS );
if( ERROR_SUCCESS == lreturn )
{
EliminateSubKey(hk, Buffer);
}
else
{
break;
}
}
RegCloseKey(hk);
RegDeleteKey(hkey, strSubKey);
}
return NOERROR;
}
//---------------------------------------------------------------------------
//
// AMovieSetupRegisterServer()
//
// registers specfied file "szFileName" as server for
// CLSID "clsServer". A description is also required.
// The ThreadingModel and ServerType are optional, as
// they default to InprocServer32 (i.e. dll) and Both.
//
//---------------------------------------------------------------------------
STDAPI
AMovieSetupRegisterServer( CLSID clsServer
, LPCWSTR szDescription
, LPCWSTR szFileName
, LPCWSTR szThreadingModel = L"Both"
, LPCWSTR szServerType = L"InprocServer32" )
{
// temp buffer
//
TCHAR achTemp[MAX_PATH];
// convert CLSID uuid to string and write
// out subkey as string - CLSID\{}
//
OLECHAR szCLSID[CHARS_IN_GUID];
HRESULT hr = StringFromGUID2( clsServer
, szCLSID
, CHARS_IN_GUID );
ASSERT( SUCCEEDED(hr) );
// create key
//
HKEY hkey;
(void)StringCchPrintf( achTemp, NUMELMS(achTemp), TEXT("CLSID\\%ls"), szCLSID );
LONG lreturn = RegCreateKey( HKEY_CLASSES_ROOT
, (LPCTSTR)achTemp
, &hkey );
if( ERROR_SUCCESS != lreturn )
{
return AmHresultFromWin32(lreturn);
}
// set description string
//
(void)StringCchPrintf( achTemp, NUMELMS(achTemp), TEXT("%ls"), szDescription );
lreturn = RegSetValue( hkey
, (LPCTSTR)NULL
, REG_SZ
, achTemp
, sizeof(achTemp) );
if( ERROR_SUCCESS != lreturn )
{
RegCloseKey( hkey );
return AmHresultFromWin32(lreturn);
}
// create CLSID\\{"CLSID"}\\"ServerType" key,
// using key to CLSID\\{"CLSID"} passed back by
// last call to RegCreateKey().
//
HKEY hsubkey;
(void)StringCchPrintf( achTemp, NUMELMS(achTemp), TEXT("%ls"), szServerType );
lreturn = RegCreateKey( hkey
, achTemp
, &hsubkey );
if( ERROR_SUCCESS != lreturn )
{
RegCloseKey( hkey );
return AmHresultFromWin32(lreturn);
}
// set Server string
//
(void)StringCchPrintf( achTemp, NUMELMS(achTemp), TEXT("%ls"), szFileName );
lreturn = RegSetValue( hsubkey
, (LPCTSTR)NULL
, REG_SZ
, (LPCTSTR)achTemp
, sizeof(TCHAR) * (lstrlen(achTemp)+1) );
if( ERROR_SUCCESS != lreturn )
{
RegCloseKey( hkey );
RegCloseKey( hsubkey );
return AmHresultFromWin32(lreturn);
}
(void)StringCchPrintf( achTemp, NUMELMS(achTemp), TEXT("%ls"), szThreadingModel );
lreturn = RegSetValueEx( hsubkey
, TEXT("ThreadingModel")
, 0L
, REG_SZ
, (CONST BYTE *)achTemp
, sizeof(TCHAR) * (lstrlen(achTemp)+1) );
// close hkeys
//
RegCloseKey( hkey );
RegCloseKey( hsubkey );
// and return
//
return HRESULT_FROM_WIN32(lreturn);
}
//---------------------------------------------------------------------------
//
// AMovieSetupUnregisterServer()
//
// default ActiveMovie dll setup function
// - to use must be called from an exported
// function named DllRegisterServer()
//
//---------------------------------------------------------------------------
STDAPI
AMovieSetupUnregisterServer( CLSID clsServer )
{
// convert CLSID uuid to string and write
// out subkey CLSID\{}
//
OLECHAR szCLSID[CHARS_IN_GUID];
HRESULT hr = StringFromGUID2( clsServer
, szCLSID
, CHARS_IN_GUID );
ASSERT( SUCCEEDED(hr) );
TCHAR achBuffer[MAX_KEY_LEN];
(void)StringCchPrintf( achBuffer, NUMELMS(achBuffer), TEXT("CLSID\\%ls"), szCLSID );
// delete subkey
//
hr = EliminateSubKey( HKEY_CLASSES_ROOT, achBuffer );
ASSERT( SUCCEEDED(hr) );
// return
//
return NOERROR;
}
//---------------------------------------------------------------------------
//
// AMovieSetupRegisterFilter through IFilterMapper2
//
//---------------------------------------------------------------------------
STDAPI
AMovieSetupRegisterFilter2( const AMOVIESETUP_FILTER * const psetupdata
, IFilterMapper2 * pIFM2
, BOOL bRegister )
{
DbgLog((LOG_TRACE, 3, TEXT("= AMovieSetupRegisterFilter")));
// check we've got data
//
if( NULL == psetupdata ) return S_FALSE;
// unregister filter
// (as pins are subkeys of filter's CLSID key
// they do not need to be removed separately).
//
DbgLog((LOG_TRACE, 3, TEXT("= = unregister filter")));
HRESULT hr = pIFM2->UnregisterFilter(
0, // default category
0, // default instance name
*psetupdata->clsID );
if( bRegister )
{
REGFILTER2 rf2;
rf2.dwVersion = 1;
rf2.dwMerit = psetupdata->dwMerit;
rf2.cPins = psetupdata->nPins;
rf2.rgPins = psetupdata->lpPin;
// register filter
//
DbgLog((LOG_TRACE, 3, TEXT("= = register filter")));
hr = pIFM2->RegisterFilter(*psetupdata->clsID
, psetupdata->strName
, 0 // moniker
, 0 // category
, NULL // instance
, &rf2);
}
// handle one acceptable "error" - that
// of filter not being registered!
// (couldn't find a suitable #define'd
// name for the error!)
//
if( 0x80070002 == hr)
return NOERROR;
else
return hr;
}
//---------------------------------------------------------------------------
//
// RegisterAllServers()
//
//---------------------------------------------------------------------------
STDAPI
RegisterAllServers( LPCWSTR szFileName, BOOL bRegister )
{
HRESULT hr = NOERROR;
for( int i = 0; i < g_cTemplates; i++ )
{
// get i'th template
//
const CFactoryTemplate *pT = &g_Templates[i];
DbgLog((LOG_TRACE, 2, TEXT("- - register %ls"),
(LPCWSTR)pT->m_Name ));
// register CLSID and InprocServer32
//
if( bRegister )
{
hr = AMovieSetupRegisterServer( *(pT->m_ClsID)
, (LPCWSTR)pT->m_Name
, szFileName );
}
else
{
hr = AMovieSetupUnregisterServer( *(pT->m_ClsID) );
}
// check final error for this pass
// and break loop if we failed
//
if( FAILED(hr) )
break;
}
return hr;
}
//---------------------------------------------------------------------------
//
// AMovieDllRegisterServer2()
//
// default ActiveMovie dll setup function
// - to use must be called from an exported
// function named DllRegisterServer()
//
// this function is table driven using the
// static members of the CFactoryTemplate
// class defined in the dll.
//
// it registers the Dll as the InprocServer32
// and then calls the IAMovieSetup.Register
// method.
//
//---------------------------------------------------------------------------
STDAPI
AMovieDllRegisterServer2( BOOL bRegister )
{
HRESULT hr = NOERROR;
DbgLog((LOG_TRACE, 2, TEXT("AMovieDllRegisterServer2()")));
// get file name (where g_hInst is the
// instance handle of the filter dll)
//
WCHAR achFileName[MAX_PATH];
// WIN95 doesn't support GetModuleFileNameW
//
{
char achTemp[MAX_PATH];
DbgLog((LOG_TRACE, 2, TEXT("- get module file name")));
// g_hInst handle is set in our dll entry point. Make sure
// DllEntryPoint in dllentry.cpp is called
ASSERT(g_hInst != 0);
if( 0 == GetModuleFileNameA( g_hInst
, achTemp
, sizeof(achTemp) ) )
{
// we've failed!
DWORD dwerr = GetLastError();
return AmHresultFromWin32(dwerr);
}
MultiByteToWideChar( CP_ACP
, 0L
, achTemp
, lstrlenA(achTemp) + 1
, achFileName
, NUMELMS(achFileName) );
}
//
// first registering, register all OLE servers
//
if( bRegister )
{
DbgLog((LOG_TRACE, 2, TEXT("- register OLE Servers")));
hr = RegisterAllServers( achFileName, TRUE );
}
//
// next, register/unregister all filters
//
if( SUCCEEDED(hr) )
{
// init is ref counted so call just in case
// we're being called cold.
//
DbgLog((LOG_TRACE, 2, TEXT("- CoInitialize")));
hr = CoInitialize( (LPVOID)NULL );
ASSERT( SUCCEEDED(hr) );
// get hold of IFilterMapper2
//
DbgLog((LOG_TRACE, 2, TEXT("- obtain IFilterMapper2")));
IFilterMapper2 *pIFM2 = 0;
IFilterMapper *pIFM = 0;
hr = CoCreateInstance( CLSID_FilterMapper2
, NULL
, CLSCTX_INPROC_SERVER
, IID_IFilterMapper2
, (void **)&pIFM2 );
if(FAILED(hr))
{
DbgLog((LOG_TRACE, 2, TEXT("- trying IFilterMapper instead")));
hr = CoCreateInstance(
CLSID_FilterMapper,
NULL,
CLSCTX_INPROC_SERVER,
IID_IFilterMapper,
(void **)&pIFM);
}
if( SUCCEEDED(hr) )
{
// scan through array of CFactoryTemplates
// registering servers and filters.
//
DbgLog((LOG_TRACE, 2, TEXT("- register Filters")));
for( int i = 0; i < g_cTemplates; i++ )
{
// get i'th template
//
const CFactoryTemplate *pT = &g_Templates[i];
if( NULL != pT->m_pAMovieSetup_Filter )
{
DbgLog((LOG_TRACE, 2, TEXT("- - register %ls"), (LPCWSTR)pT->m_Name ));
if(pIFM2)
{
hr = AMovieSetupRegisterFilter2( pT->m_pAMovieSetup_Filter, pIFM2, bRegister );
}
else
{
hr = AMovieSetupRegisterFilter( pT->m_pAMovieSetup_Filter, pIFM, bRegister );
}
}
// check final error for this pass
// and break loop if we failed
//
if( FAILED(hr) )
break;
}
// release interface
//
if(pIFM2)
pIFM2->Release();
else
pIFM->Release();
}
// and clear up
//
CoFreeUnusedLibraries();
CoUninitialize();
}
//
// if unregistering, unregister all OLE servers
//
if( SUCCEEDED(hr) && !bRegister )
{
DbgLog((LOG_TRACE, 2, TEXT("- register OLE Servers")));
hr = RegisterAllServers( achFileName, FALSE );
}
DbgLog((LOG_TRACE, 2, TEXT("- return %0x"), hr));
return hr;
}
//---------------------------------------------------------------------------
//
// AMovieDllRegisterServer()
//
// default ActiveMovie dll setup function
// - to use must be called from an exported
// function named DllRegisterServer()
//
// this function is table driven using the
// static members of the CFactoryTemplate
// class defined in the dll.
//
// it registers the Dll as the InprocServer32
// and then calls the IAMovieSetup.Register
// method.
//
//---------------------------------------------------------------------------
STDAPI
AMovieDllRegisterServer( void )
{
HRESULT hr = NOERROR;
// get file name (where g_hInst is the
// instance handle of the filter dll)
//
WCHAR achFileName[MAX_PATH];
{
// WIN95 doesn't support GetModuleFileNameW
//
char achTemp[MAX_PATH];
if( 0 == GetModuleFileNameA( g_hInst
, achTemp
, sizeof(achTemp) ) )
{
// we've failed!
DWORD dwerr = GetLastError();
return AmHresultFromWin32(dwerr);
}
MultiByteToWideChar( CP_ACP
, 0L
, achTemp
, lstrlenA(achTemp) + 1
, achFileName
, NUMELMS(achFileName) );
}
// scan through array of CFactoryTemplates
// registering servers and filters.
//
for( int i = 0; i < g_cTemplates; i++ )
{
// get i'th template
//
const CFactoryTemplate *pT = &g_Templates[i];
// register CLSID and InprocServer32
//
hr = AMovieSetupRegisterServer( *(pT->m_ClsID)
, (LPCWSTR)pT->m_Name
, achFileName );
// instantiate all servers and get hold of
// IAMovieSetup, if implemented, and call
// IAMovieSetup.Register() method
//
if( SUCCEEDED(hr) && (NULL != pT->m_lpfnNew) )
{
// instantiate object
//
PAMOVIESETUP psetup;
hr = CoCreateInstance( *(pT->m_ClsID)
, 0
, CLSCTX_INPROC_SERVER
, IID_IAMovieSetup
, reinterpret_cast<void**>(&psetup) );
if( SUCCEEDED(hr) )
{
hr = psetup->Unregister();
if( SUCCEEDED(hr) )
hr = psetup->Register();
psetup->Release();
}
else
{
if( (E_NOINTERFACE == hr )
|| (VFW_E_NEED_OWNER == hr ) )
hr = NOERROR;
}
}
// check final error for this pass
// and break loop if we failed
//
if( FAILED(hr) )
break;
} // end-for
return hr;
}
//---------------------------------------------------------------------------
//
// AMovieDllUnregisterServer()
//
// default ActiveMovie dll uninstall function
// - to use must be called from an exported
// function named DllRegisterServer()
//
// this function is table driven using the
// static members of the CFactoryTemplate
// class defined in the dll.
//
// it calls the IAMovieSetup.Unregister
// method and then unregisters the Dll
// as the InprocServer32
//
//---------------------------------------------------------------------------
STDAPI
AMovieDllUnregisterServer()
{
// initialize return code
//
HRESULT hr = NOERROR;
// scan through CFactory template and unregister
// all OLE servers and filters.
//
for( int i = g_cTemplates; i--; )
{
// get i'th template
//
const CFactoryTemplate *pT = &g_Templates[i];
// check method exists
//
if( NULL != pT->m_lpfnNew )
{
// instantiate object
//
PAMOVIESETUP psetup;
hr = CoCreateInstance( *(pT->m_ClsID)
, 0
, CLSCTX_INPROC_SERVER
, IID_IAMovieSetup
, reinterpret_cast<void**>(&psetup) );
if( SUCCEEDED(hr) )
{
hr = psetup->Unregister();
psetup->Release();
}
else
{
if( (E_NOINTERFACE == hr )
|| (VFW_E_NEED_OWNER == hr ) )
hr = NOERROR;
}
}
// unregister CLSID and InprocServer32
//
if( SUCCEEDED(hr) )
{
hr = AMovieSetupUnregisterServer( *(pT->m_ClsID) );
}
// check final error for this pass
// and break loop if we failed
//
if( FAILED(hr) )
break;
}
return hr;
}

View file

@ -0,0 +1,46 @@
//------------------------------------------------------------------------------
// File: DllSetup.h
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
// To be self registering, OLE servers must
// export functions named DllRegisterServer
// and DllUnregisterServer. To allow use of
// custom and default implementations the
// defaults are named AMovieDllRegisterServer
// and AMovieDllUnregisterServer.
//
// To the use the default implementation you
// must provide stub functions.
//
// i.e. STDAPI DllRegisterServer()
// {
// return AMovieDllRegisterServer();
// }
//
// STDAPI DllUnregisterServer()
// {
// return AMovieDllUnregisterServer();
// }
//
//
// AMovieDllRegisterServer calls IAMovieSetup.Register(), and
// AMovieDllUnregisterServer calls IAMovieSetup.Unregister().
STDAPI AMovieDllRegisterServer2( BOOL );
STDAPI AMovieDllRegisterServer();
STDAPI AMovieDllUnregisterServer();
// helper functions
STDAPI EliminateSubKey( HKEY, LPCTSTR );
STDAPI
AMovieSetupRegisterFilter2( const AMOVIESETUP_FILTER * const psetupdata
, IFilterMapper2 * pIFM2
, BOOL bRegister );

View file

@ -0,0 +1,250 @@
//------------------------------------------------------------------------------
// File: DXMPerf.h
//
// Desc: Macros for DirectShow performance logging.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef _DXMPERF_H_
#define _DXMPERF_H_
#include <perfstruct.h>
#include "perflog.h"
#ifdef _IA64_
extern "C" unsigned __int64 __getReg( int whichReg );
#pragma intrinsic(__getReg)
#endif // _IA64_
inline ULONGLONG _RDTSC( void ) {
#ifdef _X86_
LARGE_INTEGER li;
__asm {
_emit 0x0F
_emit 0x31
mov li.LowPart,eax
mov li.HighPart,edx
}
return li.QuadPart;
#if 0 // This isn't tested yet
#elif defined (_IA64_)
#define INL_REGID_APITC 3116
return __getReg( INL_REGID_APITC );
#endif // 0
#else // unsupported platform
// not implemented on non x86/IA64 platforms
return 0;
#endif // _X86_/_IA64_
}
#define DXMPERF_VIDEOREND 0x00000001
#define DXMPERF_AUDIOGLITCH 0x00000002
//#define GETTIME_BIT 0x00000001
//#define AUDIOREND_BIT 0x00000004
//#define FRAMEDROP_BIT 0x00000008
#define AUDIOBREAK_BIT 0x00000010
#define DXMPERF_AUDIORECV 0x00000020
#define DXMPERF_AUDIOSLAVE 0x00000040
#define DXMPERF_AUDIOBREAK 0x00000080
#define PERFLOG_CTOR( name, iface )
#define PERFLOG_DTOR( name, iface )
#define PERFLOG_DELIVER( name, source, dest, sample, pmt )
#define PERFLOG_RECEIVE( name, source, dest, sample, pmt )
#define PERFLOG_RUN( name, iface, time, oldstate )
#define PERFLOG_PAUSE( name, iface, oldstate )
#define PERFLOG_STOP( name, iface, oldstate )
#define PERFLOG_JOINGRAPH( name, iface, graph )
#define PERFLOG_GETBUFFER( allocator, sample )
#define PERFLOG_RELBUFFER( allocator, sample )
#define PERFLOG_CONNECT( connector, connectee, status, pmt )
#define PERFLOG_RXCONNECT( connector, connectee, status, pmt )
#define PERFLOG_DISCONNECT( disconnector, disconnectee, status )
#define PERFLOG_GETTIME( clock, time ) /*{ \
PERFINFO_WMI_GETTIME perfData; \
if (NULL != g_pTraceEvent) { \
memset( &perfData, 0, sizeof( perfData ) ); \
perfData.header.Size = sizeof( perfData ); \
perfData.header.Flags = WNODE_FLAG_TRACED_GUID; \
perfData.header.Guid = GUID_GETTIME; \
perfData.data.cycleCounter = _RDTSC(); \
perfData.data.dshowClock = (ULONGLONG) (time); \
if (g_perfMasks[GETTIME_INDEX] & GETTIME_BIT) \
(*g_pTraceEvent)( g_traceHandle, (PEVENT_TRACE_HEADER) &perfData ); \
} \
}*/
#define PERFLOG_AUDIOREND( clocktime, sampletime, psample, bytetime, cbytes ) /*{ \
PERFINFO_WMI_AVREND perfData; \
if (NULL != g_pTraceEvent) { \
memset( &perfData, 0, sizeof( perfData ) ); \
perfData.header.Size = sizeof( perfData ); \
perfData.header.Flags = WNODE_FLAG_TRACED_GUID; \
perfData.header.Guid = GUID_AUDIOREND; \
perfData.data.cycleCounter = _RDTSC(); \
perfData.data.dshowClock = (clocktime); \
perfData.data.sampleTime = (sampletime); \
if (g_perfMasks[AUDIOREND_INDEX] & AUDIOREND_BIT) \
(*g_pTraceEvent)( g_traceHandle, (PEVENT_TRACE_HEADER) &perfData ); \
} \
}*/
#define PERFLOG_AUDIORECV(StreamTime,SampleStart,SampleStop,Discontinuity,Duration) \
if (PerflogEnableFlags & DXMPERF_AUDIORECV) { \
PERFINFO_WMI_AUDIORECV perfData; \
memset( &perfData, 0, sizeof( perfData ) ); \
perfData.header.Size = sizeof( perfData ); \
perfData.header.Flags = WNODE_FLAG_TRACED_GUID; \
perfData.header.Guid = GUID_AUDIORECV; \
perfData.data.streamTime = StreamTime; \
perfData.data.sampleStart = SampleStart; \
perfData.data.sampleStop = SampleStop; \
perfData.data.discontinuity = Discontinuity; \
perfData.data.hwduration = Duration; \
PerflogTraceEvent((PEVENT_TRACE_HEADER) &perfData); \
}
#define PERFLOG_AUDIOSLAVE(MasterClock,SlaveClock,ErrorAccum,LastHighErrorSeen,LastLowErrorSeen) \
if (PerflogEnableFlags & DXMPERF_AUDIOSLAVE) { \
PERFINFO_WMI_AUDIOSLAVE perfData; \
memset( &perfData, 0, sizeof( perfData ) ); \
perfData.header.Size = sizeof( perfData ); \
perfData.header.Flags = WNODE_FLAG_TRACED_GUID; \
perfData.header.Guid = GUID_AUDIOSLAVE; \
perfData.data.masterClock = MasterClock; \
perfData.data.slaveClock = SlaveClock; \
perfData.data.errorAccum = ErrorAccum; \
perfData.data.lastHighErrorSeen = LastHighErrorSeen;\
perfData.data.lastLowErrorSeen = LastLowErrorSeen; \
PerflogTraceEvent((PEVENT_TRACE_HEADER) &perfData); \
}
#define PERFLOG_AUDIOADDBREAK(IterNextWrite,OffsetNextWrite,IterWrite,OffsetWrite) \
if (PerflogEnableFlags & DXMPERF_AUDIOBREAK) { \
PERFINFO_WMI_AUDIOADDBREAK perfData; \
memset( &perfData, 0, sizeof( perfData ) ); \
perfData.header.Size = sizeof( perfData ); \
perfData.header.Flags = WNODE_FLAG_TRACED_GUID; \
perfData.header.Guid = GUID_AUDIOADDBREAK; \
perfData.data.iterNextWrite = IterNextWrite; \
perfData.data.offsetNextWrite = OffsetNextWrite; \
perfData.data.iterWrite = IterWrite; \
perfData.data.offsetWrite = OffsetWrite; \
PerflogTraceEvent((PEVENT_TRACE_HEADER) &perfData); \
}
#define PERFLOG_VIDEOREND( sampletime, clocktime, psample ) \
if (PerflogEnableFlags & DXMPERF_VIDEOREND) { \
PERFINFO_WMI_AVREND perfData; \
memset( &perfData, 0, sizeof( perfData ) ); \
perfData.header.Size = sizeof( perfData ); \
perfData.header.Flags = WNODE_FLAG_TRACED_GUID; \
perfData.header.Guid = GUID_VIDEOREND; \
perfData.data.cycleCounter = _RDTSC(); \
perfData.data.dshowClock = (clocktime); \
perfData.data.sampleTime = (sampletime); \
PerflogTraceEvent ((PEVENT_TRACE_HEADER) &perfData); \
}
#define PERFLOG_AUDIOGLITCH( instance, glitchtype, currenttime, previoustime ) \
if (PerflogEnableFlags & DXMPERF_AUDIOGLITCH) { \
PERFINFO_WMI_AUDIOGLITCH perfData; \
memset( &perfData, 0, sizeof( perfData ) ); \
perfData.header.Size = sizeof( perfData ); \
perfData.header.Flags = WNODE_FLAG_TRACED_GUID; \
perfData.header.Guid = GUID_DSOUNDGLITCH; \
perfData.data.cycleCounter = _RDTSC(); \
perfData.data.glitchType = (glitchtype); \
perfData.data.sampleTime = (currenttime); \
perfData.data.previousTime = (previoustime); \
perfData.data.instanceId = (instance); \
PerflogTraceEvent ((PEVENT_TRACE_HEADER) &perfData); \
}
#define PERFLOG_FRAMEDROP( sampletime, clocktime, psample, renderer ) /*{ \
PERFINFO_WMI_FRAMEDROP perfData; \
if (NULL != g_pTraceEvent) { \
memset( &perfData, 0, sizeof( perfData ) ); \
perfData.header.Size = sizeof( perfData ); \
perfData.header.Flags = WNODE_FLAG_TRACED_GUID; \
perfData.header.Guid = GUID_FRAMEDROP; \
perfData.data.cycleCounter = _RDTSC(); \
perfData.data.dshowClock = (clocktime); \
perfData.data.frameTime = (sampletime); \
if (g_perfMasks[FRAMEDROP_INDEX] & FRAMEDROP_BIT) \
(*g_pTraceEvent)( g_traceHandle, (PEVENT_TRACE_HEADER) &perfData ); \
} \
}*/
/*
#define PERFLOG_AUDIOBREAK( nextwrite, writepos, msecs ) { \
PERFINFO_WMI_AUDIOBREAK perfData; \
if (NULL != g_pTraceEvent) { \
memset( &perfData, 0, sizeof( perfData ) ); \
perfData.header.Size = sizeof( perfData ); \
perfData.header.Flags = WNODE_FLAG_TRACED_GUID; \
perfData.header.Guid = GUID_AUDIOBREAK; \
perfData.data.cycleCounter = _RDTSC(); \
perfData.data.dshowClock = (writepos); \
perfData.data.sampleTime = (nextwrite); \
perfData.data.sampleDuration = (msecs); \
if (g_perfMasks[AUDIOBREAK_INDEX] & AUDIOBREAK_BIT) \
(*g_pTraceEvent)( g_traceHandle, (PEVENT_TRACE_HEADER) &perfData ); \
} \
}
*/
#define PERFLOG_AUDIOBREAK( nextwrite, writepos, msecs ) \
if (PerflogEnableFlags & AUDIOBREAK_BIT) { \
PERFINFO_WMI_AUDIOBREAK perfData; \
memset( &perfData, 0, sizeof( perfData ) ); \
perfData.header.Size = sizeof( perfData ); \
perfData.header.Flags = WNODE_FLAG_TRACED_GUID; \
perfData.header.Guid = GUID_AUDIOBREAK; \
perfData.data.cycleCounter = _RDTSC(); \
perfData.data.dshowClock = (writepos); \
perfData.data.sampleTime = (nextwrite); \
perfData.data.sampleDuration = (msecs); \
PerflogTraceEvent ((PEVENT_TRACE_HEADER) &perfData); \
} \
inline
VOID PERFLOG_STREAMTRACE(
ULONG Level,
ULONG Id,
ULONGLONG DShowClock,
ULONGLONG Data1,
ULONGLONG Data2,
ULONGLONG Data3,
ULONGLONG Data4
)
{
if (Level <= PerflogModuleLevel)
{
PERFINFO_WMI_STREAMTRACE perfData;
memset( &perfData, 0, sizeof( perfData ) );
perfData.header.Size = sizeof( perfData );
perfData.header.Flags = WNODE_FLAG_TRACED_GUID;
perfData.header.Guid = GUID_STREAMTRACE;
perfData.data.dshowClock = DShowClock;
perfData.data.id = Id;
perfData.data.data[0] = Data1;
perfData.data.data[1] = Data2;
perfData.data.data[2] = Data3;
perfData.data.data[3] = Data4;
PerflogTraceEvent((PEVENT_TRACE_HEADER) &perfData);
}
}
#endif // _DXMPERF_H_

View file

@ -0,0 +1,101 @@
//------------------------------------------------------------------------------
// File: FourCC.h
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
// FOURCCMap
//
// provides a mapping between old-style multimedia format DWORDs
// and new-style GUIDs.
//
// A range of 4 billion GUIDs has been allocated to ensure that this
// mapping can be done straightforwardly one-to-one in both directions.
//
// January 95
#ifndef __FOURCC__
#define __FOURCC__
// Multimedia format types are marked with DWORDs built from four 8-bit
// chars and known as FOURCCs. New multimedia AM_MEDIA_TYPE definitions include
// a subtype GUID. In order to simplify the mapping, GUIDs in the range:
// XXXXXXXX-0000-0010-8000-00AA00389B71
// are reserved for FOURCCs.
class FOURCCMap : public GUID
{
public:
FOURCCMap();
FOURCCMap(DWORD Fourcc);
FOURCCMap(const GUID *);
DWORD GetFOURCC(void);
void SetFOURCC(DWORD fourcc);
void SetFOURCC(const GUID *);
private:
void InitGUID();
};
#define GUID_Data2 0
#define GUID_Data3 0x10
#define GUID_Data4_1 0xaa000080
#define GUID_Data4_2 0x719b3800
inline void
FOURCCMap::InitGUID() {
Data2 = GUID_Data2;
Data3 = GUID_Data3;
((DWORD *)Data4)[0] = GUID_Data4_1;
((DWORD *)Data4)[1] = GUID_Data4_2;
}
inline
FOURCCMap::FOURCCMap() {
InitGUID();
SetFOURCC( DWORD(0));
}
inline
FOURCCMap::FOURCCMap(DWORD fourcc)
{
InitGUID();
SetFOURCC(fourcc);
}
inline
FOURCCMap::FOURCCMap(const GUID * pGuid)
{
InitGUID();
SetFOURCC(pGuid);
}
inline void
FOURCCMap::SetFOURCC(const GUID * pGuid)
{
FOURCCMap * p = (FOURCCMap*) pGuid;
SetFOURCC(p->GetFOURCC());
}
inline void
FOURCCMap::SetFOURCC(DWORD fourcc)
{
Data1 = fourcc;
}
inline DWORD
FOURCCMap::GetFOURCC(void)
{
return Data1;
}
#endif /* __FOURCC__ */

View file

@ -0,0 +1,222 @@
//------------------------------------------------------------------------------
// File: Measure.h
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
/*
The idea is to pepper the source code with interesting measurements and
have the last few thousand of these recorded in a circular buffer that
can be post-processed to give interesting numbers.
WHAT THE LOG LOOKS LIKE:
Time (sec) Type Delta Incident_Name
0.055,41 NOTE -. Incident Nine - Another note
0.055,42 NOTE 0.000,01 Incident Nine - Another note
0.055,44 NOTE 0.000,02 Incident Nine - Another note
0.055,45 STOP -. Incident Eight - Also random
0.055,47 START -. Incident Seven - Random
0.055,49 NOTE 0.000,05 Incident Nine - Another note
------- <etc. there is a lot of this> ----------------
0.125,60 STOP 0.000,03 Msr_Stop
0.125,62 START -. Msr_Start
0.125,63 START -. Incident Two - Start/Stop
0.125,65 STOP 0.000,03 Msr_Start
0.125,66 START -. Msr_Stop
0.125,68 STOP 0.000,05 Incident Two - Start/Stop
0.125,70 STOP 0.000,04 Msr_Stop
0.125,72 START -. Msr_Start
0.125,73 START -. Incident Two - Start/Stop
0.125,75 STOP 0.000,03 Msr_Start
0.125,77 START -. Msr_Stop
0.125,78 STOP 0.000,05 Incident Two - Start/Stop
0.125,80 STOP 0.000,03 Msr_Stop
0.125,81 NOTE -. Incident Three - single Note
0.125,83 START -. Incident Four - Start, no stop
0.125,85 START -. Incident Five - Single Start/Stop
0.125,87 STOP 0.000,02 Incident Five - Single Start/Stop
Number Average StdDev Smallest Largest Incident_Name
10 0.000,58 0.000,10 0.000,55 0.000,85 Incident One - Note
50 0.000,05 0.000,00 0.000,05 0.000,05 Incident Two - Start/Stop
1 -. -. -. -. Incident Three - single Note
0 -. -. -. -. Incident Four - Start, no stop
1 0.000,02 -. 0.000,02 0.000,02 Incident Five - Single Start/Stop
0 -. -. -. -. Incident Six - zero occurrences
100 0.000,25 0.000,12 0.000,02 0.000,62 Incident Seven - Random
100 0.000,79 0.000,48 0.000,02 0.001,92 Incident Eight - Also random
5895 0.000,01 0.000,01 0.000,01 0.000,56 Incident Nine - Another note
10 0.000,03 0.000,00 0.000,03 0.000,04 Msr_Note
50 0.000,03 0.000,00 0.000,03 0.000,04 Msr_Start
50 0.000,04 0.000,03 0.000,03 0.000,31 Msr_Stop
WHAT IT MEANS:
The log shows what happened and when. Each line shows the time at which
something happened (see WHAT YOU CODE below) what it was that happened
and (if approporate) the time since the corresponding previous event
(that's the delta column).
The statistics show how many times each event occurred, what the average
delta time was, also the standard deviation, largest and smalles delta.
WHAT YOU CODE:
Before anything else executes: - register your ids
int id1 = Msr_Register("Incident One - Note");
int id2 = Msr_Register("Incident Two - Start/Stop");
int id3 = Msr_Register("Incident Three - single Note");
etc.
At interesting moments:
// To measure a repetitive event - e.g. end of bitblt to screen
Msr_Note(Id9); // e.g. "video frame hiting the screen NOW!"
or
// To measure an elapsed time e.g. time taken to decode an MPEG B-frame
Msr_Start(Id2); // e.g. "Starting to decode MPEG B-frame"
. . .
MsrStop(Id2); // "Finished MPEG decode"
At the end:
HANDLE hFile;
hFile = CreateFile("Perf.log", GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, 0, NULL);
Msr_Dump(hFile); // This writes the log out to the file
CloseHandle(hFile);
or
Msr_Dump(NULL); // This writes it to DbgLog((LOG_TRACE,0, ... ));
// but if you are writing it out to the debugger
// then the times are probably all garbage because
// the debugger can make things run awfully slow.
A given id should be used either for start / stop or Note calls. If Notes
are mixed in with Starts and Stops their statistics will be gibberish.
If you code the calls in upper case i.e. MSR_START(idMunge); then you get
macros which will turn into nothing unless PERF is defined.
You can reset the statistical counts for a given id by calling Reset(Id).
They are reset by default at the start.
It logs Reset as a special incident, so you can see it in the log.
The log is a circular buffer in storage (to try to minimise disk I/O).
It overwrites the oldest entries once full. The statistics include ALL
incidents since the last Reset, whether still visible in the log or not.
*/
#ifndef __MEASURE__
#define __MEASURE__
#ifdef PERF
#define MSR_INIT() Msr_Init()
#define MSR_TERMINATE() Msr_Terminate()
#define MSR_REGISTER(a) Msr_Register(a)
#define MSR_RESET(a) Msr_Reset(a)
#define MSR_CONTROL(a) Msr_Control(a)
#define MSR_START(a) Msr_Start(a)
#define MSR_STOP(a) Msr_Stop(a)
#define MSR_NOTE(a) Msr_Note(a)
#define MSR_INTEGER(a,b) Msr_Integer(a,b)
#define MSR_DUMP(a) Msr_Dump(a)
#define MSR_DUMPSTATS(a) Msr_DumpStats(a)
#else
#define MSR_INIT() ((void)0)
#define MSR_TERMINATE() ((void)0)
#define MSR_REGISTER(a) 0
#define MSR_RESET(a) ((void)0)
#define MSR_CONTROL(a) ((void)0)
#define MSR_START(a) ((void)0)
#define MSR_STOP(a) ((void)0)
#define MSR_NOTE(a) ((void)0)
#define MSR_INTEGER(a,b) ((void)0)
#define MSR_DUMP(a) ((void)0)
#define MSR_DUMPSTATS(a) ((void)0)
#endif
#ifdef __cplusplus
extern "C" {
#endif
// This must be called first - (called by the DllEntry)
void WINAPI Msr_Init(void);
// Call this last to clean up (or just let it fall off the end - who cares?)
void WINAPI Msr_Terminate(void);
// Call this to get an Id for an "incident" that you can pass to Start, Stop or Note
// everything that's logged is called an "incident".
int WINAPI Msr_Register(__in LPTSTR Incident);
// Reset the statistical counts for an incident
void WINAPI Msr_Reset(int Id);
// Reset all the counts for all incidents
#define MSR_RESET_ALL 0
#define MSR_PAUSE 1
#define MSR_RUN 2
void WINAPI Msr_Control(int iAction);
// log the start of an operation
void WINAPI Msr_Start(int Id);
// log the end of an operation
void WINAPI Msr_Stop(int Id);
// log a one-off or repetitive operation
void WINAPI Msr_Note(int Id);
// log an integer (on which we can see statistics later)
void WINAPI Msr_Integer(int Id, int n);
// print out all the vaialable log (it may have wrapped) and then the statistics.
// When the log wraps you lose log but the statistics are still complete.
// hFIle==NULL => use DbgLog
// otherwise hFile must have come from CreateFile or OpenFile.
void WINAPI Msr_Dump(HANDLE hFile);
// just dump the statistics - never mind the log
void WINAPI Msr_DumpStats(HANDLE hFile);
// Type definitions in case you want to declare a pointer to the dump functions
// (makes it a trifle easier to do dynamic linking
// i.e. LoadModule, GetProcAddress and call that)
// Typedefs so can declare MSR_DUMPPROC *MsrDumpStats; or whatever
typedef void WINAPI MSR_DUMPPROC(HANDLE hFile);
typedef void WINAPI MSR_CONTROLPROC(int iAction);
#ifdef __cplusplus
}
#endif
#endif // __MEASURE__

View file

@ -0,0 +1,120 @@
//------------------------------------------------------------------------------
// File: MsgThrd.h
//
// Desc: DirectShow base classes - provides support for a worker thread
// class to which one can asynchronously post messages.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
// Message class - really just a structure.
//
class CMsg {
public:
UINT uMsg;
DWORD dwFlags;
LPVOID lpParam;
CAMEvent *pEvent;
CMsg(UINT u, DWORD dw, __inout_opt LPVOID lp, __in_opt CAMEvent *pEvnt)
: uMsg(u), dwFlags(dw), lpParam(lp), pEvent(pEvnt) {}
CMsg()
: uMsg(0), dwFlags(0L), lpParam(NULL), pEvent(NULL) {}
};
// This is the actual thread class. It exports all the usual thread control
// functions. The created thread is different from a normal WIN32 thread in
// that it is prompted to perform particaular tasks by responding to messages
// posted to its message queue.
//
class AM_NOVTABLE CMsgThread {
private:
static DWORD WINAPI DefaultThreadProc(__inout LPVOID lpParam);
DWORD m_ThreadId;
HANDLE m_hThread;
protected:
// if you want to override GetThreadMsg to block on other things
// as well as this queue, you need access to this
CGenericList<CMsg> m_ThreadQueue;
CCritSec m_Lock;
HANDLE m_hSem;
LONG m_lWaiting;
public:
CMsgThread()
: m_ThreadId(0),
m_hThread(NULL),
m_lWaiting(0),
m_hSem(NULL),
// make a list with a cache of 5 items
m_ThreadQueue(NAME("MsgThread list"), 5)
{
}
~CMsgThread();
// override this if you want to block on other things as well
// as the message loop
void virtual GetThreadMsg(__out CMsg *msg);
// override this if you want to do something on thread startup
virtual void OnThreadInit() {
};
BOOL CreateThread();
BOOL WaitForThreadExit(__out LPDWORD lpdwExitCode) {
if (m_hThread != NULL) {
WaitForSingleObject(m_hThread, INFINITE);
return GetExitCodeThread(m_hThread, lpdwExitCode);
}
return FALSE;
}
DWORD ResumeThread() {
return ::ResumeThread(m_hThread);
}
DWORD SuspendThread() {
return ::SuspendThread(m_hThread);
}
int GetThreadPriority() {
return ::GetThreadPriority(m_hThread);
}
BOOL SetThreadPriority(int nPriority) {
return ::SetThreadPriority(m_hThread, nPriority);
}
HANDLE GetThreadHandle() {
return m_hThread;
}
DWORD GetThreadId() {
return m_ThreadId;
}
void PutThreadMsg(UINT uMsg, DWORD dwMsgFlags,
__in_opt LPVOID lpMsgParam, __in_opt CAMEvent *pEvent = NULL) {
CAutoLock lck(&m_Lock);
CMsg* pMsg = new CMsg(uMsg, dwMsgFlags, lpMsgParam, pEvent);
m_ThreadQueue.AddTail(pMsg);
if (m_lWaiting != 0) {
ReleaseSemaphore(m_hSem, m_lWaiting, 0);
m_lWaiting = 0;
}
}
// This is the function prototype of the function that the client
// supplies. It is always called on the created thread, never on
// the creator thread.
//
virtual LRESULT ThreadMessageProc(
UINT uMsg, DWORD dwFlags, __inout_opt LPVOID lpParam, __in_opt CAMEvent *pEvent) = 0;
};

View file

@ -0,0 +1,478 @@
//------------------------------------------------------------------------------
// File: MType.cpp
//
// Desc: DirectShow base classes - implements a class that holds and
// manages media type information.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
// helper class that derived pin objects can use to compare media
// types etc. Has same data members as the struct AM_MEDIA_TYPE defined
// in the streams IDL file, but also has (non-virtual) functions
#include <streams.h>
#include <mmreg.h>
CMediaType::~CMediaType(){
FreeMediaType(*this);
}
CMediaType::CMediaType()
{
InitMediaType();
}
CMediaType::CMediaType(const GUID * type)
{
InitMediaType();
majortype = *type;
}
// copy constructor does a deep copy of the format block
CMediaType::CMediaType(const AM_MEDIA_TYPE& rt, __out_opt HRESULT* phr)
{
HRESULT hr = CopyMediaType(this, &rt);
if (FAILED(hr) && (NULL != phr)) {
*phr = hr;
}
}
CMediaType::CMediaType(const CMediaType& rt, __out_opt HRESULT* phr)
{
HRESULT hr = CopyMediaType(this, &rt);
if (FAILED(hr) && (NULL != phr)) {
*phr = hr;
}
}
// this class inherits publicly from AM_MEDIA_TYPE so the compiler could generate
// the following assignment operator itself, however it could introduce some
// memory conflicts and leaks in the process because the structure contains
// a dynamically allocated block (pbFormat) which it will not copy correctly
CMediaType&
CMediaType::operator=(const AM_MEDIA_TYPE& rt)
{
Set(rt);
return *this;
}
CMediaType&
CMediaType::operator=(const CMediaType& rt)
{
*this = (AM_MEDIA_TYPE &) rt;
return *this;
}
BOOL
CMediaType::operator == (const CMediaType& rt) const
{
// I don't believe we need to check sample size or
// temporal compression flags, since I think these must
// be represented in the type, subtype and format somehow. They
// are pulled out as separate flags so that people who don't understand
// the particular format representation can still see them, but
// they should duplicate information in the format block.
return ((IsEqualGUID(majortype,rt.majortype) == TRUE) &&
(IsEqualGUID(subtype,rt.subtype) == TRUE) &&
(IsEqualGUID(formattype,rt.formattype) == TRUE) &&
(cbFormat == rt.cbFormat) &&
( (cbFormat == 0) ||
pbFormat != NULL && rt.pbFormat != NULL &&
(memcmp(pbFormat, rt.pbFormat, cbFormat) == 0)));
}
BOOL
CMediaType::operator != (const CMediaType& rt) const
{
/* Check to see if they are equal */
if (*this == rt) {
return FALSE;
}
return TRUE;
}
HRESULT
CMediaType::Set(const CMediaType& rt)
{
return Set((AM_MEDIA_TYPE &) rt);
}
HRESULT
CMediaType::Set(const AM_MEDIA_TYPE& rt)
{
if (&rt != this) {
FreeMediaType(*this);
HRESULT hr = CopyMediaType(this, &rt);
if (FAILED(hr)) {
return E_OUTOFMEMORY;
}
}
return S_OK;
}
BOOL
CMediaType::IsValid() const
{
return (!IsEqualGUID(majortype,GUID_NULL));
}
void
CMediaType::SetType(const GUID* ptype)
{
majortype = *ptype;
}
void
CMediaType::SetSubtype(const GUID* ptype)
{
subtype = *ptype;
}
ULONG
CMediaType::GetSampleSize() const {
if (IsFixedSize()) {
return lSampleSize;
} else {
return 0;
}
}
void
CMediaType::SetSampleSize(ULONG sz) {
if (sz == 0) {
SetVariableSize();
} else {
bFixedSizeSamples = TRUE;
lSampleSize = sz;
}
}
void
CMediaType::SetVariableSize() {
bFixedSizeSamples = FALSE;
}
void
CMediaType::SetTemporalCompression(BOOL bCompressed) {
bTemporalCompression = bCompressed;
}
BOOL
CMediaType::SetFormat(__in_bcount(cb) BYTE * pformat, ULONG cb)
{
if (NULL == AllocFormatBuffer(cb))
return(FALSE);
ASSERT(pbFormat);
memcpy(pbFormat, pformat, cb);
return(TRUE);
}
// set the type of the media type format block, this type defines what you
// will actually find in the format pointer. For example FORMAT_VideoInfo or
// FORMAT_WaveFormatEx. In the future this may be an interface pointer to a
// property set. Before sending out media types this should be filled in.
void
CMediaType::SetFormatType(const GUID *pformattype)
{
formattype = *pformattype;
}
// reset the format buffer
void CMediaType::ResetFormatBuffer()
{
if (cbFormat) {
CoTaskMemFree((PVOID)pbFormat);
}
cbFormat = 0;
pbFormat = NULL;
}
// allocate length bytes for the format and return a read/write pointer
// If we cannot allocate the new block of memory we return NULL leaving
// the original block of memory untouched (as does ReallocFormatBuffer)
BYTE*
CMediaType::AllocFormatBuffer(ULONG length)
{
ASSERT(length);
// do the types have the same buffer size
if (cbFormat == length) {
return pbFormat;
}
// allocate the new format buffer
BYTE *pNewFormat = (PBYTE)CoTaskMemAlloc(length);
if (pNewFormat == NULL) {
if (length <= cbFormat) return pbFormat; //reuse the old block anyway.
return NULL;
}
// delete the old format
if (cbFormat != 0) {
ASSERT(pbFormat);
CoTaskMemFree((PVOID)pbFormat);
}
cbFormat = length;
pbFormat = pNewFormat;
return pbFormat;
}
// reallocate length bytes for the format and return a read/write pointer
// to it. We keep as much information as we can given the new buffer size
// if this fails the original format buffer is left untouched. The caller
// is responsible for ensuring the size of memory required is non zero
BYTE*
CMediaType::ReallocFormatBuffer(ULONG length)
{
ASSERT(length);
// do the types have the same buffer size
if (cbFormat == length) {
return pbFormat;
}
// allocate the new format buffer
BYTE *pNewFormat = (PBYTE)CoTaskMemAlloc(length);
if (pNewFormat == NULL) {
if (length <= cbFormat) return pbFormat; //reuse the old block anyway.
return NULL;
}
// copy any previous format (or part of if new is smaller)
// delete the old format and replace with the new one
if (cbFormat != 0) {
ASSERT(pbFormat);
memcpy(pNewFormat,pbFormat,min(length,cbFormat));
CoTaskMemFree((PVOID)pbFormat);
}
cbFormat = length;
pbFormat = pNewFormat;
return pNewFormat;
}
// initialise a media type structure
void CMediaType::InitMediaType()
{
ZeroMemory((PVOID)this, sizeof(*this));
lSampleSize = 1;
bFixedSizeSamples = TRUE;
}
// a partially specified media type can be passed to IPin::Connect
// as a constraint on the media type used in the connection.
// the type, subtype or format type can be null.
BOOL
CMediaType::IsPartiallySpecified(void) const
{
if ((majortype == GUID_NULL) ||
(formattype == GUID_NULL)) {
return TRUE;
} else {
return FALSE;
}
}
BOOL
CMediaType::MatchesPartial(const CMediaType* ppartial) const
{
if ((ppartial->majortype != GUID_NULL) &&
(majortype != ppartial->majortype)) {
return FALSE;
}
if ((ppartial->subtype != GUID_NULL) &&
(subtype != ppartial->subtype)) {
return FALSE;
}
if (ppartial->formattype != GUID_NULL) {
// if the format block is specified then it must match exactly
if (formattype != ppartial->formattype) {
return FALSE;
}
if (cbFormat != ppartial->cbFormat) {
return FALSE;
}
if ((cbFormat != 0) &&
(memcmp(pbFormat, ppartial->pbFormat, cbFormat) != 0)) {
return FALSE;
}
}
return TRUE;
}
// general purpose function to delete a heap allocated AM_MEDIA_TYPE structure
// which is useful when calling IEnumMediaTypes::Next as the interface
// implementation allocates the structures which you must later delete
// the format block may also be a pointer to an interface to release
void WINAPI DeleteMediaType(__inout_opt AM_MEDIA_TYPE *pmt)
{
// allow NULL pointers for coding simplicity
if (pmt == NULL) {
return;
}
FreeMediaType(*pmt);
CoTaskMemFree((PVOID)pmt);
}
// this also comes in useful when using the IEnumMediaTypes interface so
// that you can copy a media type, you can do nearly the same by creating
// a CMediaType object but as soon as it goes out of scope the destructor
// will delete the memory it allocated (this takes a copy of the memory)
AM_MEDIA_TYPE * WINAPI CreateMediaType(AM_MEDIA_TYPE const *pSrc)
{
ASSERT(pSrc);
// Allocate a block of memory for the media type
AM_MEDIA_TYPE *pMediaType =
(AM_MEDIA_TYPE *)CoTaskMemAlloc(sizeof(AM_MEDIA_TYPE));
if (pMediaType == NULL) {
return NULL;
}
// Copy the variable length format block
HRESULT hr = CopyMediaType(pMediaType,pSrc);
if (FAILED(hr)) {
CoTaskMemFree((PVOID)pMediaType);
return NULL;
}
return pMediaType;
}
// Copy 1 media type to another
HRESULT WINAPI CopyMediaType(__out AM_MEDIA_TYPE *pmtTarget, const AM_MEDIA_TYPE *pmtSource)
{
// We'll leak if we copy onto one that already exists - there's one
// case we can check like that - copying to itself.
ASSERT(pmtSource != pmtTarget);
*pmtTarget = *pmtSource;
if (pmtSource->cbFormat != 0) {
ASSERT(pmtSource->pbFormat != NULL);
pmtTarget->pbFormat = (PBYTE)CoTaskMemAlloc(pmtSource->cbFormat);
if (pmtTarget->pbFormat == NULL) {
pmtTarget->cbFormat = 0;
return E_OUTOFMEMORY;
} else {
CopyMemory((PVOID)pmtTarget->pbFormat, (PVOID)pmtSource->pbFormat,
pmtTarget->cbFormat);
}
}
if (pmtTarget->pUnk != NULL) {
pmtTarget->pUnk->AddRef();
}
return S_OK;
}
// Free an existing media type (ie free resources it holds)
void WINAPI FreeMediaType(__inout AM_MEDIA_TYPE& mt)
{
if (mt.cbFormat != 0) {
CoTaskMemFree((PVOID)mt.pbFormat);
// Strictly unnecessary but tidier
mt.cbFormat = 0;
mt.pbFormat = NULL;
}
if (mt.pUnk != NULL) {
mt.pUnk->Release();
mt.pUnk = NULL;
}
}
// Initialize a media type from a WAVEFORMATEX
STDAPI CreateAudioMediaType(
const WAVEFORMATEX *pwfx,
__out AM_MEDIA_TYPE *pmt,
BOOL bSetFormat
)
{
pmt->majortype = MEDIATYPE_Audio;
if (pwfx->wFormatTag == WAVE_FORMAT_EXTENSIBLE) {
pmt->subtype = ((PWAVEFORMATEXTENSIBLE)pwfx)->SubFormat;
} else {
pmt->subtype = FOURCCMap(pwfx->wFormatTag);
}
pmt->formattype = FORMAT_WaveFormatEx;
pmt->bFixedSizeSamples = TRUE;
pmt->bTemporalCompression = FALSE;
pmt->lSampleSize = pwfx->nBlockAlign;
pmt->pUnk = NULL;
if (bSetFormat) {
if (pwfx->wFormatTag == WAVE_FORMAT_PCM) {
pmt->cbFormat = sizeof(WAVEFORMATEX);
} else {
pmt->cbFormat = sizeof(WAVEFORMATEX) + pwfx->cbSize;
}
pmt->pbFormat = (PBYTE)CoTaskMemAlloc(pmt->cbFormat);
if (pmt->pbFormat == NULL) {
return E_OUTOFMEMORY;
}
if (pwfx->wFormatTag == WAVE_FORMAT_PCM) {
CopyMemory(pmt->pbFormat, pwfx, sizeof(PCMWAVEFORMAT));
((WAVEFORMATEX *)pmt->pbFormat)->cbSize = 0;
} else {
CopyMemory(pmt->pbFormat, pwfx, pmt->cbFormat);
}
}
return S_OK;
}
// eliminate very many spurious warnings from MS compiler
#pragma warning(disable:4514)

View file

@ -0,0 +1,89 @@
//------------------------------------------------------------------------------
// File: MtType.h
//
// Desc: DirectShow base classes - defines a class that holds and manages
// media type information.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef __MTYPE__
#define __MTYPE__
/* Helper class that derived pin objects can use to compare media
types etc. Has same data members as the struct AM_MEDIA_TYPE defined
in the streams IDL file, but also has (non-virtual) functions */
class CMediaType : public _AMMediaType {
public:
~CMediaType();
CMediaType();
CMediaType(const GUID * majortype);
CMediaType(const AM_MEDIA_TYPE&, __out_opt HRESULT* phr = NULL);
CMediaType(const CMediaType&, __out_opt HRESULT* phr = NULL);
CMediaType& operator=(const CMediaType&);
CMediaType& operator=(const AM_MEDIA_TYPE&);
BOOL operator == (const CMediaType&) const;
BOOL operator != (const CMediaType&) const;
HRESULT Set(const CMediaType& rt);
HRESULT Set(const AM_MEDIA_TYPE& rt);
BOOL IsValid() const;
const GUID *Type() const { return &majortype;} ;
void SetType(const GUID *);
const GUID *Subtype() const { return &subtype;} ;
void SetSubtype(const GUID *);
BOOL IsFixedSize() const {return bFixedSizeSamples; };
BOOL IsTemporalCompressed() const {return bTemporalCompression; };
ULONG GetSampleSize() const;
void SetSampleSize(ULONG sz);
void SetVariableSize();
void SetTemporalCompression(BOOL bCompressed);
// read/write pointer to format - can't change length without
// calling SetFormat, AllocFormatBuffer or ReallocFormatBuffer
BYTE* Format() const {return pbFormat; };
ULONG FormatLength() const { return cbFormat; };
void SetFormatType(const GUID *);
const GUID *FormatType() const {return &formattype; };
BOOL SetFormat(__in_bcount(length) BYTE *pFormat, ULONG length);
void ResetFormatBuffer();
BYTE* AllocFormatBuffer(ULONG length);
BYTE* ReallocFormatBuffer(ULONG length);
void InitMediaType();
BOOL MatchesPartial(const CMediaType* ppartial) const;
BOOL IsPartiallySpecified(void) const;
};
/* General purpose functions to copy and delete a task allocated AM_MEDIA_TYPE
structure which is useful when using the IEnumMediaFormats interface as
the implementation allocates the structures which you must later delete */
void WINAPI DeleteMediaType(__inout_opt AM_MEDIA_TYPE *pmt);
AM_MEDIA_TYPE * WINAPI CreateMediaType(AM_MEDIA_TYPE const *pSrc);
HRESULT WINAPI CopyMediaType(__out AM_MEDIA_TYPE *pmtTarget, const AM_MEDIA_TYPE *pmtSource);
void WINAPI FreeMediaType(__inout AM_MEDIA_TYPE& mt);
// Initialize a media type from a WAVEFORMATEX
STDAPI CreateAudioMediaType(
const WAVEFORMATEX *pwfx,
__out AM_MEDIA_TYPE *pmt,
BOOL bSetFormat);
#endif /* __MTYPE__ */

View file

@ -0,0 +1,801 @@
//------------------------------------------------------------------------------
// File: OutputQ.cpp
//
// Desc: DirectShow base classes - implements COutputQueue class used by an
// output pin which may sometimes want to queue output samples on a
// separate thread and sometimes call Receive() directly on the input
// pin.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
//
// COutputQueue Constructor :
//
// Determines if a thread is to be created and creates resources
//
// pInputPin - the downstream input pin we're queueing samples to
//
// phr - changed to a failure code if this function fails
// (otherwise unchanges)
//
// bAuto - Ask pInputPin if it can block in Receive by calling
// its ReceiveCanBlock method and create a thread if
// it can block, otherwise not.
//
// bQueue - if bAuto == FALSE then we create a thread if and only
// if bQueue == TRUE
//
// lBatchSize - work in batches of lBatchSize
//
// bBatchEact - Use exact batch sizes so don't send until the
// batch is full or SendAnyway() is called
//
// lListSize - If we create a thread make the list of samples queued
// to the thread have this size cache
//
// dwPriority - If we create a thread set its priority to this
//
COutputQueue::COutputQueue(
IPin *pInputPin, // Pin to send stuff to
__inout HRESULT *phr, // 'Return code'
BOOL bAuto, // Ask pin if queue or not
BOOL bQueue, // Send through queue
LONG lBatchSize, // Batch
BOOL bBatchExact, // Batch exactly to BatchSize
LONG lListSize,
DWORD dwPriority,
bool bFlushingOpt // flushing optimization
) : m_lBatchSize(lBatchSize),
m_bBatchExact(bBatchExact && (lBatchSize > 1)),
m_hThread(NULL),
m_hSem(NULL),
m_List(NULL),
m_pPin(pInputPin),
m_ppSamples(NULL),
m_lWaiting(0),
m_evFlushComplete(FALSE, phr),
m_pInputPin(NULL),
m_bSendAnyway(FALSE),
m_nBatched(0),
m_bFlushing(FALSE),
m_bFlushed(TRUE),
m_bFlushingOpt(bFlushingOpt),
m_bTerminate(FALSE),
m_hEventPop(NULL),
m_hr(S_OK)
{
ASSERT(m_lBatchSize > 0);
if (FAILED(*phr)) {
return;
}
// Check the input pin is OK and cache its IMemInputPin interface
*phr = pInputPin->QueryInterface(IID_IMemInputPin, (void **)&m_pInputPin);
if (FAILED(*phr)) {
return;
}
// See if we should ask the downstream pin
if (bAuto) {
HRESULT hr = m_pInputPin->ReceiveCanBlock();
if (SUCCEEDED(hr)) {
bQueue = hr == S_OK;
}
}
// Create our sample batch
m_ppSamples = new PMEDIASAMPLE[m_lBatchSize];
if (m_ppSamples == NULL) {
*phr = E_OUTOFMEMORY;
return;
}
// If we're queueing allocate resources
if (bQueue) {
DbgLog((LOG_TRACE, 2, TEXT("Creating thread for output pin")));
m_hSem = CreateSemaphore(NULL, 0, 0x7FFFFFFF, NULL);
if (m_hSem == NULL) {
DWORD dwError = GetLastError();
*phr = AmHresultFromWin32(dwError);
return;
}
m_List = new CSampleList(NAME("Sample Queue List"),
lListSize,
FALSE // No lock
);
if (m_List == NULL) {
*phr = E_OUTOFMEMORY;
return;
}
DWORD dwThreadId;
m_hThread = CreateThread(NULL,
0,
InitialThreadProc,
(LPVOID)this,
0,
&dwThreadId);
if (m_hThread == NULL) {
DWORD dwError = GetLastError();
*phr = AmHresultFromWin32(dwError);
return;
}
SetThreadPriority(m_hThread, dwPriority);
} else {
DbgLog((LOG_TRACE, 2, TEXT("Calling input pin directly - no thread")));
}
}
//
// COutputQueuee Destructor :
//
// Free all resources -
//
// Thread,
// Batched samples
//
COutputQueue::~COutputQueue()
{
DbgLog((LOG_TRACE, 3, TEXT("COutputQueue::~COutputQueue")));
/* Free our pointer */
if (m_pInputPin != NULL) {
m_pInputPin->Release();
}
if (m_hThread != NULL) {
{
CAutoLock lck(this);
m_bTerminate = TRUE;
m_hr = S_FALSE;
NotifyThread();
}
DbgWaitForSingleObject(m_hThread);
EXECUTE_ASSERT(CloseHandle(m_hThread));
// The thread frees the samples when asked to terminate
ASSERT(m_List->GetCount() == 0);
delete m_List;
} else {
FreeSamples();
}
if (m_hSem != NULL) {
EXECUTE_ASSERT(CloseHandle(m_hSem));
}
delete [] m_ppSamples;
}
//
// Call the real thread proc as a member function
//
DWORD WINAPI COutputQueue::InitialThreadProc(__in LPVOID pv)
{
HRESULT hrCoInit = CAMThread::CoInitializeHelper();
COutputQueue *pSampleQueue = (COutputQueue *)pv;
DWORD dwReturn = pSampleQueue->ThreadProc();
if(hrCoInit == S_OK) {
CoUninitialize();
}
return dwReturn;
}
//
// Thread sending the samples downstream :
//
// When there is nothing to do the thread sets m_lWaiting (while
// holding the critical section) and then waits for m_hSem to be
// set (not holding the critical section)
//
DWORD COutputQueue::ThreadProc()
{
while (TRUE) {
BOOL bWait = FALSE;
IMediaSample *pSample;
LONG lNumberToSend; // Local copy
NewSegmentPacket* ppacket;
//
// Get a batch of samples and send it if possible
// In any case exit the loop if there is a control action
// requested
//
{
CAutoLock lck(this);
while (TRUE) {
if (m_bTerminate) {
FreeSamples();
return 0;
}
if (m_bFlushing) {
FreeSamples();
SetEvent(m_evFlushComplete);
}
// Get a sample off the list
pSample = m_List->RemoveHead();
// inform derived class we took something off the queue
if (m_hEventPop) {
//DbgLog((LOG_TRACE,3,TEXT("Queue: Delivered SET EVENT")));
SetEvent(m_hEventPop);
}
if (pSample != NULL &&
!IsSpecialSample(pSample)) {
// If its just a regular sample just add it to the batch
// and exit the loop if the batch is full
m_ppSamples[m_nBatched++] = pSample;
if (m_nBatched == m_lBatchSize) {
break;
}
} else {
// If there was nothing in the queue and there's nothing
// to send (either because there's nothing or the batch
// isn't full) then prepare to wait
if (pSample == NULL &&
(m_bBatchExact || m_nBatched == 0)) {
// Tell other thread to set the event when there's
// something do to
ASSERT(m_lWaiting == 0);
m_lWaiting++;
bWait = TRUE;
} else {
// We break out of the loop on SEND_PACKET unless
// there's nothing to send
if (pSample == SEND_PACKET && m_nBatched == 0) {
continue;
}
if (pSample == NEW_SEGMENT) {
// now we need the parameters - we are
// guaranteed that the next packet contains them
ppacket = (NewSegmentPacket *) m_List->RemoveHead();
// we took something off the queue
if (m_hEventPop) {
//DbgLog((LOG_TRACE,3,TEXT("Queue: Delivered SET EVENT")));
SetEvent(m_hEventPop);
}
ASSERT(ppacket);
}
// EOS_PACKET falls through here and we exit the loop
// In this way it acts like SEND_PACKET
}
break;
}
}
if (!bWait) {
// We look at m_nBatched from the client side so keep
// it up to date inside the critical section
lNumberToSend = m_nBatched; // Local copy
m_nBatched = 0;
}
}
// Wait for some more data
if (bWait) {
DbgWaitForSingleObject(m_hSem);
continue;
}
// OK - send it if there's anything to send
// We DON'T check m_bBatchExact here because either we've got
// a full batch or we dropped through because we got
// SEND_PACKET or EOS_PACKET - both of which imply we should
// flush our batch
if (lNumberToSend != 0) {
long nProcessed;
if (m_hr == S_OK) {
ASSERT(!m_bFlushed);
HRESULT hr = m_pInputPin->ReceiveMultiple(m_ppSamples,
lNumberToSend,
&nProcessed);
/* Don't overwrite a flushing state HRESULT */
CAutoLock lck(this);
if (m_hr == S_OK) {
m_hr = hr;
}
ASSERT(!m_bFlushed);
}
while (lNumberToSend != 0) {
m_ppSamples[--lNumberToSend]->Release();
}
if (m_hr != S_OK) {
// In any case wait for more data - S_OK just
// means there wasn't an error
DbgLog((LOG_ERROR, 2, TEXT("ReceiveMultiple returned %8.8X"),
m_hr));
}
}
// Check for end of stream
if (pSample == EOS_PACKET) {
// We don't send even end of stream on if we've previously
// returned something other than S_OK
// This is because in that case the pin which returned
// something other than S_OK should have either sent
// EndOfStream() or notified the filter graph
if (m_hr == S_OK) {
DbgLog((LOG_TRACE, 2, TEXT("COutputQueue sending EndOfStream()")));
HRESULT hr = m_pPin->EndOfStream();
if (FAILED(hr)) {
DbgLog((LOG_ERROR, 2, TEXT("COutputQueue got code 0x%8.8X from EndOfStream()")));
}
}
}
// Data from a new source
if (pSample == RESET_PACKET) {
m_hr = S_OK;
SetEvent(m_evFlushComplete);
}
if (pSample == NEW_SEGMENT) {
m_pPin->NewSegment(ppacket->tStart, ppacket->tStop, ppacket->dRate);
delete ppacket;
}
}
}
// Send batched stuff anyway
void COutputQueue::SendAnyway()
{
if (!IsQueued()) {
// m_bSendAnyway is a private parameter checked in ReceiveMultiple
m_bSendAnyway = TRUE;
LONG nProcessed;
ReceiveMultiple(NULL, 0, &nProcessed);
m_bSendAnyway = FALSE;
} else {
CAutoLock lck(this);
QueueSample(SEND_PACKET);
NotifyThread();
}
}
void
COutputQueue::NewSegment(
REFERENCE_TIME tStart,
REFERENCE_TIME tStop,
double dRate)
{
if (!IsQueued()) {
if (S_OK == m_hr) {
if (m_bBatchExact) {
SendAnyway();
}
m_pPin->NewSegment(tStart, tStop, dRate);
}
} else {
if (m_hr == S_OK) {
//
// we need to queue the new segment to appear in order in the
// data, but we need to pass parameters to it. Rather than
// take the hit of wrapping every single sample so we can tell
// special ones apart, we queue special pointers to indicate
// special packets, and we guarantee (by holding the
// critical section) that the packet immediately following a
// NEW_SEGMENT value is a NewSegmentPacket containing the
// parameters.
NewSegmentPacket * ppack = new NewSegmentPacket;
if (ppack == NULL) {
return;
}
ppack->tStart = tStart;
ppack->tStop = tStop;
ppack->dRate = dRate;
CAutoLock lck(this);
QueueSample(NEW_SEGMENT);
QueueSample( (IMediaSample*) ppack);
NotifyThread();
}
}
}
//
// End of Stream is queued to output device
//
void COutputQueue::EOS()
{
CAutoLock lck(this);
if (!IsQueued()) {
if (m_bBatchExact) {
SendAnyway();
}
if (m_hr == S_OK) {
DbgLog((LOG_TRACE, 2, TEXT("COutputQueue sending EndOfStream()")));
m_bFlushed = FALSE;
HRESULT hr = m_pPin->EndOfStream();
if (FAILED(hr)) {
DbgLog((LOG_ERROR, 2, TEXT("COutputQueue got code 0x%8.8X from EndOfStream()")));
}
}
} else {
if (m_hr == S_OK) {
m_bFlushed = FALSE;
QueueSample(EOS_PACKET);
NotifyThread();
}
}
}
//
// Flush all the samples in the queue
//
void COutputQueue::BeginFlush()
{
if (IsQueued()) {
{
CAutoLock lck(this);
// block receives -- we assume this is done by the
// filter in which we are a component
// discard all queued data
m_bFlushing = TRUE;
// Make sure we discard all samples from now on
if (m_hr == S_OK) {
m_hr = S_FALSE;
}
// Optimize so we don't keep calling downstream all the time
if (m_bFlushed && m_bFlushingOpt) {
return;
}
// Make sure we really wait for the flush to complete
m_evFlushComplete.Reset();
NotifyThread();
}
// pass this downstream
m_pPin->BeginFlush();
} else {
// pass downstream first to avoid deadlocks
m_pPin->BeginFlush();
CAutoLock lck(this);
// discard all queued data
m_bFlushing = TRUE;
// Make sure we discard all samples from now on
if (m_hr == S_OK) {
m_hr = S_FALSE;
}
}
}
//
// leave flush mode - pass this downstream
void COutputQueue::EndFlush()
{
{
CAutoLock lck(this);
ASSERT(m_bFlushing);
if (m_bFlushingOpt && m_bFlushed && IsQueued()) {
m_bFlushing = FALSE;
m_hr = S_OK;
return;
}
}
// sync with pushing thread -- done in BeginFlush
// ensure no more data to go downstream -- done in BeginFlush
//
// Because we are synching here there is no need to hold the critical
// section (in fact we'd deadlock if we did!)
if (IsQueued()) {
m_evFlushComplete.Wait();
} else {
FreeSamples();
}
// Be daring - the caller has guaranteed no samples will arrive
// before EndFlush() returns
m_bFlushing = FALSE;
m_bFlushed = TRUE;
// call EndFlush on downstream pins
m_pPin->EndFlush();
m_hr = S_OK;
}
// COutputQueue::QueueSample
//
// private method to Send a sample to the output queue
// The critical section MUST be held when this is called
void COutputQueue::QueueSample(IMediaSample *pSample)
{
if (NULL == m_List->AddTail(pSample)) {
if (!IsSpecialSample(pSample)) {
pSample->Release();
}
}
}
//
// COutputQueue::Receive()
//
// Send a single sample by the multiple sample route
// (NOTE - this could be optimized if necessary)
//
// On return the sample will have been Release()'d
//
HRESULT COutputQueue::Receive(IMediaSample *pSample)
{
LONG nProcessed;
return ReceiveMultiple(&pSample, 1, &nProcessed);
}
//
// COutputQueue::ReceiveMultiple()
//
// Send a set of samples to the downstream pin
//
// ppSamples - array of samples
// nSamples - how many
// nSamplesProcessed - How many were processed
//
// On return all samples will have been Release()'d
//
HRESULT COutputQueue::ReceiveMultiple (
__in_ecount(nSamples) IMediaSample **ppSamples,
long nSamples,
__out long *nSamplesProcessed)
{
if (nSamples < 0) {
return E_INVALIDARG;
}
CAutoLock lck(this);
// Either call directly or queue up the samples
if (!IsQueued()) {
// If we already had a bad return code then just return
if (S_OK != m_hr) {
// If we've never received anything since the last Flush()
// and the sticky return code is not S_OK we must be
// flushing
// ((!A || B) is equivalent to A implies B)
ASSERT(!m_bFlushed || m_bFlushing);
// We're supposed to Release() them anyway!
*nSamplesProcessed = 0;
for (int i = 0; i < nSamples; i++) {
DbgLog((LOG_TRACE, 3, TEXT("COutputQueue (direct) : Discarding %d samples code 0x%8.8X"),
nSamples, m_hr));
ppSamples[i]->Release();
}
return m_hr;
}
//
// If we're flushing the sticky return code should be S_FALSE
//
ASSERT(!m_bFlushing);
m_bFlushed = FALSE;
ASSERT(m_nBatched < m_lBatchSize);
ASSERT(m_nBatched == 0 || m_bBatchExact);
// Loop processing the samples in batches
LONG iLost = 0;
long iDone = 0;
for (iDone = 0;
iDone < nSamples || (m_nBatched != 0 && m_bSendAnyway);
) {
//pragma message (REMIND("Implement threshold scheme"))
ASSERT(m_nBatched < m_lBatchSize);
if (iDone < nSamples) {
m_ppSamples[m_nBatched++] = ppSamples[iDone++];
}
if (m_nBatched == m_lBatchSize ||
nSamples == 0 && (m_bSendAnyway || !m_bBatchExact)) {
LONG nDone;
DbgLog((LOG_TRACE, 4, TEXT("Batching %d samples"),
m_nBatched));
if (m_hr == S_OK) {
m_hr = m_pInputPin->ReceiveMultiple(m_ppSamples,
m_nBatched,
&nDone);
} else {
nDone = 0;
}
iLost += m_nBatched - nDone;
for (LONG i = 0; i < m_nBatched; i++) {
m_ppSamples[i]->Release();
}
m_nBatched = 0;
}
}
*nSamplesProcessed = iDone - iLost;
if (*nSamplesProcessed < 0) {
*nSamplesProcessed = 0;
}
return m_hr;
} else {
/* We're sending to our thread */
if (m_hr != S_OK) {
*nSamplesProcessed = 0;
DbgLog((LOG_TRACE, 3, TEXT("COutputQueue (queued) : Discarding %d samples code 0x%8.8X"),
nSamples, m_hr));
for (int i = 0; i < nSamples; i++) {
ppSamples[i]->Release();
}
return m_hr;
}
m_bFlushed = FALSE;
for (long i = 0; i < nSamples; i++) {
QueueSample(ppSamples[i]);
}
*nSamplesProcessed = nSamples;
if (!m_bBatchExact ||
m_nBatched + m_List->GetCount() >= m_lBatchSize) {
NotifyThread();
}
return S_OK;
}
}
// Get ready for new data - cancels sticky m_hr
void COutputQueue::Reset()
{
if (!IsQueued()) {
m_hr = S_OK;
} else {
{
CAutoLock lck(this);
QueueSample(RESET_PACKET);
NotifyThread();
}
m_evFlushComplete.Wait();
}
}
// Remove and Release() all queued and Batched samples
void COutputQueue::FreeSamples()
{
CAutoLock lck(this);
if (IsQueued()) {
while (TRUE) {
IMediaSample *pSample = m_List->RemoveHead();
// inform derived class we took something off the queue
if (m_hEventPop) {
//DbgLog((LOG_TRACE,3,TEXT("Queue: Delivered SET EVENT")));
SetEvent(m_hEventPop);
}
if (pSample == NULL) {
break;
}
if (!IsSpecialSample(pSample)) {
pSample->Release();
} else {
if (pSample == NEW_SEGMENT) {
// Free NEW_SEGMENT packet
NewSegmentPacket *ppacket =
(NewSegmentPacket *) m_List->RemoveHead();
// inform derived class we took something off the queue
if (m_hEventPop) {
//DbgLog((LOG_TRACE,3,TEXT("Queue: Delivered SET EVENT")));
SetEvent(m_hEventPop);
}
ASSERT(ppacket != NULL);
delete ppacket;
}
}
}
}
for (int i = 0; i < m_nBatched; i++) {
m_ppSamples[i]->Release();
}
m_nBatched = 0;
}
// Notify the thread if there is something to do
//
// The critical section MUST be held when this is called
void COutputQueue::NotifyThread()
{
// Optimize - no need to signal if it's not waiting
ASSERT(IsQueued());
if (m_lWaiting) {
ReleaseSemaphore(m_hSem, m_lWaiting, NULL);
m_lWaiting = 0;
}
}
// See if there's any work to do
// Returns
// TRUE if there is nothing on the queue and nothing in the batch
// and all data has been sent
// FALSE otherwise
//
BOOL COutputQueue::IsIdle()
{
CAutoLock lck(this);
// We're idle if
// there is no thread (!IsQueued()) OR
// the thread is waiting for more work (m_lWaiting != 0)
// AND
// there's nothing in the current batch (m_nBatched == 0)
if (IsQueued() && m_lWaiting == 0 || m_nBatched != 0) {
return FALSE;
} else {
// If we're idle it shouldn't be possible for there
// to be anything on the work queue
ASSERT(!IsQueued() || m_List->GetCount() == 0);
return TRUE;
}
}
void COutputQueue::SetPopEvent(HANDLE hEvent)
{
m_hEventPop = hEvent;
}

View file

@ -0,0 +1,137 @@
//------------------------------------------------------------------------------
// File: OutputQ.h
//
// Desc: DirectShow base classes - defines the COutputQueue class, which
// makes a queue of samples and sends them to an output pin. The
// class will optionally send the samples to the pin directly.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
typedef CGenericList<IMediaSample> CSampleList;
class COutputQueue : public CCritSec
{
public:
// Constructor
COutputQueue(IPin *pInputPin, // Pin to send stuff to
__inout HRESULT *phr, // 'Return code'
BOOL bAuto = TRUE, // Ask pin if blocks
BOOL bQueue = TRUE, // Send through queue (ignored if
// bAuto set)
LONG lBatchSize = 1, // Batch
BOOL bBatchExact = FALSE,// Batch exactly to BatchSize
LONG lListSize = // Likely number in the list
DEFAULTCACHE,
DWORD dwPriority = // Priority of thread to create
THREAD_PRIORITY_NORMAL,
bool bFlushingOpt = false // flushing optimization
);
~COutputQueue();
// enter flush state - discard all data
void BeginFlush(); // Begin flushing samples
// re-enable receives (pass this downstream)
void EndFlush(); // Complete flush of samples - downstream
// pin guaranteed not to block at this stage
void EOS(); // Call this on End of stream
void SendAnyway(); // Send batched samples anyway (if bBatchExact set)
void NewSegment(
REFERENCE_TIME tStart,
REFERENCE_TIME tStop,
double dRate);
HRESULT Receive(IMediaSample *pSample);
// do something with these media samples
HRESULT ReceiveMultiple (
__in_ecount(nSamples) IMediaSample **pSamples,
long nSamples,
__out long *nSamplesProcessed);
void Reset(); // Reset m_hr ready for more data
// See if its idle or not
BOOL IsIdle();
// give the class an event to fire after everything removed from the queue
void SetPopEvent(HANDLE hEvent);
protected:
static DWORD WINAPI InitialThreadProc(__in LPVOID pv);
DWORD ThreadProc();
BOOL IsQueued()
{
return m_List != NULL;
};
// The critical section MUST be held when this is called
void QueueSample(IMediaSample *pSample);
BOOL IsSpecialSample(IMediaSample *pSample)
{
return (DWORD_PTR)pSample > (DWORD_PTR)(LONG_PTR)(-16);
};
// Remove and Release() batched and queued samples
void FreeSamples();
// Notify the thread there is something to do
void NotifyThread();
protected:
// Queue 'messages'
#define SEND_PACKET ((IMediaSample *)(LONG_PTR)(-2)) // Send batch
#define EOS_PACKET ((IMediaSample *)(LONG_PTR)(-3)) // End of stream
#define RESET_PACKET ((IMediaSample *)(LONG_PTR)(-4)) // Reset m_hr
#define NEW_SEGMENT ((IMediaSample *)(LONG_PTR)(-5)) // send NewSegment
// new segment packet is always followed by one of these
struct NewSegmentPacket {
REFERENCE_TIME tStart;
REFERENCE_TIME tStop;
double dRate;
};
// Remember input stuff
IPin * const m_pPin;
IMemInputPin * m_pInputPin;
BOOL const m_bBatchExact;
LONG const m_lBatchSize;
CSampleList * m_List;
HANDLE m_hSem;
CAMEvent m_evFlushComplete;
HANDLE m_hThread;
__field_ecount_opt(m_lBatchSize) IMediaSample ** m_ppSamples;
__range(0, m_lBatchSize) LONG m_nBatched;
// Wait optimization
LONG m_lWaiting;
// Flush synchronization
BOOL m_bFlushing;
// flushing optimization. some downstream filters have trouble
// with the queue's flushing optimization. other rely on it
BOOL m_bFlushed;
bool m_bFlushingOpt;
// Terminate now
BOOL m_bTerminate;
// Send anyway flag for batching
BOOL m_bSendAnyway;
// Deferred 'return code'
HRESULT volatile m_hr;
// an event that can be fired after every deliver
HANDLE m_hEventPop;
};

View file

@ -0,0 +1,347 @@
//------------------------------------------------------------------------------
// File: perflog.cpp
//
// Desc: Macros for DirectShow performance logging.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#pragma warning (disable:4201)
#include <streams.h>
#include <windows.h>
#include <tchar.h>
#include <winperf.h>
#include <wmistr.h>
#include <evntrace.h>
#include <strsafe.h>
#include "perflog.h"
//
// Local function prototypes.
//
ULONG
WINAPI
PerflogCallback (
WMIDPREQUESTCODE RequestCode,
__in PVOID Context,
__out ULONG* BufferSize,
__in PVOID Buffer
);
//
// Event tracing function pointers.
// We have to do this to run on down-level platforms.
//
#ifdef UNICODE
ULONG
(__stdcall * _RegisterTraceGuids) (
__in IN WMIDPREQUEST RequestAddress,
__in IN PVOID RequestContext,
IN LPCGUID ControlGuid,
IN ULONG GuidCount,
__in IN PTRACE_GUID_REGISTRATION TraceGuidReg,
IN LPCWSTR MofImagePath,
IN LPCWSTR MofResourceName,
OUT PTRACEHANDLE RegistrationHandle
);
#define REGISTERTRACEGUIDS_NAME "RegisterTraceGuidsW"
#else
ULONG
(__stdcall * _RegisterTraceGuids) (
__in IN WMIDPREQUEST RequestAddress,
__in IN PVOID RequestContext,
IN LPCGUID ControlGuid,
IN ULONG GuidCount,
__in IN PTRACE_GUID_REGISTRATION TraceGuidReg,
IN LPCSTR MofImagePath,
IN LPCSTR MofResourceName,
__out OUT PTRACEHANDLE RegistrationHandle
);
#define REGISTERTRACEGUIDS_NAME "RegisterTraceGuidsA"
#endif
ULONG
(__stdcall * _UnregisterTraceGuids) (
TRACEHANDLE RegistrationHandle
);
TRACEHANDLE
(__stdcall * _GetTraceLoggerHandle) (
__in PVOID Buffer
);
UCHAR
(__stdcall * _GetTraceEnableLevel) (
TRACEHANDLE TraceHandle
);
ULONG
(__stdcall * _GetTraceEnableFlags) (
TRACEHANDLE TraceHandle
);
ULONG
(__stdcall * _TraceEvent) (
TRACEHANDLE TraceHandle,
__in PEVENT_TRACE_HEADER EventTrace
);
HINSTANCE _Advapi32;
//
// Global variables.
//
BOOL EventTracingAvailable=FALSE;
ULONG PerflogEnableFlags;
UCHAR PerflogEnableLevel;
ULONG PerflogModuleLevel = 0;
void (*OnStateChanged)(void);
TRACEHANDLE PerflogTraceHandle=NULL;
TRACEHANDLE PerflogRegHandle;
// The Win32 wsprintf() function writes a maximum of 1024 characters to it's output buffer.
// See the documentation for wsprintf()'s lpOut parameter for more information.
const INT iDEBUGINFO = 1024; // Used to format strings
//
// This routine initializes performance logging.
// It should be called from DllMain().
//
VOID
PerflogReadModuleLevel(
HINSTANCE hInstance
)
{
LONG lReturn; // Create key return value
TCHAR szInfo[iDEBUGINFO]; // Constructs key names
TCHAR szFullName[iDEBUGINFO]; // Load the full path and module name
HKEY hModuleKey; // Module key handle
LPTSTR pName; // Searches from the end for a backslash
DWORD dwKeySize, dwKeyType, dwKeyValue;
DWORD dwSize = GetModuleFileName(
(hInstance ? hInstance : GetModuleHandle( NULL )),
szFullName,
iDEBUGINFO );
if (0 == dwSize || iDEBUGINFO == dwSize) {
return;
}
pName = _tcsrchr(szFullName,'\\');
if (pName == NULL) {
pName = szFullName;
} else {
pName++;
}
/* Construct the base key name */
(void)StringCchPrintf(szInfo,NUMELMS(szInfo),TEXT("SOFTWARE\\Debug\\%s"),pName);
/* Open the key for this module */
lReturn =
RegOpenKeyEx(
HKEY_LOCAL_MACHINE, // Handle of an open key
szInfo, // Address of subkey name
(DWORD) 0, // Reserved value
KEY_QUERY_VALUE, // Desired security access
&hModuleKey ); // Opened handle buffer
if (lReturn != ERROR_SUCCESS) {
return;
}
dwKeySize = sizeof(DWORD);
lReturn = RegQueryValueEx(
hModuleKey, // Handle to an open key
TEXT("PERFLOG"),
NULL, // Reserved field
&dwKeyType, // Returns the field type
(LPBYTE) &dwKeyValue, // Returns the field's value
&dwKeySize ); // Number of bytes transferred
if ((lReturn == ERROR_SUCCESS) && (dwKeyType == REG_DWORD))
{
PerflogModuleLevel = dwKeyValue;
}
RegCloseKey(hModuleKey);
}
BOOL PerflogInitIfEnabled(
IN HINSTANCE hInstance,
__in IN PPERFLOG_LOGGING_PARAMS LogParams
)
{
PerflogReadModuleLevel( hInstance );
if (PerflogModuleLevel)
{
return PerflogInitialize( LogParams );
}
else
{
return FALSE;
}
}
BOOL
PerflogInitialize (
__in IN PPERFLOG_LOGGING_PARAMS LogParams
)
{
ULONG status;
//
// If we're running on a recent-enough platform, this will get
// pointers to the event tracing routines.
//
_Advapi32 = GetModuleHandle (_T("ADVAPI32.DLL"));
if (_Advapi32 == NULL) {
return FALSE;
}
*((FARPROC*) &_RegisterTraceGuids) = GetProcAddress (_Advapi32, REGISTERTRACEGUIDS_NAME);
*((FARPROC*) &_UnregisterTraceGuids) = GetProcAddress (_Advapi32, "UnregisterTraceGuids");
*((FARPROC*) &_GetTraceLoggerHandle) = GetProcAddress (_Advapi32, "GetTraceLoggerHandle");
*((FARPROC*) &_GetTraceEnableLevel) = GetProcAddress (_Advapi32, "GetTraceEnableLevel");
*((FARPROC*) &_GetTraceEnableFlags) = GetProcAddress (_Advapi32, "GetTraceEnableFlags");
*((FARPROC*) &_TraceEvent) = GetProcAddress (_Advapi32, "TraceEvent");
if (_RegisterTraceGuids == NULL ||
_UnregisterTraceGuids == NULL ||
_GetTraceEnableLevel == NULL ||
_GetTraceEnableFlags == NULL ||
_TraceEvent == NULL) {
return FALSE;
}
EventTracingAvailable = TRUE;
OnStateChanged = LogParams->OnStateChanged;
//
// Register our GUIDs.
//
status = _RegisterTraceGuids (PerflogCallback,
LogParams,
&LogParams->ControlGuid,
LogParams->NumberOfTraceGuids,
LogParams->TraceGuids,
NULL,
NULL,
&PerflogRegHandle);
return (status == ERROR_SUCCESS);
}
//
// This routine shuts down performance logging.
//
VOID
PerflogShutdown (
VOID
)
{
if (!EventTracingAvailable) {
return;
}
_UnregisterTraceGuids (PerflogRegHandle);
PerflogRegHandle = NULL;
PerflogTraceHandle = NULL;
}
//
// Event tracing callback routine.
// It's called when controllers call event tracing control functions.
//
ULONG
WINAPI
PerflogCallback (
WMIDPREQUESTCODE RequestCode,
__in PVOID Context,
__out ULONG* BufferSize,
__in PVOID Buffer
)
{
ULONG status;
UNREFERENCED_PARAMETER (Context);
ASSERT (EventTracingAvailable);
status = ERROR_SUCCESS;
switch (RequestCode) {
case WMI_ENABLE_EVENTS:
PerflogTraceHandle = _GetTraceLoggerHandle (Buffer);
PerflogEnableFlags = _GetTraceEnableFlags (PerflogTraceHandle);
PerflogEnableLevel = _GetTraceEnableLevel (PerflogTraceHandle);
break;
case WMI_DISABLE_EVENTS:
PerflogTraceHandle = NULL;
PerflogEnableFlags = 0;
PerflogEnableLevel = 0;
break;
default:
status = ERROR_INVALID_PARAMETER;
}
if (OnStateChanged != NULL) {
OnStateChanged();
}
*BufferSize = 0;
return status;
}
//
// Logging routine.
//
VOID
PerflogTraceEvent (
__in PEVENT_TRACE_HEADER Event
)
{
if (!EventTracingAvailable) {
return;
}
_TraceEvent (PerflogTraceHandle, Event);
}
VOID
PerflogTraceEventLevel(
ULONG Level,
__in PEVENT_TRACE_HEADER Event
)
{
if ((!EventTracingAvailable) || (Level <= PerflogModuleLevel)) {
return;
}
_TraceEvent (PerflogTraceHandle, Event);
}

View file

@ -0,0 +1,56 @@
//------------------------------------------------------------------------------
// File: perflog.h
//
// Desc: Performance logging framework.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
typedef struct _PERFLOG_LOGGING_PARAMS {
GUID ControlGuid;
void (*OnStateChanged)(void);
ULONG NumberOfTraceGuids;
TRACE_GUID_REGISTRATION TraceGuids[ANYSIZE_ARRAY];
} PERFLOG_LOGGING_PARAMS, *PPERFLOG_LOGGING_PARAMS;
BOOL
PerflogInitIfEnabled(
IN HINSTANCE hInstance,
__in PPERFLOG_LOGGING_PARAMS LogParams
);
BOOL
PerflogInitialize (
__in PPERFLOG_LOGGING_PARAMS LogParams
);
VOID
PerflogShutdown (
VOID
);
VOID
PerflogTraceEvent (
__in PEVENT_TRACE_HEADER Event
);
extern ULONG PerflogEnableFlags;
extern UCHAR PerflogEnableLevel;
extern ULONG PerflogModuleLevel;
extern TRACEHANDLE PerflogTraceHandle;
extern TRACEHANDLE PerflogRegHandle;
#define PerflogTracingEnabled() (PerflogTraceHandle != 0)
#define PerflogEvent( _x_ ) PerflogTraceEventLevel _x_
VOID
PerflogTraceEventLevel(
ULONG Level,
__in PEVENT_TRACE_HEADER Event
);
VOID
PerflogTraceEvent (
__in PEVENT_TRACE_HEADER Event
);

View file

@ -0,0 +1,194 @@
//------------------------------------------------------------------------------
// File: PerfStruct.h
//
// Desc: Structures for DirectShow performance logging.
//
// Copyright (c) 2000-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef _PERFSTRUCT_H_
#define _PERFSTRUCT_H_
#include <wmistr.h>
#include <evntrace.h>
// {28CF047A-2437-4b24-B653-B9446A419A69}
DEFINE_GUID(GUID_DSHOW_CTL,
0x28cf047a, 0x2437, 0x4b24, 0xb6, 0x53, 0xb9, 0x44, 0x6a, 0x41, 0x9a, 0x69);
// {D0DA7AD6-AE80-4de5-AAFC-C126711E7593}
DEFINE_GUID(GUID_VIDEOREND,
0xd0da7ad6, 0xae80, 0x4de5, 0xaa, 0xfc, 0xc1, 0x26, 0x71, 0x1e, 0x75, 0x93);
// {DC70AC3E-93E5-48db-88AB-E42064EC276A}
DEFINE_GUID(GUID_DSOUNDGLITCH,
0xdc70ac3e, 0x93e5, 0x48db, 0x88, 0xab, 0xe4, 0x20, 0x64, 0xec, 0x27, 0x6a);
// {3d7e7d93-2fc8-4a07-a719-e0922ff2899}
DEFINE_GUID(GUID_STREAMTRACE,
0x3d7e7d93, 0x2fc8, 0x4a07, 0xa7, 0x19, 0xe0, 0x92, 0x2f, 0xf2, 0x89, 0x9e);
// AZFIX: the following GUIDs aren't useful right now.
// {3C33F7F5-EE54-493c-BA25-1656539C05AC}
DEFINE_GUID(GUID_GETTIME,
0x3c33f7f5, 0xee54, 0x493c, 0xba, 0x25, 0x16, 0x56, 0x53, 0x9c, 0x5, 0xac);
// {CC44B44D-8169-4952-9E4A-A4E13295E492}
DEFINE_GUID(GUID_AUDIOREND,
0xcc44b44d, 0x8169, 0x4952, 0x9e, 0x4a, 0xa4, 0xe1, 0x32, 0x95, 0xe4, 0x92);
// {775D19BF-4D8B-4de6-8DC9-66BAC7B310A2}
DEFINE_GUID(GUID_FRAMEDROP,
0x775d19bf, 0x4d8b, 0x4de6, 0x8d, 0xc9, 0x66, 0xba, 0xc7, 0xb3, 0x10, 0xa2);
// {56D29065-EFBE-42dc-8C29-E325DC9C27D5}
DEFINE_GUID(GUID_AUDIOBREAK,
0x56d29065, 0xefbe, 0x42dc, 0x8c, 0x29, 0xe3, 0x25, 0xdc, 0x9c, 0x27, 0xd5);
// {E1E6EA87-95A8-497e-BFBA-0295AEBCC707}
DEFINE_GUID(GUID_AUDIORECV,
0xe1e6ea87, 0x95a8, 0x497e, 0xbf, 0xba, 0x2, 0x95, 0xae, 0xbc, 0xc7, 0x7);
// {10F7768A-B1E7-4242-AD90-A2D44683D9F0}
DEFINE_GUID(GUID_AUDIOSLAVE,
0x10f7768a, 0xb1e7, 0x4242, 0xad, 0x90, 0xa2, 0xd4, 0x46, 0x83, 0xd9, 0xf0);
// {8983803D-691A-49bc-8FF6-962A39C0198F}
DEFINE_GUID(GUID_AUDIOADDBREAK,
0x8983803d, 0x691a, 0x49bc, 0x8f, 0xf6, 0x96, 0x2a, 0x39, 0xc0, 0x19, 0x8f);
#define GLITCHTYPE_DSOUNDFIRSTGOOD 0
#define GLITCHTYPE_DSOUNDFIRSTBAD 1
typedef struct PERFINFO_DSHOW_AUDIOGLITCH {
ULONGLONG cycleCounter;
DWORD glitchType;
LONGLONG sampleTime;
LONGLONG previousTime;
ULONG_PTR instanceId;
} PERFINFO_DSHOW_AUDIOGLITCH, *PPERFINFO_DSHOW_AUDIOGLITCH;
typedef struct PERFINFO_WMI_AUDIOGLITCH {
EVENT_TRACE_HEADER header;
PERFINFO_DSHOW_AUDIOGLITCH data;
} PERFINFO_WMI_AUDIO_GLITCH, *PPERFINFO_WMI_AUDIOGLITCH;
typedef struct PERFINFO_DSHOW_GETTIME {
ULONGLONG cycleCounter;
ULONGLONG dshowClock;
} PERFINFO_DSHOW_GETTIME, *PPERFINFO_DSHOW_GETTIME;
typedef struct PERFINFO_WMI_GETTIME {
EVENT_TRACE_HEADER header;
PERFINFO_DSHOW_GETTIME data;
} PERFINFO_WMI_GETTIME, *PPERFINFO_WMI_GETTIME;
typedef struct PERFINFO_DSHOW_AVREND {
ULONGLONG cycleCounter;
ULONGLONG dshowClock;
ULONGLONG sampleTime;
} PERFINFO_DSHOW_AVREND, *PPERFINFO_DSHOW_AVREND;
typedef struct PERFINFO_WMI_AVREND {
EVENT_TRACE_HEADER header;
PERFINFO_DSHOW_AVREND data;
} PERFINFO_WMI_AVREND, *PPERFINFO_WMI_AVREND;
typedef struct PERFINFO_DSHOW_AUDIOBREAK {
ULONGLONG cycleCounter;
ULONGLONG dshowClock;
ULONGLONG sampleTime;
ULONGLONG sampleDuration;
} PERFINFO_DSHOW_AUDIOBREAK, *PPERFINFO_DSHOW_AUDIOBREAK;
typedef struct PERFINFO_WMI_AUDIOBREAK {
EVENT_TRACE_HEADER header;
PERFINFO_DSHOW_AUDIOBREAK data;
} PERFINFO_WMI_AUDIOBREAK, *PPERFINFO_WMI_AUDIOBREAK;
typedef struct PERFINFO_DSHOW_FRAMEDROP {
ULONGLONG cycleCounter;
ULONGLONG dshowClock;
ULONGLONG frameTime;
} PERFINFO_DSHOW_FRAMEDROP, *PPERFINFO_DSHOW_FRAMEDROP;
typedef struct PERFINFO_WMI_FRAMEDROP {
EVENT_TRACE_HEADER header;
PERFINFO_DSHOW_FRAMEDROP data;
} PERFINFO_WMI_FRAMEDROP, *PPERFINFO_WMI_FRAMEDROP;
#define PERFINFO_STREAMTRACE_MPEG2DEMUX_PTS_TRANSLATION 1
#define PERFINFO_STREAMTRACE_MPEG2DEMUX_SAMPLE_RECEIVED 2
#define PERFINFO_STREAMTRACE_VMR_BEGIN_ADVISE 3
#define PERFINFO_STREAMTRACE_VMR_END_ADVISE 4
#define PERFINFO_STREAMTRACE_VMR_RECEIVE 5
#define PERFINFO_STREAMTRACE_VMR_BEGIN_DEINTERLACE 6
#define PERFINFO_STREAMTRACE_VMR_END_DEINTERLACE 7
#define PERFINFO_STREAMTRACE_VMR_BEGIN_DECODE 8
#define PERFINFO_STREAMTRACE_VMR_END_DECODE 9
#define PERFINFO_STREAMTRACE_VMR_DROPPED_FRAME 10
#define PERFINFO_STREAMTRACE_ENCDEC_DTFILTERINPUT 11
#define PERFINFO_STREAMTRACE_ENCDEC_DTFILTEROUTPUT 12
#define PERFINFO_STREAMTRACE_ENCDEC_ETFILTERINPUT 13
#define PERFINFO_STREAMTRACE_ENCDEC_ETFILTEROUTPUT 14
#define PERFINFO_STREAMTRACE_ENCDEC_XDSCODECINPUT 15
#define PERFINFO_STREAMTRACE_SBE_DVRANALYSISINPUT_RECEIVE 16
#define PERFINFO_STREAMTRACE_SBE_DVRANALYSISINPUT_DELIVER 17
#define PERFINFO_STREAMTRACE_SBE_DVRINPUTPIN_RECEIVE 18
#define PERFINFO_STREAMTRACE_SBE_DVROUTPUTPIN_RECEIVE 19
#define PERFINFO_STREAMTRACE_VMR_RENDER_TIME 20
typedef struct _PERFINFO_DSHOW_STREAMTRACE {
ULONG id;
ULONG reserved;
ULONGLONG dshowClock;
ULONGLONG data[ 4 ];
} PERFINFO_DSHOW_STREAMTRACE, *PPERFINFO_DSHOW_STREAMTRACE;
typedef struct _PERFINFO_WMI_STREAMTRACE {
EVENT_TRACE_HEADER header;
PERFINFO_DSHOW_STREAMTRACE data;
} PERFINFO_WMI_STREAMTRACE, *PPERFINFO_WMI_STREAMTRACE;
typedef struct PERFINFO_DSHOW_AUDIORECV {
LONGLONG streamTime ;
LONGLONG sampleStart ;
LONGLONG sampleStop ;
LONGLONG hwduration ;
BOOL discontinuity ;
} PERFINFO_DSHOW_AUDIORECV, *PPERFINFO_DSHOW_AUDIORECV;
typedef struct PERFINFO_WMI_AUDIORECV {
EVENT_TRACE_HEADER header;
PERFINFO_DSHOW_AUDIORECV data;
} PERFINFO_WMI_AUDIORECV, *PPERFINFO_WMI_AUDIORECV;
typedef struct PERFINFO_DSHOW_AUDIOSLAVE {
LONGLONG masterClock ;
LONGLONG slaveClock ;
LONGLONG errorAccum ;
LONGLONG lastHighErrorSeen ;
LONGLONG lastLowErrorSeen ;
} PERFINFO_DSHOW_AUDIOSLAVE, *PPERFINFO_DSHOW_AUDIOSLAVE;
typedef struct PERFINFO_WMI_AUDIOSLAVE {
EVENT_TRACE_HEADER header;
PERFINFO_DSHOW_AUDIOSLAVE data;
} PERFINFO_WMI_AUDIOSLAVE, *PPERFINFO_WMI_AUDIOSLAVE;
typedef struct PERFINFO_DSHOW_AUDIOADDBREAK {
DWORD iterNextWrite ;
DWORD offsetNextWrite ;
DWORD iterWrite ;
DWORD offsetWrite ;
} PERFINFO_DSHOW_AUDIOADDBREAK, *PPERFINFO_DSHOW_AUDIOADDBREAK;
typedef struct PERFINFO_WMI_AUDIOADDBREAK {
EVENT_TRACE_HEADER header;
PERFINFO_DSHOW_AUDIOADDBREAK data;
} PERFINFO_WMI_AUDIOADDBREAK, *PPERFINFO_WMI_AUDIOADDBREAK;
#endif // _PREFSTRUCT_H_

View file

@ -0,0 +1,197 @@
//------------------------------------------------------------------------------
// File: PStream.cpp
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#include <strsafe.h>
#ifdef PERF
#include <measure.h>
#endif
// #include "pstream.h" in streams.h
//
// Constructor
//
CPersistStream::CPersistStream(IUnknown *punk, __inout HRESULT *phr)
: mPS_fDirty(FALSE)
{
mPS_dwFileVersion = GetSoftwareVersion();
}
//
// Destructor
//
CPersistStream::~CPersistStream() {
// Nothing to do
}
#if 0
SAMPLE CODE TO COPY - not active at the moment
//
// NonDelegatingQueryInterface
//
// This object supports IPersist & IPersistStream
STDMETHODIMP CPersistStream::NonDelegatingQueryInterface(REFIID riid, __deref_out void **ppv)
{
if (riid == IID_IPersist) {
return GetInterface((IPersist *) this, ppv); // ???
}
else if (riid == IID_IPersistStream) {
return GetInterface((IPersistStream *) this, ppv);
}
else {
return CUnknown::NonDelegatingQueryInterface(riid, ppv);
}
}
#endif
//
// WriteToStream
//
// Writes to the stream (default action is to write nothing)
HRESULT CPersistStream::WriteToStream(IStream *pStream)
{
// You can override this to do things like
// hr = pStream->Write(MyStructure, sizeof(MyStructure), NULL);
return NOERROR;
}
HRESULT CPersistStream::ReadFromStream(IStream * pStream)
{
// You can override this to do things like
// hr = pStream->Read(MyStructure, sizeof(MyStructure), NULL);
return NOERROR;
}
//
// Load
//
// Load all the data from the given stream
STDMETHODIMP CPersistStream::Load(LPSTREAM pStm)
{
HRESULT hr;
// Load the version number then the data
mPS_dwFileVersion = ReadInt(pStm, hr);
if (FAILED(hr)) {
return hr;
}
return ReadFromStream(pStm);
} // Load
//
// Save
//
// Save the contents of this Stream.
STDMETHODIMP CPersistStream::Save(LPSTREAM pStm, BOOL fClearDirty)
{
HRESULT hr = WriteInt(pStm, GetSoftwareVersion());
if (FAILED(hr)) {
return hr;
}
hr = WriteToStream(pStm);
if (FAILED(hr)) {
return hr;
}
mPS_fDirty = !fClearDirty;
return hr;
} // Save
// WriteInt
//
// Writes an integer to an IStream as 11 UNICODE characters followed by one space.
// You could use this for shorts or unsigneds or anything (up to 32 bits)
// where the value isn't actually truncated by squeezing it into 32 bits.
// Values such as (unsigned) 0x80000000 would come out as -2147483648
// but would then load as 0x80000000 through ReadInt. Cast as you please.
STDAPI WriteInt(IStream *pIStream, int n)
{
WCHAR Buff[13]; // Allows for trailing null that we don't write
(void)StringCchPrintfW(Buff, NUMELMS(Buff),L"%011d ",n);
return pIStream->Write(&(Buff[0]), 12*sizeof(WCHAR), NULL);
} // WriteInt
// ReadInt
//
// Reads an integer from an IStream.
// Read as 4 bytes. You could use this for shorts or unsigneds or anything
// where the value isn't actually truncated by squeezing it into 32 bits
// Striped down subset of what sscanf can do (without dragging in the C runtime)
STDAPI_(int) ReadInt(IStream *pIStream, __out HRESULT &hr)
{
int Sign = 1;
unsigned int n = 0; // result wil be n*Sign
WCHAR wch;
hr = pIStream->Read( &wch, sizeof(wch), NULL);
if (FAILED(hr)) {
return 0;
}
if (wch==L'-'){
Sign = -1;
hr = pIStream->Read( &wch, sizeof(wch), NULL);
if (FAILED(hr)) {
return 0;
}
}
for( ; ; ) {
if (wch>=L'0' && wch<=L'9') {
n = 10*n+(int)(wch-L'0');
} else if ( wch == L' '
|| wch == L'\t'
|| wch == L'\r'
|| wch == L'\n'
|| wch == L'\0'
) {
break;
} else {
hr = VFW_E_INVALID_FILE_FORMAT;
return 0;
}
hr = pIStream->Read( &wch, sizeof(wch), NULL);
if (FAILED(hr)) {
return 0;
}
}
if (n==0x80000000 && Sign==-1) {
// This is the negative number that has no positive version!
return (int)n;
}
else return (int)n * Sign;
} // ReadInt
// The microsoft C/C++ compile generates level 4 warnings to the effect that
// a particular inline function (from some base class) was not needed.
// This line gets rid of hundreds of such unwanted messages and makes
// -W4 compilation feasible:
#pragma warning(disable: 4514)

View file

@ -0,0 +1,114 @@
//------------------------------------------------------------------------------
// File: PStream.h
//
// Desc: DirectShow base classes - defines a class for persistent properties
// of filters.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef __PSTREAM__
#define __PSTREAM__
// Base class for persistent properties of filters
// (i.e. filter properties in saved graphs)
// The simplest way to use this is:
// 1. Arrange for your filter to inherit this class
// 2. Implement in your class WriteToStream and ReadFromStream
// These will override the "do nothing" functions here.
// 3. Change your NonDelegatingQueryInterface to handle IPersistStream
// 4. Implement SizeMax to return the number of bytes of data you save.
// If you save UNICODE data, don't forget a char is 2 bytes.
// 5. Whenever your data changes, call SetDirty()
//
// At some point you may decide to alter, or extend the format of your data.
// At that point you will wish that you had a version number in all the old
// saved graphs, so that you can tell, when you read them, whether they
// represent the old or new form. To assist you in this, this class
// writes and reads a version number.
// When it writes, it calls GetSoftwareVersion() to enquire what version
// of the software we have at the moment. (In effect this is a version number
// of the data layout in the file). It writes this as the first thing in the data.
// If you want to change the version, implement (override) GetSoftwareVersion().
// It reads this from the file into mPS_dwFileVersion before calling ReadFromStream,
// so in ReadFromStream you can check mPS_dwFileVersion to see if you are reading
// an old version file.
// Normally you should accept files whose version is no newer than the software
// version that's reading them.
// CPersistStream
//
// Implements IPersistStream.
// See 'OLE Programmers Reference (Vol 1):Structured Storage Overview' for
// more implementation information.
class CPersistStream : public IPersistStream {
private:
// Internal state:
protected:
DWORD mPS_dwFileVersion; // version number of file (being read)
BOOL mPS_fDirty;
public:
// IPersistStream methods
STDMETHODIMP IsDirty()
{return (mPS_fDirty ? S_OK : S_FALSE);} // note FALSE means clean
STDMETHODIMP Load(LPSTREAM pStm);
STDMETHODIMP Save(LPSTREAM pStm, BOOL fClearDirty);
STDMETHODIMP GetSizeMax(__out ULARGE_INTEGER * pcbSize)
// Allow 24 bytes for version.
{ pcbSize->QuadPart = 12*sizeof(WCHAR)+SizeMax(); return NOERROR; }
// implementation
CPersistStream(IUnknown *punk, __inout HRESULT *phr);
~CPersistStream();
HRESULT SetDirty(BOOL fDirty)
{ mPS_fDirty = fDirty; return NOERROR;}
// override to reveal IPersist & IPersistStream
// STDMETHODIMP NonDelegatingQueryInterface(REFIID riid, void **ppv);
// --- IPersist ---
// You must override this to provide your own class id
STDMETHODIMP GetClassID(__out CLSID *pClsid) PURE;
// overrideable if you want
// file version number. Override it if you ever change format
virtual DWORD GetSoftwareVersion(void) { return 0; }
//=========================================================================
// OVERRIDE THESE to read and write your data
// OVERRIDE THESE to read and write your data
// OVERRIDE THESE to read and write your data
virtual int SizeMax() {return 0;}
virtual HRESULT WriteToStream(IStream *pStream);
virtual HRESULT ReadFromStream(IStream *pStream);
//=========================================================================
private:
};
// --- Useful helpers ---
// Writes an int to an IStream as UNICODE.
STDAPI WriteInt(IStream *pIStream, int n);
// inverse of WriteInt
STDAPI_(int) ReadInt(IStream *pIStream, __out HRESULT &hr);
#endif // __PSTREAM__

View file

@ -0,0 +1,588 @@
//------------------------------------------------------------------------------
// File: PullPin.cpp
//
// Desc: DirectShow base classes - implements CPullPin class that pulls data
// from IAsyncReader.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#include "pullpin.h"
#ifdef DXMPERF
#include "dxmperf.h"
#endif // DXMPERF
CPullPin::CPullPin()
: m_pReader(NULL),
m_pAlloc(NULL),
m_State(TM_Exit)
{
#ifdef DXMPERF
PERFLOG_CTOR( L"CPullPin", this );
#endif // DXMPERF
}
CPullPin::~CPullPin()
{
Disconnect();
#ifdef DXMPERF
PERFLOG_DTOR( L"CPullPin", this );
#endif // DXMPERF
}
// returns S_OK if successfully connected to an IAsyncReader interface
// from this object
// Optional allocator should be proposed as a preferred allocator if
// necessary
HRESULT
CPullPin::Connect(IUnknown* pUnk, IMemAllocator* pAlloc, BOOL bSync)
{
CAutoLock lock(&m_AccessLock);
if (m_pReader) {
return VFW_E_ALREADY_CONNECTED;
}
HRESULT hr = pUnk->QueryInterface(IID_IAsyncReader, (void**)&m_pReader);
if (FAILED(hr)) {
#ifdef DXMPERF
{
AM_MEDIA_TYPE * pmt = NULL;
PERFLOG_CONNECT( this, pUnk, hr, pmt );
}
#endif // DXMPERF
return(hr);
}
hr = DecideAllocator(pAlloc, NULL);
if (FAILED(hr)) {
Disconnect();
#ifdef DXMPERF
{
AM_MEDIA_TYPE * pmt = NULL;
PERFLOG_CONNECT( this, pUnk, hr, pmt );
}
#endif // DXMPERF
return hr;
}
LONGLONG llTotal, llAvail;
hr = m_pReader->Length(&llTotal, &llAvail);
if (FAILED(hr)) {
Disconnect();
#ifdef DXMPERF
{
AM_MEDIA_TYPE * pmt = NULL;
PERFLOG_CONNECT( this, pUnk, hr, pmt );
}
#endif
return hr;
}
// convert from file position to reference time
m_tDuration = llTotal * UNITS;
m_tStop = m_tDuration;
m_tStart = 0;
m_bSync = bSync;
#ifdef DXMPERF
{
AM_MEDIA_TYPE * pmt = NULL;
PERFLOG_CONNECT( this, pUnk, S_OK, pmt );
}
#endif // DXMPERF
return S_OK;
}
// disconnect any connection made in Connect
HRESULT
CPullPin::Disconnect()
{
CAutoLock lock(&m_AccessLock);
StopThread();
#ifdef DXMPERF
PERFLOG_DISCONNECT( this, m_pReader, S_OK );
#endif // DXMPERF
if (m_pReader) {
m_pReader->Release();
m_pReader = NULL;
}
if (m_pAlloc) {
m_pAlloc->Release();
m_pAlloc = NULL;
}
return S_OK;
}
// agree an allocator using RequestAllocator - optional
// props param specifies your requirements (non-zero fields).
// returns an error code if fail to match requirements.
// optional IMemAllocator interface is offered as a preferred allocator
// but no error occurs if it can't be met.
HRESULT
CPullPin::DecideAllocator(
IMemAllocator * pAlloc,
__inout_opt ALLOCATOR_PROPERTIES * pProps)
{
ALLOCATOR_PROPERTIES *pRequest;
ALLOCATOR_PROPERTIES Request;
if (pProps == NULL) {
Request.cBuffers = 3;
Request.cbBuffer = 64*1024;
Request.cbAlign = 0;
Request.cbPrefix = 0;
pRequest = &Request;
} else {
pRequest = pProps;
}
HRESULT hr = m_pReader->RequestAllocator(
pAlloc,
pRequest,
&m_pAlloc);
return hr;
}
// start pulling data
HRESULT
CPullPin::Active(void)
{
ASSERT(!ThreadExists());
return StartThread();
}
// stop pulling data
HRESULT
CPullPin::Inactive(void)
{
StopThread();
return S_OK;
}
HRESULT
CPullPin::Seek(REFERENCE_TIME tStart, REFERENCE_TIME tStop)
{
CAutoLock lock(&m_AccessLock);
ThreadMsg AtStart = m_State;
if (AtStart == TM_Start) {
BeginFlush();
PauseThread();
EndFlush();
}
m_tStart = tStart;
m_tStop = tStop;
HRESULT hr = S_OK;
if (AtStart == TM_Start) {
hr = StartThread();
}
return hr;
}
HRESULT
CPullPin::Duration(__out REFERENCE_TIME* ptDuration)
{
*ptDuration = m_tDuration;
return S_OK;
}
HRESULT
CPullPin::StartThread()
{
CAutoLock lock(&m_AccessLock);
if (!m_pAlloc || !m_pReader) {
return E_UNEXPECTED;
}
HRESULT hr;
if (!ThreadExists()) {
// commit allocator
hr = m_pAlloc->Commit();
if (FAILED(hr)) {
return hr;
}
// start thread
if (!Create()) {
return E_FAIL;
}
}
m_State = TM_Start;
hr = (HRESULT) CallWorker(m_State);
return hr;
}
HRESULT
CPullPin::PauseThread()
{
CAutoLock lock(&m_AccessLock);
if (!ThreadExists()) {
return E_UNEXPECTED;
}
// need to flush to ensure the thread is not blocked
// in WaitForNext
HRESULT hr = m_pReader->BeginFlush();
if (FAILED(hr)) {
return hr;
}
m_State = TM_Pause;
hr = CallWorker(TM_Pause);
m_pReader->EndFlush();
return hr;
}
HRESULT
CPullPin::StopThread()
{
CAutoLock lock(&m_AccessLock);
if (!ThreadExists()) {
return S_FALSE;
}
// need to flush to ensure the thread is not blocked
// in WaitForNext
HRESULT hr = m_pReader->BeginFlush();
if (FAILED(hr)) {
return hr;
}
m_State = TM_Exit;
hr = CallWorker(TM_Exit);
m_pReader->EndFlush();
// wait for thread to completely exit
Close();
// decommit allocator
if (m_pAlloc) {
m_pAlloc->Decommit();
}
return S_OK;
}
DWORD
CPullPin::ThreadProc(void)
{
while(1) {
DWORD cmd = GetRequest();
switch(cmd) {
case TM_Exit:
Reply(S_OK);
return 0;
case TM_Pause:
// we are paused already
Reply(S_OK);
break;
case TM_Start:
Reply(S_OK);
Process();
break;
}
// at this point, there should be no outstanding requests on the
// upstream filter.
// We should force begin/endflush to ensure that this is true.
// !!!Note that we may currently be inside a BeginFlush/EndFlush pair
// on another thread, but the premature EndFlush will do no harm now
// that we are idle.
m_pReader->BeginFlush();
CleanupCancelled();
m_pReader->EndFlush();
}
}
HRESULT
CPullPin::QueueSample(
__inout REFERENCE_TIME& tCurrent,
REFERENCE_TIME tAlignStop,
BOOL bDiscontinuity
)
{
IMediaSample* pSample;
HRESULT hr = m_pAlloc->GetBuffer(&pSample, NULL, NULL, 0);
if (FAILED(hr)) {
return hr;
}
LONGLONG tStopThis = tCurrent + (pSample->GetSize() * UNITS);
if (tStopThis > tAlignStop) {
tStopThis = tAlignStop;
}
pSample->SetTime(&tCurrent, &tStopThis);
tCurrent = tStopThis;
pSample->SetDiscontinuity(bDiscontinuity);
hr = m_pReader->Request(
pSample,
0);
if (FAILED(hr)) {
pSample->Release();
CleanupCancelled();
OnError(hr);
}
return hr;
}
HRESULT
CPullPin::CollectAndDeliver(
REFERENCE_TIME tStart,
REFERENCE_TIME tStop)
{
IMediaSample* pSample = NULL; // better be sure pSample is set
DWORD_PTR dwUnused;
HRESULT hr = m_pReader->WaitForNext(
INFINITE,
&pSample,
&dwUnused);
if (FAILED(hr)) {
if (pSample) {
pSample->Release();
}
} else {
hr = DeliverSample(pSample, tStart, tStop);
}
if (FAILED(hr)) {
CleanupCancelled();
OnError(hr);
}
return hr;
}
HRESULT
CPullPin::DeliverSample(
IMediaSample* pSample,
REFERENCE_TIME tStart,
REFERENCE_TIME tStop
)
{
// fix up sample if past actual stop (for sector alignment)
REFERENCE_TIME t1, t2;
if (S_OK == pSample->GetTime(&t1, &t2)) {
if (t2 > tStop) {
t2 = tStop;
}
// adjust times to be relative to (aligned) start time
t1 -= tStart;
t2 -= tStart;
HRESULT hr = pSample->SetTime(&t1, &t2);
if (FAILED(hr)) {
return hr;
}
}
#ifdef DXMPERF
{
AM_MEDIA_TYPE * pmt = NULL;
pSample->GetMediaType( &pmt );
PERFLOG_RECEIVE( L"CPullPin", m_pReader, this, pSample, pmt );
}
#endif
HRESULT hr = Receive(pSample);
pSample->Release();
return hr;
}
void
CPullPin::Process(void)
{
// is there anything to do?
if (m_tStop <= m_tStart) {
EndOfStream();
return;
}
BOOL bDiscontinuity = TRUE;
// if there is more than one sample at the allocator,
// then try to queue 2 at once in order to overlap.
// -- get buffer count and required alignment
ALLOCATOR_PROPERTIES Actual;
HRESULT hr = m_pAlloc->GetProperties(&Actual);
// align the start position downwards
REFERENCE_TIME tStart = AlignDown(m_tStart / UNITS, Actual.cbAlign) * UNITS;
REFERENCE_TIME tCurrent = tStart;
REFERENCE_TIME tStop = m_tStop;
if (tStop > m_tDuration) {
tStop = m_tDuration;
}
// align the stop position - may be past stop, but that
// doesn't matter
REFERENCE_TIME tAlignStop = AlignUp(tStop / UNITS, Actual.cbAlign) * UNITS;
DWORD dwRequest;
if (!m_bSync) {
// Break out of the loop either if we get to the end or we're asked
// to do something else
while (tCurrent < tAlignStop) {
// Break out without calling EndOfStream if we're asked to
// do something different
if (CheckRequest(&dwRequest)) {
return;
}
// queue a first sample
if (Actual.cBuffers > 1) {
hr = QueueSample(tCurrent, tAlignStop, TRUE);
bDiscontinuity = FALSE;
if (FAILED(hr)) {
return;
}
}
// loop queueing second and waiting for first..
while (tCurrent < tAlignStop) {
hr = QueueSample(tCurrent, tAlignStop, bDiscontinuity);
bDiscontinuity = FALSE;
if (FAILED(hr)) {
return;
}
hr = CollectAndDeliver(tStart, tStop);
if (S_OK != hr) {
// stop if error, or if downstream filter said
// to stop.
return;
}
}
if (Actual.cBuffers > 1) {
hr = CollectAndDeliver(tStart, tStop);
if (FAILED(hr)) {
return;
}
}
}
} else {
// sync version of above loop
while (tCurrent < tAlignStop) {
// Break out without calling EndOfStream if we're asked to
// do something different
if (CheckRequest(&dwRequest)) {
return;
}
IMediaSample* pSample;
hr = m_pAlloc->GetBuffer(&pSample, NULL, NULL, 0);
if (FAILED(hr)) {
OnError(hr);
return;
}
LONGLONG tStopThis = tCurrent + (pSample->GetSize() * UNITS);
if (tStopThis > tAlignStop) {
tStopThis = tAlignStop;
}
pSample->SetTime(&tCurrent, &tStopThis);
tCurrent = tStopThis;
if (bDiscontinuity) {
pSample->SetDiscontinuity(TRUE);
bDiscontinuity = FALSE;
}
hr = m_pReader->SyncReadAligned(pSample);
if (FAILED(hr)) {
pSample->Release();
OnError(hr);
return;
}
hr = DeliverSample(pSample, tStart, tStop);
if (hr != S_OK) {
if (FAILED(hr)) {
OnError(hr);
}
return;
}
}
}
EndOfStream();
}
// after a flush, cancelled i/o will be waiting for collection
// and release
void
CPullPin::CleanupCancelled(void)
{
while (1) {
IMediaSample * pSample;
DWORD_PTR dwUnused;
HRESULT hr = m_pReader->WaitForNext(
0, // no wait
&pSample,
&dwUnused);
if(pSample) {
pSample->Release();
} else {
// no more samples
return;
}
}
}

View file

@ -0,0 +1,152 @@
//------------------------------------------------------------------------------
// File: PullPin.h
//
// Desc: DirectShow base classes - defines CPullPin class.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef __PULLPIN_H__
#define __PULLPIN_H__
//
// CPullPin
//
// object supporting pulling data from an IAsyncReader interface.
// Given a start/stop position, calls a pure Receive method with each
// IMediaSample received.
//
// This is essentially for use in a MemInputPin when it finds itself
// connected to an IAsyncReader pin instead of a pushing pin.
//
class CPullPin : public CAMThread
{
IAsyncReader* m_pReader;
REFERENCE_TIME m_tStart;
REFERENCE_TIME m_tStop;
REFERENCE_TIME m_tDuration;
BOOL m_bSync;
enum ThreadMsg {
TM_Pause, // stop pulling and wait for next message
TM_Start, // start pulling
TM_Exit, // stop and exit
};
ThreadMsg m_State;
// override pure thread proc from CAMThread
DWORD ThreadProc(void);
// running pull method (check m_bSync)
void Process(void);
// clean up any cancelled i/o after a flush
void CleanupCancelled(void);
// suspend thread from pulling, eg during seek
HRESULT PauseThread();
// start thread pulling - create thread if necy
HRESULT StartThread();
// stop and close thread
HRESULT StopThread();
// called from ProcessAsync to queue and collect requests
HRESULT QueueSample(
__inout REFERENCE_TIME& tCurrent,
REFERENCE_TIME tAlignStop,
BOOL bDiscontinuity);
HRESULT CollectAndDeliver(
REFERENCE_TIME tStart,
REFERENCE_TIME tStop);
HRESULT DeliverSample(
IMediaSample* pSample,
REFERENCE_TIME tStart,
REFERENCE_TIME tStop);
protected:
IMemAllocator * m_pAlloc;
public:
CPullPin();
virtual ~CPullPin();
// returns S_OK if successfully connected to an IAsyncReader interface
// from this object
// Optional allocator should be proposed as a preferred allocator if
// necessary
// bSync is TRUE if we are to use sync reads instead of the
// async methods.
HRESULT Connect(IUnknown* pUnk, IMemAllocator* pAlloc, BOOL bSync);
// disconnect any connection made in Connect
HRESULT Disconnect();
// agree an allocator using RequestAllocator - optional
// props param specifies your requirements (non-zero fields).
// returns an error code if fail to match requirements.
// optional IMemAllocator interface is offered as a preferred allocator
// but no error occurs if it can't be met.
virtual HRESULT DecideAllocator(
IMemAllocator* pAlloc,
__inout_opt ALLOCATOR_PROPERTIES * pProps);
// set start and stop position. if active, will start immediately at
// the new position. Default is 0 to duration
HRESULT Seek(REFERENCE_TIME tStart, REFERENCE_TIME tStop);
// return the total duration
HRESULT Duration(__out REFERENCE_TIME* ptDuration);
// start pulling data
HRESULT Active(void);
// stop pulling data
HRESULT Inactive(void);
// helper functions
LONGLONG AlignDown(LONGLONG ll, LONG lAlign) {
// aligning downwards is just truncation
return ll & ~(lAlign-1);
};
LONGLONG AlignUp(LONGLONG ll, LONG lAlign) {
// align up: round up to next boundary
return (ll + (lAlign -1)) & ~(lAlign -1);
};
// GetReader returns the (addrefed) IAsyncReader interface
// for SyncRead etc
IAsyncReader* GetReader() {
m_pReader->AddRef();
return m_pReader;
};
// -- pure --
// override this to handle data arrival
// return value other than S_OK will stop data
virtual HRESULT Receive(IMediaSample*) PURE;
// override this to handle end-of-stream
virtual HRESULT EndOfStream(void) PURE;
// called on runtime errors that will have caused pulling
// to stop
// these errors are all returned from the upstream filter, who
// will have already reported any errors to the filtergraph.
virtual void OnError(HRESULT hr) PURE;
// flush this pin and all downstream
virtual HRESULT BeginFlush() PURE;
virtual HRESULT EndFlush() PURE;
};
#endif //__PULLPIN_H__

View file

@ -0,0 +1,402 @@
//------------------------------------------------------------------------------
// File: RefClock.cpp
//
// Desc: DirectShow base classes - implements the IReferenceClock interface.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#include <limits.h>
#ifdef DXMPERF
#include "dxmperf.h"
#endif // DXMPERF
// 'this' used in constructor list
#pragma warning(disable:4355)
STDMETHODIMP CBaseReferenceClock::NonDelegatingQueryInterface(
REFIID riid,
__deref_out void ** ppv)
{
HRESULT hr;
if (riid == IID_IReferenceClock)
{
hr = GetInterface((IReferenceClock *) this, ppv);
}
else if (riid == IID_IReferenceClockTimerControl)
{
hr = GetInterface((IReferenceClockTimerControl *) this, ppv);
}
else
{
hr = CUnknown::NonDelegatingQueryInterface(riid, ppv);
}
return hr;
}
CBaseReferenceClock::~CBaseReferenceClock()
{
#ifdef DXMPERF
PERFLOG_DTOR( L"CBaseReferenceClock", (IReferenceClock *) this );
#endif // DXMPERF
if (m_TimerResolution) timeEndPeriod(m_TimerResolution);
if (m_pSchedule)
{
m_pSchedule->DumpLinkedList();
}
if (m_hThread)
{
m_bAbort = TRUE;
TriggerThread();
WaitForSingleObject( m_hThread, INFINITE );
EXECUTE_ASSERT( CloseHandle(m_hThread) );
m_hThread = 0;
EXECUTE_ASSERT( CloseHandle(m_pSchedule->GetEvent()) );
delete m_pSchedule;
}
}
// A derived class may supply a hThreadEvent if it has its own thread that will take care
// of calling the schedulers Advise method. (Refere to CBaseReferenceClock::AdviseThread()
// to see what such a thread has to do.)
CBaseReferenceClock::CBaseReferenceClock( __in_opt LPCTSTR pName,
__inout_opt LPUNKNOWN pUnk,
__inout HRESULT *phr,
__inout_opt CAMSchedule * pShed )
: CUnknown( pName, pUnk )
, m_rtLastGotTime(0)
, m_TimerResolution(0)
, m_bAbort( FALSE )
, m_pSchedule( pShed ? pShed : new CAMSchedule(CreateEvent(NULL, FALSE, FALSE, NULL)) )
, m_hThread(0)
{
#ifdef DXMPERF
PERFLOG_CTOR( pName ? pName : L"CBaseReferenceClock", (IReferenceClock *) this );
#endif // DXMPERF
ASSERT(m_pSchedule);
if (!m_pSchedule)
{
*phr = E_OUTOFMEMORY;
}
else
{
// Set up the highest resolution timer we can manage
TIMECAPS tc;
m_TimerResolution = (TIMERR_NOERROR == timeGetDevCaps(&tc, sizeof(tc)))
? tc.wPeriodMin
: 1;
timeBeginPeriod(m_TimerResolution);
/* Initialise our system times - the derived clock should set the right values */
m_dwPrevSystemTime = timeGetTime();
m_rtPrivateTime = (UNITS / MILLISECONDS) * m_dwPrevSystemTime;
#ifdef PERF
m_idGetSystemTime = MSR_REGISTER(TEXT("CBaseReferenceClock::GetTime"));
#endif
if ( !pShed )
{
DWORD ThreadID;
m_hThread = ::CreateThread(NULL, // Security attributes
(DWORD) 0, // Initial stack size
AdviseThreadFunction, // Thread start address
(LPVOID) this, // Thread parameter
(DWORD) 0, // Creation flags
&ThreadID); // Thread identifier
if (m_hThread)
{
SetThreadPriority( m_hThread, THREAD_PRIORITY_TIME_CRITICAL );
}
else
{
*phr = E_FAIL;
EXECUTE_ASSERT( CloseHandle(m_pSchedule->GetEvent()) );
delete m_pSchedule;
m_pSchedule = NULL;
}
}
}
}
void CBaseReferenceClock::Restart (IN REFERENCE_TIME rtMinTime)
{
Lock();
m_rtLastGotTime = rtMinTime ;
Unlock();
}
STDMETHODIMP CBaseReferenceClock::GetTime(__out REFERENCE_TIME *pTime)
{
HRESULT hr;
if (pTime)
{
REFERENCE_TIME rtNow;
Lock();
rtNow = GetPrivateTime();
if (rtNow > m_rtLastGotTime)
{
m_rtLastGotTime = rtNow;
hr = S_OK;
}
else
{
hr = S_FALSE;
}
*pTime = m_rtLastGotTime;
Unlock();
MSR_INTEGER(m_idGetSystemTime, LONG((*pTime) / (UNITS/MILLISECONDS)) );
#ifdef DXMPERF
PERFLOG_GETTIME( (IReferenceClock *) this, *pTime );
#endif // DXMPERF
}
else hr = E_POINTER;
return hr;
}
/* Ask for an async notification that a time has elapsed */
STDMETHODIMP CBaseReferenceClock::AdviseTime(
REFERENCE_TIME baseTime, // base reference time
REFERENCE_TIME streamTime, // stream offset time
HEVENT hEvent, // advise via this event
__out DWORD_PTR *pdwAdviseCookie)// where your cookie goes
{
CheckPointer(pdwAdviseCookie, E_POINTER);
*pdwAdviseCookie = 0;
// Check that the event is not already set
ASSERT(WAIT_TIMEOUT == WaitForSingleObject(HANDLE(hEvent),0));
HRESULT hr;
const REFERENCE_TIME lRefTime = baseTime + streamTime;
if ( lRefTime <= 0 || lRefTime == MAX_TIME )
{
hr = E_INVALIDARG;
}
else
{
*pdwAdviseCookie = m_pSchedule->AddAdvisePacket( lRefTime, 0, HANDLE(hEvent), FALSE );
hr = *pdwAdviseCookie ? NOERROR : E_OUTOFMEMORY;
}
return hr;
}
/* Ask for an asynchronous periodic notification that a time has elapsed */
STDMETHODIMP CBaseReferenceClock::AdvisePeriodic(
REFERENCE_TIME StartTime, // starting at this time
REFERENCE_TIME PeriodTime, // time between notifications
HSEMAPHORE hSemaphore, // advise via a semaphore
__out DWORD_PTR *pdwAdviseCookie) // where your cookie goes
{
CheckPointer(pdwAdviseCookie, E_POINTER);
*pdwAdviseCookie = 0;
HRESULT hr;
if (StartTime > 0 && PeriodTime > 0 && StartTime != MAX_TIME )
{
*pdwAdviseCookie = m_pSchedule->AddAdvisePacket( StartTime, PeriodTime, HANDLE(hSemaphore), TRUE );
hr = *pdwAdviseCookie ? NOERROR : E_OUTOFMEMORY;
}
else hr = E_INVALIDARG;
return hr;
}
STDMETHODIMP CBaseReferenceClock::Unadvise(DWORD_PTR dwAdviseCookie)
{
return m_pSchedule->Unadvise(dwAdviseCookie);
}
REFERENCE_TIME CBaseReferenceClock::GetPrivateTime()
{
CAutoLock cObjectLock(this);
/* If the clock has wrapped then the current time will be less than
* the last time we were notified so add on the extra milliseconds
*
* The time period is long enough so that the likelihood of
* successive calls spanning the clock cycle is not considered.
*/
DWORD dwTime = timeGetTime();
{
m_rtPrivateTime += Int32x32To64(UNITS / MILLISECONDS, (DWORD)(dwTime - m_dwPrevSystemTime));
m_dwPrevSystemTime = dwTime;
}
return m_rtPrivateTime;
}
/* Adjust the current time by the input value. This allows an
external time source to work out some of the latency of the clock
system and adjust the "current" time accordingly. The intent is
that the time returned to the user is synchronised to a clock
source and allows drift to be catered for.
For example: if the clock source detects a drift it can pass a delta
to the current time rather than having to set an explicit time.
*/
STDMETHODIMP CBaseReferenceClock::SetTimeDelta(const REFERENCE_TIME & TimeDelta)
{
#ifdef DEBUG
// Just break if passed an improper time delta value
LONGLONG llDelta = TimeDelta > 0 ? TimeDelta : -TimeDelta;
if (llDelta > UNITS * 1000) {
DbgLog((LOG_TRACE, 0, TEXT("Bad Time Delta")));
//DebugBreak();
}
// We're going to calculate a "severity" for the time change. Max -1
// min 8. We'll then use this as the debug logging level for a
// debug log message.
const LONG usDelta = LONG(TimeDelta/10); // Delta in micro-secs
DWORD delta = abs(usDelta); // varying delta
// Severity == 8 - ceil(log<base 8>(abs( micro-secs delta)))
int Severity = 8;
while ( delta > 0 )
{
delta >>= 3; // div 8
Severity--;
}
// Sev == 0 => > 2 second delta!
DbgLog((LOG_TIMING, Severity < 0 ? 0 : Severity,
TEXT("Sev %2i: CSystemClock::SetTimeDelta(%8ld us) %lu -> %lu ms."),
Severity, usDelta, DWORD(ConvertToMilliseconds(m_rtPrivateTime)),
DWORD(ConvertToMilliseconds(TimeDelta+m_rtPrivateTime)) ));
// Don't want the DbgBreak to fire when running stress on debug-builds.
#ifdef BREAK_ON_SEVERE_TIME_DELTA
if (Severity < 0)
DbgBreakPoint(TEXT("SetTimeDelta > 16 seconds!"),
TEXT(__FILE__),__LINE__);
#endif
#endif
CAutoLock cObjectLock(this);
m_rtPrivateTime += TimeDelta;
// If time goes forwards, and we have advises, then we need to
// trigger the thread so that it can re-evaluate its wait time.
// Since we don't want the cost of the thread switches if the change
// is really small, only do it if clock goes forward by more than
// 0.5 millisecond. If the time goes backwards, the thread will
// wake up "early" (relativly speaking) and will re-evaluate at
// that time.
if ( TimeDelta > 5000 && m_pSchedule->GetAdviseCount() > 0 ) TriggerThread();
return NOERROR;
}
// Thread stuff
DWORD __stdcall CBaseReferenceClock::AdviseThreadFunction(__in LPVOID p)
{
return DWORD(reinterpret_cast<CBaseReferenceClock*>(p)->AdviseThread());
}
HRESULT CBaseReferenceClock::AdviseThread()
{
DWORD dwWait = INFINITE;
// The first thing we do is wait until something interesting happens
// (meaning a first advise or shutdown). This prevents us calling
// GetPrivateTime immediately which is goodness as that is a virtual
// routine and the derived class may not yet be constructed. (This
// thread is created in the base class constructor.)
while ( !m_bAbort )
{
// Wait for an interesting event to happen
DbgLog((LOG_TIMING, 3, TEXT("CBaseRefClock::AdviseThread() Delay: %lu ms"), dwWait ));
WaitForSingleObject(m_pSchedule->GetEvent(), dwWait);
if (m_bAbort) break;
// There are several reasons why we need to work from the internal
// time, mainly to do with what happens when time goes backwards.
// Mainly, it stop us looping madly if an event is just about to
// expire when the clock goes backward (i.e. GetTime stop for a
// while).
const REFERENCE_TIME rtNow = GetPrivateTime();
DbgLog((LOG_TIMING, 3,
TEXT("CBaseRefClock::AdviseThread() Woke at = %lu ms"),
ConvertToMilliseconds(rtNow) ));
// We must add in a millisecond, since this is the resolution of our
// WaitForSingleObject timer. Failure to do so will cause us to loop
// franticly for (approx) 1 a millisecond.
m_rtNextAdvise = m_pSchedule->Advise( 10000 + rtNow );
LONGLONG llWait = m_rtNextAdvise - rtNow;
ASSERT( llWait > 0 );
llWait = ConvertToMilliseconds(llWait);
// DON'T replace this with a max!! (The type's of these things is VERY important)
dwWait = (llWait > REFERENCE_TIME(UINT_MAX)) ? UINT_MAX : DWORD(llWait);
};
return NOERROR;
}
HRESULT CBaseReferenceClock::SetDefaultTimerResolution(
REFERENCE_TIME timerResolution // in 100ns
)
{
CAutoLock cObjectLock(this);
if( 0 == timerResolution ) {
if( m_TimerResolution ) {
timeEndPeriod( m_TimerResolution );
m_TimerResolution = 0;
}
} else {
TIMECAPS tc;
DWORD dwMinResolution = (TIMERR_NOERROR == timeGetDevCaps(&tc, sizeof(tc)))
? tc.wPeriodMin
: 1;
DWORD dwResolution = max( dwMinResolution, DWORD(timerResolution / 10000) );
if( dwResolution != m_TimerResolution ) {
timeEndPeriod(m_TimerResolution);
m_TimerResolution = dwResolution;
timeBeginPeriod( m_TimerResolution );
}
}
return S_OK;
}
HRESULT CBaseReferenceClock::GetDefaultTimerResolution(
__out REFERENCE_TIME* pTimerResolution // in 100ns
)
{
if( !pTimerResolution ) {
return E_POINTER;
}
CAutoLock cObjectLock(this);
*pTimerResolution = m_TimerResolution * 10000;
return S_OK;
}

View file

@ -0,0 +1,184 @@
//------------------------------------------------------------------------------
// File: RefClock.h
//
// Desc: DirectShow base classes - defines the IReferenceClock interface.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef __BASEREFCLOCK__
#define __BASEREFCLOCK__
#include <Schedule.h>
const UINT RESOLUTION = 1; /* High resolution timer */
const INT ADVISE_CACHE = 4; /* Default cache size */
const LONGLONG MAX_TIME = 0x7FFFFFFFFFFFFFFF; /* Maximum LONGLONG value */
inline LONGLONG WINAPI ConvertToMilliseconds(const REFERENCE_TIME& RT)
{
/* This converts an arbitrary value representing a reference time
into a MILLISECONDS value for use in subsequent system calls */
return (RT / (UNITS / MILLISECONDS));
}
/* This class hierarchy will support an IReferenceClock interface so
that an audio card (or other externally driven clock) can update the
system wide clock that everyone uses.
The interface will be pretty thin with probably just one update method
This interface has not yet been defined.
*/
/* This abstract base class implements the IReferenceClock
* interface. Classes that actually provide clock signals (from
* whatever source) have to be derived from this class.
*
* The abstract class provides implementations for:
* CUnknown support
* locking support (CCritSec)
* client advise code (creates a thread)
*
* Question: what can we do about quality? Change the timer
* resolution to lower the system load? Up the priority of the
* timer thread to force more responsive signals?
*
* During class construction we create a worker thread that is destroyed during
* destuction. This thread executes a series of WaitForSingleObject calls,
* waking up when a command is given to the thread or the next wake up point
* is reached. The wakeup points are determined by clients making Advise
* calls.
*
* Each advise call defines a point in time when they wish to be notified. A
* periodic advise is a series of these such events. We maintain a list of
* advise links and calculate when the nearest event notification is due for.
* We then call WaitForSingleObject with a timeout equal to this time. The
* handle we wait on is used by the class to signal that something has changed
* and that we must reschedule the next event. This typically happens when
* someone comes in and asks for an advise link while we are waiting for an
* event to timeout.
*
* While we are modifying the list of advise requests we
* are protected from interference through a critical section. Clients are NOT
* advised through callbacks. One shot clients have an event set, while
* periodic clients have a semaphore released for each event notification. A
* semaphore allows a client to be kept up to date with the number of events
* actually triggered and be assured that they can't miss multiple events being
* set.
*
* Keeping track of advises is taken care of by the CAMSchedule class.
*/
class CBaseReferenceClock
: public CUnknown, public IReferenceClock, public CCritSec, public IReferenceClockTimerControl
{
protected:
virtual ~CBaseReferenceClock(); // Don't let me be created on the stack!
public:
CBaseReferenceClock(__in_opt LPCTSTR pName,
__inout_opt LPUNKNOWN pUnk,
__inout HRESULT *phr,
__inout_opt CAMSchedule * pSched = 0 );
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid, __deref_out void ** ppv);
DECLARE_IUNKNOWN
/* IReferenceClock methods */
// Derived classes must implement GetPrivateTime(). All our GetTime
// does is call GetPrivateTime and then check so that time does not
// go backwards. A return code of S_FALSE implies that the internal
// clock has gone backwards and GetTime time has halted until internal
// time has caught up. (Don't know if this will be much use to folk,
// but it seems odd not to use the return code for something useful.)
STDMETHODIMP GetTime(__out REFERENCE_TIME *pTime);
// When this is called, it sets m_rtLastGotTime to the time it returns.
/* Provide standard mechanisms for scheduling events */
/* Ask for an async notification that a time has elapsed */
STDMETHODIMP AdviseTime(
REFERENCE_TIME baseTime, // base reference time
REFERENCE_TIME streamTime, // stream offset time
HEVENT hEvent, // advise via this event
__out DWORD_PTR *pdwAdviseCookie// where your cookie goes
);
/* Ask for an asynchronous periodic notification that a time has elapsed */
STDMETHODIMP AdvisePeriodic(
REFERENCE_TIME StartTime, // starting at this time
REFERENCE_TIME PeriodTime, // time between notifications
HSEMAPHORE hSemaphore, // advise via a semaphore
__out DWORD_PTR *pdwAdviseCookie// where your cookie goes
);
/* Cancel a request for notification(s) - if the notification was
* a one shot timer then this function doesn't need to be called
* as the advise is automatically cancelled, however it does no
* harm to explicitly cancel a one-shot advise. It is REQUIRED that
* clients call Unadvise to clear a Periodic advise setting.
*/
STDMETHODIMP Unadvise(DWORD_PTR dwAdviseCookie);
/* Methods for the benefit of derived classes or outer objects */
// GetPrivateTime() is the REAL clock. GetTime is just a cover for
// it. Derived classes will probably override this method but not
// GetTime() itself.
// The important point about GetPrivateTime() is it's allowed to go
// backwards. Our GetTime() will keep returning the LastGotTime
// until GetPrivateTime() catches up.
virtual REFERENCE_TIME GetPrivateTime();
/* Provide a method for correcting drift */
STDMETHODIMP SetTimeDelta( const REFERENCE_TIME& TimeDelta );
CAMSchedule * GetSchedule() const { return m_pSchedule; }
// IReferenceClockTimerControl methods
//
// Setting a default of 0 disables the default of 1ms
STDMETHODIMP SetDefaultTimerResolution(
REFERENCE_TIME timerResolution // in 100ns
);
STDMETHODIMP GetDefaultTimerResolution(
__out REFERENCE_TIME* pTimerResolution // in 100ns
);
private:
REFERENCE_TIME m_rtPrivateTime; // Current best estimate of time
DWORD m_dwPrevSystemTime; // Last vaule we got from timeGetTime
REFERENCE_TIME m_rtLastGotTime; // Last time returned by GetTime
REFERENCE_TIME m_rtNextAdvise; // Time of next advise
UINT m_TimerResolution;
#ifdef PERF
int m_idGetSystemTime;
#endif
// Thread stuff
public:
void TriggerThread() // Wakes thread up. Need to do this if
{ // time to next advise needs reevaluating.
EXECUTE_ASSERT(SetEvent(m_pSchedule->GetEvent()));
}
private:
BOOL m_bAbort; // Flag used for thread shutdown
HANDLE m_hThread; // Thread handle
HRESULT AdviseThread(); // Method in which the advise thread runs
static DWORD __stdcall AdviseThreadFunction(__in LPVOID); // Function used to get there
protected:
CAMSchedule * m_pSchedule;
void Restart (IN REFERENCE_TIME rtMinTime = 0I64) ;
};
#endif

View file

@ -0,0 +1,116 @@
//------------------------------------------------------------------------------
// File: RefTime.h
//
// Desc: DirectShow base classes - defines CRefTime, a class that manages
// reference times.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
//
// CRefTime
//
// Manage reference times.
// Shares same data layout as REFERENCE_TIME, but adds some (nonvirtual)
// functions providing simple comparison, conversion and arithmetic.
//
// A reference time (at the moment) is a unit of seconds represented in
// 100ns units as is used in the Win32 FILETIME structure. BUT the time
// a REFERENCE_TIME represents is NOT the time elapsed since 1/1/1601 it
// will either be stream time or reference time depending upon context
//
// This class provides simple arithmetic operations on reference times
//
// keep non-virtual otherwise the data layout will not be the same as
// REFERENCE_TIME
// -----
// note that you are safe to cast a CRefTime* to a REFERENCE_TIME*, but
// you will need to do so explicitly
// -----
#ifndef __REFTIME__
#define __REFTIME__
const LONGLONG MILLISECONDS = (1000); // 10 ^ 3
const LONGLONG NANOSECONDS = (1000000000); // 10 ^ 9
const LONGLONG UNITS = (NANOSECONDS / 100); // 10 ^ 7
/* Unfortunately an inline function here generates a call to __allmul
- even for constants!
*/
#define MILLISECONDS_TO_100NS_UNITS(lMs) \
Int32x32To64((lMs), (UNITS / MILLISECONDS))
class CRefTime
{
public:
// *MUST* be the only data member so that this class is exactly
// equivalent to a REFERENCE_TIME.
// Also, must be *no virtual functions*
REFERENCE_TIME m_time;
inline CRefTime()
{
// default to 0 time
m_time = 0;
};
inline CRefTime(LONG msecs)
{
m_time = MILLISECONDS_TO_100NS_UNITS(msecs);
};
inline CRefTime(REFERENCE_TIME rt)
{
m_time = rt;
};
inline operator REFERENCE_TIME() const
{
return m_time;
};
inline CRefTime& operator=(const CRefTime& rt)
{
m_time = rt.m_time;
return *this;
};
inline CRefTime& operator=(const LONGLONG ll)
{
m_time = ll;
return *this;
};
inline CRefTime& operator+=(const CRefTime& rt)
{
return (*this = *this + rt);
};
inline CRefTime& operator-=(const CRefTime& rt)
{
return (*this = *this - rt);
};
inline LONG Millisecs(void)
{
return (LONG)(m_time / (UNITS / MILLISECONDS));
};
inline LONGLONG GetUnits(void)
{
return m_time;
};
};
const LONGLONG TimeZero = 0;
#endif /* __REFTIME__ */

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,478 @@
//------------------------------------------------------------------------------
// File: RenBase.h
//
// Desc: DirectShow base classes - defines a generic ActiveX base renderer
// class.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef __RENBASE__
#define __RENBASE__
// Forward class declarations
class CBaseRenderer;
class CBaseVideoRenderer;
class CRendererInputPin;
// This is our input pin class that channels calls to the renderer
class CRendererInputPin : public CBaseInputPin
{
protected:
CBaseRenderer *m_pRenderer;
public:
CRendererInputPin(__inout CBaseRenderer *pRenderer,
__inout HRESULT *phr,
__in_opt LPCWSTR Name);
// Overriden from the base pin classes
HRESULT BreakConnect();
HRESULT CompleteConnect(IPin *pReceivePin);
HRESULT SetMediaType(const CMediaType *pmt);
HRESULT CheckMediaType(const CMediaType *pmt);
HRESULT Active();
HRESULT Inactive();
// Add rendering behaviour to interface functions
STDMETHODIMP QueryId(__deref_out LPWSTR *Id);
STDMETHODIMP EndOfStream();
STDMETHODIMP BeginFlush();
STDMETHODIMP EndFlush();
STDMETHODIMP Receive(IMediaSample *pMediaSample);
// Helper
IMemAllocator inline *Allocator() const
{
return m_pAllocator;
}
};
// Main renderer class that handles synchronisation and state changes
class CBaseRenderer : public CBaseFilter
{
protected:
friend class CRendererInputPin;
friend void CALLBACK EndOfStreamTimer(UINT uID, // Timer identifier
UINT uMsg, // Not currently used
DWORD_PTR dwUser, // User information
DWORD_PTR dw1, // Windows reserved
DWORD_PTR dw2); // Is also reserved
CRendererPosPassThru *m_pPosition; // Media seeking pass by object
CAMEvent m_RenderEvent; // Used to signal timer events
CAMEvent m_ThreadSignal; // Signalled to release worker thread
CAMEvent m_evComplete; // Signalled when state complete
BOOL m_bAbort; // Stop us from rendering more data
BOOL m_bStreaming; // Are we currently streaming
DWORD_PTR m_dwAdvise; // Timer advise cookie
IMediaSample *m_pMediaSample; // Current image media sample
BOOL m_bEOS; // Any more samples in the stream
BOOL m_bEOSDelivered; // Have we delivered an EC_COMPLETE
CRendererInputPin *m_pInputPin; // Our renderer input pin object
CCritSec m_InterfaceLock; // Critical section for interfaces
CCritSec m_RendererLock; // Controls access to internals
IQualityControl * m_pQSink; // QualityControl sink
BOOL m_bRepaintStatus; // Can we signal an EC_REPAINT
// Avoid some deadlocks by tracking filter during stop
volatile BOOL m_bInReceive; // Inside Receive between PrepareReceive
// And actually processing the sample
REFERENCE_TIME m_SignalTime; // Time when we signal EC_COMPLETE
UINT m_EndOfStreamTimer; // Used to signal end of stream
CCritSec m_ObjectCreationLock; // This lock protects the creation and
// of m_pPosition and m_pInputPin. It
// ensures that two threads cannot create
// either object simultaneously.
public:
CBaseRenderer(REFCLSID RenderClass, // CLSID for this renderer
__in_opt LPCTSTR pName, // Debug ONLY description
__inout_opt LPUNKNOWN pUnk, // Aggregated owner object
__inout HRESULT *phr); // General OLE return code
~CBaseRenderer();
// Overriden to say what interfaces we support and where
virtual HRESULT GetMediaPositionInterface(REFIID riid, __deref_out void **ppv);
STDMETHODIMP NonDelegatingQueryInterface(REFIID, __deref_out void **);
virtual HRESULT SourceThreadCanWait(BOOL bCanWait);
#ifdef DEBUG
// Debug only dump of the renderer state
void DisplayRendererState();
#endif
virtual HRESULT WaitForRenderTime();
virtual HRESULT CompleteStateChange(FILTER_STATE OldState);
// Return internal information about this filter
BOOL IsEndOfStream() { return m_bEOS; };
BOOL IsEndOfStreamDelivered() { return m_bEOSDelivered; };
BOOL IsStreaming() { return m_bStreaming; };
void SetAbortSignal(BOOL bAbort) { m_bAbort = bAbort; };
virtual void OnReceiveFirstSample(IMediaSample *pMediaSample) { };
CAMEvent *GetRenderEvent() { return &m_RenderEvent; };
// Permit access to the transition state
void Ready() { m_evComplete.Set(); };
void NotReady() { m_evComplete.Reset(); };
BOOL CheckReady() { return m_evComplete.Check(); };
virtual int GetPinCount();
virtual CBasePin *GetPin(int n);
FILTER_STATE GetRealState();
void SendRepaint();
void SendNotifyWindow(IPin *pPin,HWND hwnd);
BOOL OnDisplayChange();
void SetRepaintStatus(BOOL bRepaint);
// Override the filter and pin interface functions
STDMETHODIMP Stop();
STDMETHODIMP Pause();
STDMETHODIMP Run(REFERENCE_TIME StartTime);
STDMETHODIMP GetState(DWORD dwMSecs, __out FILTER_STATE *State);
STDMETHODIMP FindPin(LPCWSTR Id, __deref_out IPin **ppPin);
// These are available for a quality management implementation
virtual void OnRenderStart(IMediaSample *pMediaSample);
virtual void OnRenderEnd(IMediaSample *pMediaSample);
virtual HRESULT OnStartStreaming() { return NOERROR; };
virtual HRESULT OnStopStreaming() { return NOERROR; };
virtual void OnWaitStart() { };
virtual void OnWaitEnd() { };
virtual void PrepareRender() { };
#ifdef PERF
REFERENCE_TIME m_trRenderStart; // Just before we started drawing
// Set in OnRenderStart, Used in OnRenderEnd
int m_idBaseStamp; // MSR_id for frame time stamp
int m_idBaseRenderTime; // MSR_id for true wait time
int m_idBaseAccuracy; // MSR_id for time frame is late (int)
#endif
// Quality management implementation for scheduling rendering
virtual BOOL ScheduleSample(IMediaSample *pMediaSample);
virtual HRESULT GetSampleTimes(IMediaSample *pMediaSample,
__out REFERENCE_TIME *pStartTime,
__out REFERENCE_TIME *pEndTime);
virtual HRESULT ShouldDrawSampleNow(IMediaSample *pMediaSample,
__out REFERENCE_TIME *ptrStart,
__out REFERENCE_TIME *ptrEnd);
// Lots of end of stream complexities
void TimerCallback();
void ResetEndOfStreamTimer();
HRESULT NotifyEndOfStream();
virtual HRESULT SendEndOfStream();
virtual HRESULT ResetEndOfStream();
virtual HRESULT EndOfStream();
// Rendering is based around the clock
void SignalTimerFired();
virtual HRESULT CancelNotification();
virtual HRESULT ClearPendingSample();
// Called when the filter changes state
virtual HRESULT Active();
virtual HRESULT Inactive();
virtual HRESULT StartStreaming();
virtual HRESULT StopStreaming();
virtual HRESULT BeginFlush();
virtual HRESULT EndFlush();
// Deal with connections and type changes
virtual HRESULT BreakConnect();
virtual HRESULT SetMediaType(const CMediaType *pmt);
virtual HRESULT CompleteConnect(IPin *pReceivePin);
// These look after the handling of data samples
virtual HRESULT PrepareReceive(IMediaSample *pMediaSample);
virtual HRESULT Receive(IMediaSample *pMediaSample);
virtual BOOL HaveCurrentSample();
virtual IMediaSample *GetCurrentSample();
virtual HRESULT Render(IMediaSample *pMediaSample);
// Derived classes MUST override these
virtual HRESULT DoRenderSample(IMediaSample *pMediaSample) PURE;
virtual HRESULT CheckMediaType(const CMediaType *) PURE;
// Helper
void WaitForReceiveToComplete();
};
// CBaseVideoRenderer is a renderer class (see its ancestor class) and
// it handles scheduling of media samples so that they are drawn at the
// correct time by the reference clock. It implements a degradation
// strategy. Possible degradation modes are:
// Drop frames here (only useful if the drawing takes significant time)
// Signal supplier (upstream) to drop some frame(s) - i.e. one-off skip.
// Signal supplier to change the frame rate - i.e. ongoing skipping.
// Or any combination of the above.
// In order to determine what's useful to try we need to know what's going
// on. This is done by timing various operations (including the supplier).
// This timing is done by using timeGetTime as it is accurate enough and
// usually cheaper than calling the reference clock. It also tells the
// truth if there is an audio break and the reference clock stops.
// We provide a number of public entry points (named OnXxxStart, OnXxxEnd)
// which the rest of the renderer calls at significant moments. These do
// the timing.
// the number of frames that the sliding averages are averaged over.
// the rule is (1024*NewObservation + (AVGPERIOD-1) * PreviousAverage)/AVGPERIOD
#define AVGPERIOD 4
#define DO_MOVING_AVG(avg,obs) (avg = (1024*obs + (AVGPERIOD-1)*avg)/AVGPERIOD)
// Spot the bug in this macro - I can't. but it doesn't work!
class CBaseVideoRenderer : public CBaseRenderer, // Base renderer class
public IQualProp, // Property page guff
public IQualityControl // Allow throttling
{
protected:
// Hungarian:
// tFoo is the time Foo in mSec (beware m_tStart from filter.h)
// trBar is the time Bar by the reference clock
//******************************************************************
// State variables to control synchronisation
//******************************************************************
// Control of sending Quality messages. We need to know whether
// we are in trouble (e.g. frames being dropped) and where the time
// is being spent.
// When we drop a frame we play the next one early.
// The frame after that is likely to wait before drawing and counting this
// wait as spare time is unfair, so we count it as a zero wait.
// We therefore need to know whether we are playing frames early or not.
int m_nNormal; // The number of consecutive frames
// drawn at their normal time (not early)
// -1 means we just dropped a frame.
#ifdef PERF
BOOL m_bDrawLateFrames; // Don't drop any frames (debug and I'm
// not keen on people using it!)
#endif
BOOL m_bSupplierHandlingQuality;// The response to Quality messages says
// our supplier is handling things.
// We will allow things to go extra late
// before dropping frames. We will play
// very early after he has dropped one.
// Control of scheduling, frame dropping etc.
// We need to know where the time is being spent so as to tell whether
// we should be taking action here, signalling supplier or what.
// The variables are initialised to a mode of NOT dropping frames.
// They will tell the truth after a few frames.
// We typically record a start time for an event, later we get the time
// again and subtract to get the elapsed time, and we average this over
// a few frames. The average is used to tell what mode we are in.
// Although these are reference times (64 bit) they are all DIFFERENCES
// between times which are small. An int will go up to 214 secs before
// overflow. Avoiding 64 bit multiplications and divisions seems
// worth while.
// Audio-video throttling. If the user has turned up audio quality
// very high (in principle it could be any other stream, not just audio)
// then we can receive cries for help via the graph manager. In this case
// we put in a wait for some time after rendering each frame.
int m_trThrottle;
// The time taken to render (i.e. BitBlt) frames controls which component
// needs to degrade. If the blt is expensive, the renderer degrades.
// If the blt is cheap it's done anyway and the supplier degrades.
int m_trRenderAvg; // Time frames are taking to blt
int m_trRenderLast; // Time for last frame blt
int m_tRenderStart; // Just before we started drawing (mSec)
// derived from timeGetTime.
// When frames are dropped we will play the next frame as early as we can.
// If it was a false alarm and the machine is fast we slide gently back to
// normal timing. To do this, we record the offset showing just how early
// we really are. This will normally be negative meaning early or zero.
int m_trEarliness;
// Target provides slow long-term feedback to try to reduce the
// average sync offset to zero. Whenever a frame is actually rendered
// early we add a msec or two, whenever late we take off a few.
// We add or take off 1/32 of the error time.
// Eventually we should be hovering around zero. For a really bad case
// where we were (say) 300mSec off, it might take 100 odd frames to
// settle down. The rate of change of this is intended to be slower
// than any other mechanism in Quartz, thereby avoiding hunting.
int m_trTarget;
// The proportion of time spent waiting for the right moment to blt
// controls whether we bother to drop a frame or whether we reckon that
// we're doing well enough that we can stand a one-frame glitch.
int m_trWaitAvg; // Average of last few wait times
// (actually we just average how early
// we were). Negative here means LATE.
// The average inter-frame time.
// This is used to calculate the proportion of the time used by the
// three operations (supplying us, waiting, rendering)
int m_trFrameAvg; // Average inter-frame time
int m_trDuration; // duration of last frame.
#ifdef PERF
// Performance logging identifiers
int m_idTimeStamp; // MSR_id for frame time stamp
int m_idEarliness; // MSR_id for earliness fudge
int m_idTarget; // MSR_id for Target fudge
int m_idWaitReal; // MSR_id for true wait time
int m_idWait; // MSR_id for wait time recorded
int m_idFrameAccuracy; // MSR_id for time frame is late (int)
int m_idRenderAvg; // MSR_id for Render time recorded (int)
int m_idSchLateTime; // MSR_id for lateness at scheduler
int m_idQualityRate; // MSR_id for Quality rate requested
int m_idQualityTime; // MSR_id for Quality time requested
int m_idDecision; // MSR_id for decision code
int m_idDuration; // MSR_id for duration of a frame
int m_idThrottle; // MSR_id for audio-video throttling
//int m_idDebug; // MSR_id for trace style debugging
//int m_idSendQuality; // MSR_id for timing the notifications per se
#endif // PERF
REFERENCE_TIME m_trRememberStampForPerf; // original time stamp of frame
// with no earliness fudges etc.
#ifdef PERF
REFERENCE_TIME m_trRememberFrameForPerf; // time when previous frame rendered
// debug...
int m_idFrameAvg;
int m_idWaitAvg;
#endif
// PROPERTY PAGE
// This has edit fields that show the user what's happening
// These member variables hold these counts.
int m_cFramesDropped; // cumulative frames dropped IN THE RENDERER
int m_cFramesDrawn; // Frames since streaming started seen BY THE
// RENDERER (some may be dropped upstream)
// Next two support average sync offset and standard deviation of sync offset.
LONGLONG m_iTotAcc; // Sum of accuracies in mSec
LONGLONG m_iSumSqAcc; // Sum of squares of (accuracies in mSec)
// Next two allow jitter calculation. Jitter is std deviation of frame time.
REFERENCE_TIME m_trLastDraw; // Time of prev frame (for inter-frame times)
LONGLONG m_iSumSqFrameTime; // Sum of squares of (inter-frame time in mSec)
LONGLONG m_iSumFrameTime; // Sum of inter-frame times in mSec
// To get performance statistics on frame rate, jitter etc, we need
// to record the lateness and inter-frame time. What we actually need are the
// data above (sum, sum of squares and number of entries for each) but the data
// is generated just ahead of time and only later do we discover whether the
// frame was actually drawn or not. So we have to hang on to the data
int m_trLate; // hold onto frame lateness
int m_trFrame; // hold onto inter-frame time
int m_tStreamingStart; // if streaming then time streaming started
// else time of last streaming session
// used for property page statistics
#ifdef PERF
LONGLONG m_llTimeOffset; // timeGetTime()*10000+m_llTimeOffset==ref time
#endif
public:
CBaseVideoRenderer(REFCLSID RenderClass, // CLSID for this renderer
__in_opt LPCTSTR pName, // Debug ONLY description
__inout_opt LPUNKNOWN pUnk, // Aggregated owner object
__inout HRESULT *phr); // General OLE return code
~CBaseVideoRenderer();
// IQualityControl methods - Notify allows audio-video throttling
STDMETHODIMP SetSink( IQualityControl * piqc);
STDMETHODIMP Notify( IBaseFilter * pSelf, Quality q);
// These provide a full video quality management implementation
void OnRenderStart(IMediaSample *pMediaSample);
void OnRenderEnd(IMediaSample *pMediaSample);
void OnWaitStart();
void OnWaitEnd();
HRESULT OnStartStreaming();
HRESULT OnStopStreaming();
void ThrottleWait();
// Handle the statistics gathering for our quality management
void PreparePerformanceData(int trLate, int trFrame);
virtual void RecordFrameLateness(int trLate, int trFrame);
virtual void OnDirectRender(IMediaSample *pMediaSample);
virtual HRESULT ResetStreamingTimes();
BOOL ScheduleSample(IMediaSample *pMediaSample);
HRESULT ShouldDrawSampleNow(IMediaSample *pMediaSample,
__inout REFERENCE_TIME *ptrStart,
__inout REFERENCE_TIME *ptrEnd);
virtual HRESULT SendQuality(REFERENCE_TIME trLate, REFERENCE_TIME trRealStream);
STDMETHODIMP JoinFilterGraph(__inout_opt IFilterGraph * pGraph, __in_opt LPCWSTR pName);
//
// Do estimates for standard deviations for per-frame
// statistics
//
// *piResult = (llSumSq - iTot * iTot / m_cFramesDrawn - 1) /
// (m_cFramesDrawn - 2)
// or 0 if m_cFramesDrawn <= 3
//
HRESULT GetStdDev(
int nSamples,
__out int *piResult,
LONGLONG llSumSq,
LONGLONG iTot
);
public:
// IQualProp property page support
STDMETHODIMP get_FramesDroppedInRenderer(__out int *cFramesDropped);
STDMETHODIMP get_FramesDrawn(__out int *pcFramesDrawn);
STDMETHODIMP get_AvgFrameRate(__out int *piAvgFrameRate);
STDMETHODIMP get_Jitter(__out int *piJitter);
STDMETHODIMP get_AvgSyncOffset(__out int *piAvg);
STDMETHODIMP get_DevSyncOffset(__out int *piDev);
// Implement an IUnknown interface and expose IQualProp
DECLARE_IUNKNOWN
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid,__deref_out VOID **ppv);
};
#endif // __RENBASE__

View file

@ -0,0 +1,284 @@
//------------------------------------------------------------------------------
// File: Schedule.cpp
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1996-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
// DbgLog values (all on LOG_TIMING):
//
// 2 for schedulting, firing and shunting of events
// 3 for wait delays and wake-up times of event thread
// 4 for details of whats on the list when the thread awakes
/* Construct & destructors */
CAMSchedule::CAMSchedule( HANDLE ev )
: CBaseObject(TEXT("CAMSchedule"))
, head(&z, 0), z(0, MAX_TIME)
, m_dwNextCookie(0), m_dwAdviseCount(0)
, m_pAdviseCache(0), m_dwCacheCount(0)
, m_ev( ev )
{
head.m_dwAdviseCookie = z.m_dwAdviseCookie = 0;
}
CAMSchedule::~CAMSchedule()
{
m_Serialize.Lock();
// Delete cache
CAdvisePacket * p = m_pAdviseCache;
while (p)
{
CAdvisePacket *const p_next = p->m_next;
delete p;
p = p_next;
}
ASSERT( m_dwAdviseCount == 0 );
// Better to be safe than sorry
if ( m_dwAdviseCount > 0 )
{
DumpLinkedList();
while ( !head.m_next->IsZ() )
{
head.DeleteNext();
--m_dwAdviseCount;
}
}
// If, in the debug version, we assert twice, it means, not only
// did we have left over advises, but we have also let m_dwAdviseCount
// get out of sync. with the number of advises actually on the list.
ASSERT( m_dwAdviseCount == 0 );
m_Serialize.Unlock();
}
/* Public methods */
DWORD CAMSchedule::GetAdviseCount()
{
// No need to lock, m_dwAdviseCount is 32bits & declared volatile
return m_dwAdviseCount;
}
REFERENCE_TIME CAMSchedule::GetNextAdviseTime()
{
CAutoLock lck(&m_Serialize); // Need to stop the linked list from changing
return head.m_next->m_rtEventTime;
}
DWORD_PTR CAMSchedule::AddAdvisePacket
( const REFERENCE_TIME & time1
, const REFERENCE_TIME & time2
, HANDLE h, BOOL periodic
)
{
// Since we use MAX_TIME as a sentry, we can't afford to
// schedule a notification at MAX_TIME
ASSERT( time1 < MAX_TIME );
DWORD_PTR Result;
CAdvisePacket * p;
m_Serialize.Lock();
if (m_pAdviseCache)
{
p = m_pAdviseCache;
m_pAdviseCache = p->m_next;
--m_dwCacheCount;
}
else
{
p = new CAdvisePacket();
}
if (p)
{
p->m_rtEventTime = time1; p->m_rtPeriod = time2;
p->m_hNotify = h; p->m_bPeriodic = periodic;
Result = AddAdvisePacket( p );
}
else Result = 0;
m_Serialize.Unlock();
return Result;
}
HRESULT CAMSchedule::Unadvise(DWORD_PTR dwAdviseCookie)
{
HRESULT hr = S_FALSE;
CAdvisePacket * p_prev = &head;
CAdvisePacket * p_n;
m_Serialize.Lock();
while ( p_n = p_prev->Next() ) // The Next() method returns NULL when it hits z
{
if ( p_n->m_dwAdviseCookie == dwAdviseCookie )
{
Delete( p_prev->RemoveNext() );
--m_dwAdviseCount;
hr = S_OK;
// Having found one cookie that matches, there should be no more
#ifdef DEBUG
while (p_n = p_prev->Next())
{
ASSERT(p_n->m_dwAdviseCookie != dwAdviseCookie);
p_prev = p_n;
}
#endif
break;
}
p_prev = p_n;
};
m_Serialize.Unlock();
return hr;
}
REFERENCE_TIME CAMSchedule::Advise( const REFERENCE_TIME & rtTime )
{
REFERENCE_TIME rtNextTime;
CAdvisePacket * pAdvise;
DbgLog((LOG_TIMING, 2,
TEXT("CAMSchedule::Advise( %lu ms )"), ULONG(rtTime / (UNITS / MILLISECONDS))));
CAutoLock lck(&m_Serialize);
#ifdef DEBUG
if (DbgCheckModuleLevel(LOG_TIMING, 4)) DumpLinkedList();
#endif
// Note - DON'T cache the difference, it might overflow
while ( rtTime >= (rtNextTime = (pAdvise=head.m_next)->m_rtEventTime) &&
!pAdvise->IsZ() )
{
ASSERT(pAdvise->m_dwAdviseCookie); // If this is zero, its the head or the tail!!
ASSERT(pAdvise->m_hNotify != INVALID_HANDLE_VALUE);
if (pAdvise->m_bPeriodic == TRUE)
{
ReleaseSemaphore(pAdvise->m_hNotify,1,NULL);
pAdvise->m_rtEventTime += pAdvise->m_rtPeriod;
ShuntHead();
}
else
{
ASSERT( pAdvise->m_bPeriodic == FALSE );
EXECUTE_ASSERT(SetEvent(pAdvise->m_hNotify));
--m_dwAdviseCount;
Delete( head.RemoveNext() );
}
}
DbgLog((LOG_TIMING, 3,
TEXT("CAMSchedule::Advise() Next time stamp: %lu ms, for advise %lu."),
DWORD(rtNextTime / (UNITS / MILLISECONDS)), pAdvise->m_dwAdviseCookie ));
return rtNextTime;
}
/* Private methods */
DWORD_PTR CAMSchedule::AddAdvisePacket( __inout CAdvisePacket * pPacket )
{
ASSERT(pPacket->m_rtEventTime >= 0 && pPacket->m_rtEventTime < MAX_TIME);
ASSERT(CritCheckIn(&m_Serialize));
CAdvisePacket * p_prev = &head;
CAdvisePacket * p_n;
const DWORD_PTR Result = pPacket->m_dwAdviseCookie = ++m_dwNextCookie;
// This relies on the fact that z is a sentry with a maximal m_rtEventTime
for(;;p_prev = p_n)
{
p_n = p_prev->m_next;
if ( p_n->m_rtEventTime >= pPacket->m_rtEventTime ) break;
}
p_prev->InsertAfter( pPacket );
++m_dwAdviseCount;
DbgLog((LOG_TIMING, 2, TEXT("Added advise %lu, for thread 0x%02X, scheduled at %lu"),
pPacket->m_dwAdviseCookie, GetCurrentThreadId(), (pPacket->m_rtEventTime / (UNITS / MILLISECONDS)) ));
// If packet added at the head, then clock needs to re-evaluate wait time.
if ( p_prev == &head ) SetEvent( m_ev );
return Result;
}
void CAMSchedule::Delete( __inout CAdvisePacket * pPacket )
{
if ( m_dwCacheCount >= dwCacheMax ) delete pPacket;
else
{
m_Serialize.Lock();
pPacket->m_next = m_pAdviseCache;
m_pAdviseCache = pPacket;
++m_dwCacheCount;
m_Serialize.Unlock();
}
}
// Takes the head of the list & repositions it
void CAMSchedule::ShuntHead()
{
CAdvisePacket * p_prev = &head;
CAdvisePacket * p_n;
m_Serialize.Lock();
CAdvisePacket *const pPacket = head.m_next;
// This will catch both an empty list,
// and if somehow a MAX_TIME time gets into the list
// (which would also break this method).
ASSERT( pPacket->m_rtEventTime < MAX_TIME );
// This relies on the fact that z is a sentry with a maximal m_rtEventTime
for(;;p_prev = p_n)
{
p_n = p_prev->m_next;
if ( p_n->m_rtEventTime > pPacket->m_rtEventTime ) break;
}
// If p_prev == pPacket then we're already in the right place
if (p_prev != pPacket)
{
head.m_next = pPacket->m_next;
(p_prev->m_next = pPacket)->m_next = p_n;
}
#ifdef DEBUG
DbgLog((LOG_TIMING, 2, TEXT("Periodic advise %lu, shunted to %lu"),
pPacket->m_dwAdviseCookie, (pPacket->m_rtEventTime / (UNITS / MILLISECONDS)) ));
#endif
m_Serialize.Unlock();
}
#ifdef DEBUG
void CAMSchedule::DumpLinkedList()
{
m_Serialize.Lock();
int i=0;
DbgLog((LOG_TIMING, 1, TEXT("CAMSchedule::DumpLinkedList() this = 0x%p"), this));
for ( CAdvisePacket * p = &head
; p
; p = p->m_next , i++
)
{
DbgLog((LOG_TIMING, 1, TEXT("Advise List # %lu, Cookie %d, RefTime %lu"),
i,
p->m_dwAdviseCookie,
p->m_rtEventTime / (UNITS / MILLISECONDS)
));
}
m_Serialize.Unlock();
}
#endif

View file

@ -0,0 +1,128 @@
//------------------------------------------------------------------------------
// File: Schedule.h
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1996-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef __CAMSchedule__
#define __CAMSchedule__
class CAMSchedule : private CBaseObject
{
public:
virtual ~CAMSchedule();
// ev is the event we should fire if the advise time needs re-evaluating
CAMSchedule( HANDLE ev );
DWORD GetAdviseCount();
REFERENCE_TIME GetNextAdviseTime();
// We need a method for derived classes to add advise packets, we return the cookie
DWORD_PTR AddAdvisePacket( const REFERENCE_TIME & time1, const REFERENCE_TIME & time2, HANDLE h, BOOL periodic );
// And a way to cancel
HRESULT Unadvise(DWORD_PTR dwAdviseCookie);
// Tell us the time please, and we'll dispatch the expired events. We return the time of the next event.
// NB: The time returned will be "useless" if you start adding extra Advises. But that's the problem of
// whoever is using this helper class (typically a clock).
REFERENCE_TIME Advise( const REFERENCE_TIME & rtTime );
// Get the event handle which will be set if advise time requires re-evaluation.
HANDLE GetEvent() const { return m_ev; }
private:
// We define the nodes that will be used in our singly linked list
// of advise packets. The list is ordered by time, with the
// elements that will expire first at the front.
class CAdvisePacket
{
public:
CAdvisePacket()
{}
CAdvisePacket * m_next;
DWORD_PTR m_dwAdviseCookie;
REFERENCE_TIME m_rtEventTime; // Time at which event should be set
REFERENCE_TIME m_rtPeriod; // Periodic time
HANDLE m_hNotify; // Handle to event or semephore
BOOL m_bPeriodic; // TRUE => Periodic event
CAdvisePacket( __inout_opt CAdvisePacket * next, LONGLONG time ) : m_next(next), m_rtEventTime(time)
{}
void InsertAfter( __inout CAdvisePacket * p )
{
p->m_next = m_next;
m_next = p;
}
int IsZ() const // That is, is it the node that represents the end of the list
{ return m_next == 0; }
CAdvisePacket * RemoveNext()
{
CAdvisePacket *const next = m_next;
CAdvisePacket *const new_next = next->m_next;
m_next = new_next;
return next;
}
void DeleteNext()
{
delete RemoveNext();
}
CAdvisePacket * Next() const
{
CAdvisePacket * result = m_next;
if (result->IsZ()) result = 0;
return result;
}
DWORD_PTR Cookie() const
{ return m_dwAdviseCookie; }
};
// Structure is:
// head -> elmt1 -> elmt2 -> z -> null
// So an empty list is: head -> z -> null
// Having head & z as links makes insertaion,
// deletion and shunting much easier.
CAdvisePacket head, z; // z is both a tail and a sentry
volatile DWORD_PTR m_dwNextCookie; // Strictly increasing
volatile DWORD m_dwAdviseCount; // Number of elements on list
CCritSec m_Serialize;
// AddAdvisePacket: adds the packet, returns the cookie (0 if failed)
DWORD_PTR AddAdvisePacket( __inout CAdvisePacket * pPacket );
// Event that we should set if the packed added above will be the next to fire.
const HANDLE m_ev;
// A Shunt is where we have changed the first element in the
// list and want it re-evaluating (i.e. repositioned) in
// the list.
void ShuntHead();
// Rather than delete advise packets, we cache them for future use
CAdvisePacket * m_pAdviseCache;
DWORD m_dwCacheCount;
enum { dwCacheMax = 5 }; // Don't bother caching more than five
void Delete( __inout CAdvisePacket * pLink );// This "Delete" will cache the Link
// Attributes and methods for debugging
public:
#ifdef DEBUG
void DumpLinkedList();
#else
void DumpLinkedList() {}
#endif
};
#endif // __CAMSchedule__

View file

@ -0,0 +1,83 @@
//------------------------------------------------------------------------------
// File: SeekPT.cpp
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#include "seekpt.h"
//==================================================================
// CreateInstance
// This goes in the factory template table to create new instances
// If there is already a mapper instance - return that, else make one
// and save it in a static variable so that forever after we can return that.
//==================================================================
CUnknown * CSeekingPassThru::CreateInstance(__inout_opt LPUNKNOWN pUnk, __inout HRESULT *phr)
{
return new CSeekingPassThru(NAME("Seeking PassThru"),pUnk, phr);
}
STDMETHODIMP CSeekingPassThru::NonDelegatingQueryInterface(REFIID riid, __deref_out void ** ppv)
{
if (riid == IID_ISeekingPassThru) {
return GetInterface((ISeekingPassThru *) this, ppv);
} else {
if (m_pPosPassThru &&
(riid == IID_IMediaSeeking ||
riid == IID_IMediaPosition)) {
return m_pPosPassThru->NonDelegatingQueryInterface(riid,ppv);
} else {
return CUnknown::NonDelegatingQueryInterface(riid, ppv);
}
}
}
CSeekingPassThru::CSeekingPassThru( __in_opt LPCTSTR pName, __inout_opt LPUNKNOWN pUnk, __inout HRESULT *phr )
: CUnknown(pName, pUnk, phr),
m_pPosPassThru(NULL)
{
}
CSeekingPassThru::~CSeekingPassThru()
{
delete m_pPosPassThru;
}
STDMETHODIMP CSeekingPassThru::Init(BOOL bRendererSeeking, IPin *pPin)
{
HRESULT hr = NOERROR;
if (m_pPosPassThru) {
hr = E_FAIL;
} else {
m_pPosPassThru =
bRendererSeeking ?
new CRendererPosPassThru(
NAME("Render Seeking COM object"),
(IUnknown *)this,
&hr,
pPin) :
new CPosPassThru(
NAME("Render Seeking COM object"),
(IUnknown *)this,
&hr,
pPin);
if (!m_pPosPassThru) {
hr = E_OUTOFMEMORY;
} else {
if (FAILED(hr)) {
delete m_pPosPassThru;
m_pPosPassThru = NULL;
}
}
}
return hr;
}

View file

@ -0,0 +1,30 @@
//------------------------------------------------------------------------------
// File: SeekPT.h
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef __seekpt_h__
#define __seekpt_h__
class CSeekingPassThru : public ISeekingPassThru, public CUnknown
{
public:
static CUnknown *CreateInstance(__inout_opt LPUNKNOWN pUnk, __inout HRESULT *phr);
CSeekingPassThru(__in_opt LPCTSTR pName, __inout_opt LPUNKNOWN pUnk, __inout HRESULT *phr);
~CSeekingPassThru();
DECLARE_IUNKNOWN;
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid, __deref_out void ** ppv);
STDMETHODIMP Init(BOOL bSupportRendering, IPin *pPin);
private:
CPosPassThru *m_pPosPassThru;
};
#endif

View file

@ -0,0 +1,522 @@
//------------------------------------------------------------------------------
// File: Source.cpp
//
// Desc: DirectShow base classes - implements CSource, which is a Quartz
// source filter 'template.'
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
// Locking Strategy.
//
// Hold the filter critical section (m_pFilter->pStateLock()) to serialise
// access to functions. Note that, in general, this lock may be held
// by a function when the worker thread may want to hold it. Therefore
// if you wish to access shared state from the worker thread you will
// need to add another critical section object. The execption is during
// the threads processing loop, when it is safe to get the filter critical
// section from within FillBuffer().
#include <streams.h>
//
// CSource::Constructor
//
// Initialise the pin count for the filter. The user will create the pins in
// the derived class.
CSource::CSource(__in_opt LPCTSTR pName, __inout_opt LPUNKNOWN lpunk, CLSID clsid)
: CBaseFilter(pName, lpunk, &m_cStateLock, clsid),
m_iPins(0),
m_paStreams(NULL)
{
}
CSource::CSource(__in_opt LPCTSTR pName, __inout_opt LPUNKNOWN lpunk, CLSID clsid, __inout HRESULT *phr)
: CBaseFilter(pName, lpunk, &m_cStateLock, clsid),
m_iPins(0),
m_paStreams(NULL)
{
UNREFERENCED_PARAMETER(phr);
}
#ifdef UNICODE
CSource::CSource(__in_opt LPCSTR pName, __inout_opt LPUNKNOWN lpunk, CLSID clsid)
: CBaseFilter(pName, lpunk, &m_cStateLock, clsid),
m_iPins(0),
m_paStreams(NULL)
{
}
CSource::CSource(__in_opt LPCSTR pName, __inout_opt LPUNKNOWN lpunk, CLSID clsid, __inout HRESULT *phr)
: CBaseFilter(pName, lpunk, &m_cStateLock, clsid),
m_iPins(0),
m_paStreams(NULL)
{
UNREFERENCED_PARAMETER(phr);
}
#endif
//
// CSource::Destructor
//
CSource::~CSource()
{
/* Free our pins and pin array */
while (m_iPins != 0) {
// deleting the pins causes them to be removed from the array...
delete m_paStreams[m_iPins - 1];
}
ASSERT(m_paStreams == NULL);
}
//
// Add a new pin
//
HRESULT CSource::AddPin(__in CSourceStream *pStream)
{
CAutoLock lock(&m_cStateLock);
/* Allocate space for this pin and the old ones */
CSourceStream **paStreams = new CSourceStream *[m_iPins + 1];
if (paStreams == NULL) {
return E_OUTOFMEMORY;
}
if (m_paStreams != NULL) {
CopyMemory((PVOID)paStreams, (PVOID)m_paStreams,
m_iPins * sizeof(m_paStreams[0]));
paStreams[m_iPins] = pStream;
delete [] m_paStreams;
}
m_paStreams = paStreams;
m_paStreams[m_iPins] = pStream;
m_iPins++;
return S_OK;
}
//
// Remove a pin - pStream is NOT deleted
//
HRESULT CSource::RemovePin(__in CSourceStream *pStream)
{
int i;
for (i = 0; i < m_iPins; i++) {
if (m_paStreams[i] == pStream) {
if (m_iPins == 1) {
delete [] m_paStreams;
m_paStreams = NULL;
} else {
/* no need to reallocate */
while (++i < m_iPins)
m_paStreams[i - 1] = m_paStreams[i];
}
m_iPins--;
return S_OK;
}
}
return S_FALSE;
}
//
// FindPin
//
// Set *ppPin to the IPin* that has the id Id.
// or to NULL if the Id cannot be matched.
STDMETHODIMP CSource::FindPin(LPCWSTR Id, __deref_out IPin **ppPin)
{
CheckPointer(ppPin,E_POINTER);
ValidateReadWritePtr(ppPin,sizeof(IPin *));
// The -1 undoes the +1 in QueryId and ensures that totally invalid
// strings (for which WstrToInt delivers 0) give a deliver a NULL pin.
int i = WstrToInt(Id) -1;
*ppPin = GetPin(i);
if (*ppPin!=NULL){
(*ppPin)->AddRef();
return NOERROR;
} else {
return VFW_E_NOT_FOUND;
}
}
//
// FindPinNumber
//
// return the number of the pin with this IPin* or -1 if none
int CSource::FindPinNumber(__in IPin *iPin) {
int i;
for (i=0; i<m_iPins; ++i) {
if ((IPin *)(m_paStreams[i])==iPin) {
return i;
}
}
return -1;
}
//
// GetPinCount
//
// Returns the number of pins this filter has
int CSource::GetPinCount(void) {
CAutoLock lock(&m_cStateLock);
return m_iPins;
}
//
// GetPin
//
// Return a non-addref'd pointer to pin n
// needed by CBaseFilter
CBasePin *CSource::GetPin(int n) {
CAutoLock lock(&m_cStateLock);
// n must be in the range 0..m_iPins-1
// if m_iPins>n && n>=0 it follows that m_iPins>0
// which is what used to be checked (i.e. checking that we have a pin)
if ((n >= 0) && (n < m_iPins)) {
ASSERT(m_paStreams[n]);
return m_paStreams[n];
}
return NULL;
}
//
// *
// * --- CSourceStream ----
// *
//
// Set Id to point to a CoTaskMemAlloc'd
STDMETHODIMP CSourceStream::QueryId(__deref_out LPWSTR *Id) {
CheckPointer(Id,E_POINTER);
ValidateReadWritePtr(Id,sizeof(LPWSTR));
// We give the pins id's which are 1,2,...
// FindPinNumber returns -1 for an invalid pin
int i = 1+ m_pFilter->FindPinNumber(this);
if (i<1) return VFW_E_NOT_FOUND;
*Id = (LPWSTR)CoTaskMemAlloc(sizeof(WCHAR) * 12);
if (*Id==NULL) {
return E_OUTOFMEMORY;
}
IntToWstr(i, *Id);
return NOERROR;
}
//
// CSourceStream::Constructor
//
// increments the number of pins present on the filter
CSourceStream::CSourceStream(
__in_opt LPCTSTR pObjectName,
__inout HRESULT *phr,
__inout CSource *ps,
__in_opt LPCWSTR pPinName)
: CBaseOutputPin(pObjectName, ps, ps->pStateLock(), phr, pPinName),
m_pFilter(ps) {
*phr = m_pFilter->AddPin(this);
}
#ifdef UNICODE
CSourceStream::CSourceStream(
__in_opt LPCSTR pObjectName,
__inout HRESULT *phr,
__inout CSource *ps,
__in_opt LPCWSTR pPinName)
: CBaseOutputPin(pObjectName, ps, ps->pStateLock(), phr, pPinName),
m_pFilter(ps) {
*phr = m_pFilter->AddPin(this);
}
#endif
//
// CSourceStream::Destructor
//
// Decrements the number of pins on this filter
CSourceStream::~CSourceStream(void) {
m_pFilter->RemovePin(this);
}
//
// CheckMediaType
//
// Do we support this type? Provides the default support for 1 type.
HRESULT CSourceStream::CheckMediaType(const CMediaType *pMediaType) {
CAutoLock lock(m_pFilter->pStateLock());
CMediaType mt;
GetMediaType(&mt);
if (mt == *pMediaType) {
return NOERROR;
}
return E_FAIL;
}
//
// GetMediaType/3
//
// By default we support only one type
// iPosition indexes are 0-n
HRESULT CSourceStream::GetMediaType(int iPosition, __inout CMediaType *pMediaType) {
CAutoLock lock(m_pFilter->pStateLock());
if (iPosition<0) {
return E_INVALIDARG;
}
if (iPosition>0) {
return VFW_S_NO_MORE_ITEMS;
}
return GetMediaType(pMediaType);
}
//
// Active
//
// The pin is active - start up the worker thread
HRESULT CSourceStream::Active(void) {
CAutoLock lock(m_pFilter->pStateLock());
HRESULT hr;
if (m_pFilter->IsActive()) {
return S_FALSE; // succeeded, but did not allocate resources (they already exist...)
}
// do nothing if not connected - its ok not to connect to
// all pins of a source filter
if (!IsConnected()) {
return NOERROR;
}
hr = CBaseOutputPin::Active();
if (FAILED(hr)) {
return hr;
}
ASSERT(!ThreadExists());
// start the thread
if (!Create()) {
return E_FAIL;
}
// Tell thread to initialize. If OnThreadCreate Fails, so does this.
hr = Init();
if (FAILED(hr))
return hr;
return Pause();
}
//
// Inactive
//
// Pin is inactive - shut down the worker thread
// Waits for the worker to exit before returning.
HRESULT CSourceStream::Inactive(void) {
CAutoLock lock(m_pFilter->pStateLock());
HRESULT hr;
// do nothing if not connected - its ok not to connect to
// all pins of a source filter
if (!IsConnected()) {
return NOERROR;
}
// !!! need to do this before trying to stop the thread, because
// we may be stuck waiting for our own allocator!!!
hr = CBaseOutputPin::Inactive(); // call this first to Decommit the allocator
if (FAILED(hr)) {
return hr;
}
if (ThreadExists()) {
hr = Stop();
if (FAILED(hr)) {
return hr;
}
hr = Exit();
if (FAILED(hr)) {
return hr;
}
Close(); // Wait for the thread to exit, then tidy up.
}
// hr = CBaseOutputPin::Inactive(); // call this first to Decommit the allocator
//if (FAILED(hr)) {
// return hr;
//}
return NOERROR;
}
//
// ThreadProc
//
// When this returns the thread exits
// Return codes > 0 indicate an error occured
DWORD CSourceStream::ThreadProc(void) {
HRESULT hr; // the return code from calls
Command com;
do {
com = GetRequest();
if (com != CMD_INIT) {
DbgLog((LOG_ERROR, 1, TEXT("Thread expected init command")));
Reply((DWORD) E_UNEXPECTED);
}
} while (com != CMD_INIT);
DbgLog((LOG_TRACE, 1, TEXT("CSourceStream worker thread initializing")));
hr = OnThreadCreate(); // perform set up tasks
if (FAILED(hr)) {
DbgLog((LOG_ERROR, 1, TEXT("CSourceStream::OnThreadCreate failed. Aborting thread.")));
OnThreadDestroy();
Reply(hr); // send failed return code from OnThreadCreate
return 1;
}
// Initialisation suceeded
Reply(NOERROR);
Command cmd;
do {
cmd = GetRequest();
switch (cmd) {
case CMD_EXIT:
Reply(NOERROR);
break;
case CMD_RUN:
DbgLog((LOG_ERROR, 1, TEXT("CMD_RUN received before a CMD_PAUSE???")));
// !!! fall through???
case CMD_PAUSE:
Reply(NOERROR);
DoBufferProcessingLoop();
break;
case CMD_STOP:
Reply(NOERROR);
break;
default:
DbgLog((LOG_ERROR, 1, TEXT("Unknown command %d received!"), cmd));
Reply((DWORD) E_NOTIMPL);
break;
}
} while (cmd != CMD_EXIT);
hr = OnThreadDestroy(); // tidy up.
if (FAILED(hr)) {
DbgLog((LOG_ERROR, 1, TEXT("CSourceStream::OnThreadDestroy failed. Exiting thread.")));
return 1;
}
DbgLog((LOG_TRACE, 1, TEXT("CSourceStream worker thread exiting")));
return 0;
}
//
// DoBufferProcessingLoop
//
// Grabs a buffer and calls the users processing function.
// Overridable, so that different delivery styles can be catered for.
HRESULT CSourceStream::DoBufferProcessingLoop(void) {
Command com;
OnThreadStartPlay();
do {
while (!CheckRequest(&com)) {
IMediaSample *pSample;
HRESULT hr = GetDeliveryBuffer(&pSample,NULL,NULL,0);
if (FAILED(hr)) {
Sleep(1);
continue; // go round again. Perhaps the error will go away
// or the allocator is decommited & we will be asked to
// exit soon.
}
// Virtual function user will override.
hr = FillBuffer(pSample);
if (hr == S_OK) {
hr = Deliver(pSample);
pSample->Release();
// downstream filter returns S_FALSE if it wants us to
// stop or an error if it's reporting an error.
if(hr != S_OK)
{
DbgLog((LOG_TRACE, 2, TEXT("Deliver() returned %08x; stopping"), hr));
return S_OK;
}
} else if (hr == S_FALSE) {
// derived class wants us to stop pushing data
pSample->Release();
DeliverEndOfStream();
return S_OK;
} else {
// derived class encountered an error
pSample->Release();
DbgLog((LOG_ERROR, 1, TEXT("Error %08lX from FillBuffer!!!"), hr));
DeliverEndOfStream();
m_pFilter->NotifyEvent(EC_ERRORABORT, hr, 0);
return hr;
}
// all paths release the sample
}
// For all commands sent to us there must be a Reply call!
if (com == CMD_RUN || com == CMD_PAUSE) {
Reply(NOERROR);
} else if (com != CMD_STOP) {
Reply((DWORD) E_UNEXPECTED);
DbgLog((LOG_ERROR, 1, TEXT("Unexpected command!!!")));
}
} while (com != CMD_STOP);
return S_FALSE;
}

View file

@ -0,0 +1,172 @@
//------------------------------------------------------------------------------
// File: Source.h
//
// Desc: DirectShow base classes - defines classes to simplify creation of
// ActiveX source filters that support continuous generation of data.
// No support is provided for IMediaControl or IMediaPosition.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
//
// Derive your source filter from CSource.
// During construction either:
// Create some CSourceStream objects to manage your pins
// Provide the user with a means of doing so eg, an IPersistFile interface.
//
// CSource provides:
// IBaseFilter interface management
// IMediaFilter interface management, via CBaseFilter
// Pin counting for CBaseFilter
//
// Derive a class from CSourceStream to manage your output pin types
// Implement GetMediaType/1 to return the type you support. If you support multiple
// types then overide GetMediaType/3, CheckMediaType and GetMediaTypeCount.
// Implement Fillbuffer() to put data into one buffer.
//
// CSourceStream provides:
// IPin management via CBaseOutputPin
// Worker thread management
#ifndef __CSOURCE__
#define __CSOURCE__
class CSourceStream; // The class that will handle each pin
//
// CSource
//
// Override construction to provide a means of creating
// CSourceStream derived objects - ie a way of creating pins.
class CSource : public CBaseFilter {
public:
CSource(__in_opt LPCTSTR pName, __inout_opt LPUNKNOWN lpunk, CLSID clsid, __inout HRESULT *phr);
CSource(__in_opt LPCTSTR pName, __inout_opt LPUNKNOWN lpunk, CLSID clsid);
#ifdef UNICODE
CSource(__in_opt LPCSTR pName, __inout_opt LPUNKNOWN lpunk, CLSID clsid, __inout HRESULT *phr);
CSource(__in_opt LPCSTR pName, __inout_opt LPUNKNOWN lpunk, CLSID clsid);
#endif
~CSource();
int GetPinCount(void);
CBasePin *GetPin(int n);
// -- Utilities --
CCritSec* pStateLock(void) { return &m_cStateLock; } // provide our critical section
HRESULT AddPin(__in CSourceStream *);
HRESULT RemovePin(__in CSourceStream *);
STDMETHODIMP FindPin(
LPCWSTR Id,
__deref_out IPin ** ppPin
);
int FindPinNumber(__in IPin *iPin);
protected:
int m_iPins; // The number of pins on this filter. Updated by CSourceStream
// constructors & destructors.
CSourceStream **m_paStreams; // the pins on this filter.
CCritSec m_cStateLock; // Lock this to serialize function accesses to the filter state
};
//
// CSourceStream
//
// Use this class to manage a stream of data that comes from a
// pin.
// Uses a worker thread to put data on the pin.
class CSourceStream : public CAMThread, public CBaseOutputPin {
public:
CSourceStream(__in_opt LPCTSTR pObjectName,
__inout HRESULT *phr,
__inout CSource *pms,
__in_opt LPCWSTR pName);
#ifdef UNICODE
CSourceStream(__in_opt LPCSTR pObjectName,
__inout HRESULT *phr,
__inout CSource *pms,
__in_opt LPCWSTR pName);
#endif
virtual ~CSourceStream(void); // virtual destructor ensures derived class destructors are called too.
protected:
CSource *m_pFilter; // The parent of this stream
// *
// * Data Source
// *
// * The following three functions: FillBuffer, OnThreadCreate/Destroy, are
// * called from within the ThreadProc. They are used in the creation of
// * the media samples this pin will provide
// *
// Override this to provide the worker thread a means
// of processing a buffer
virtual HRESULT FillBuffer(IMediaSample *pSamp) PURE;
// Called as the thread is created/destroyed - use to perform
// jobs such as start/stop streaming mode
// If OnThreadCreate returns an error the thread will exit.
virtual HRESULT OnThreadCreate(void) {return NOERROR;};
virtual HRESULT OnThreadDestroy(void) {return NOERROR;};
virtual HRESULT OnThreadStartPlay(void) {return NOERROR;};
// *
// * Worker Thread
// *
HRESULT Active(void); // Starts up the worker thread
HRESULT Inactive(void); // Exits the worker thread.
public:
// thread commands
enum Command {CMD_INIT, CMD_PAUSE, CMD_RUN, CMD_STOP, CMD_EXIT};
HRESULT Init(void) { return CallWorker(CMD_INIT); }
HRESULT Exit(void) { return CallWorker(CMD_EXIT); }
HRESULT Run(void) { return CallWorker(CMD_RUN); }
HRESULT Pause(void) { return CallWorker(CMD_PAUSE); }
HRESULT Stop(void) { return CallWorker(CMD_STOP); }
protected:
Command GetRequest(void) { return (Command) CAMThread::GetRequest(); }
BOOL CheckRequest(Command *pCom) { return CAMThread::CheckRequest( (DWORD *) pCom); }
// override these if you want to add thread commands
virtual DWORD ThreadProc(void); // the thread function
virtual HRESULT DoBufferProcessingLoop(void); // the loop executed whilst running
// *
// * AM_MEDIA_TYPE support
// *
// If you support more than one media type then override these 2 functions
virtual HRESULT CheckMediaType(const CMediaType *pMediaType);
virtual HRESULT GetMediaType(int iPosition, __inout CMediaType *pMediaType); // List pos. 0-n
// If you support only one type then override this fn.
// This will only be called by the default implementations
// of CheckMediaType and GetMediaType(int, CMediaType*)
// You must override this fn. or the above 2!
virtual HRESULT GetMediaType(__inout CMediaType *pMediaType) {return E_UNEXPECTED;}
STDMETHODIMP QueryId(
__deref_out LPWSTR * Id
);
};
#endif // __CSOURCE__

View file

@ -0,0 +1,202 @@
//------------------------------------------------------------------------------
// File: Streams.h
//
// Desc: DirectShow base classes - defines overall streams architecture.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef __STREAMS__
#define __STREAMS__
#ifdef _MSC_VER
// disable some level-4 warnings, use #pragma warning(enable:###) to re-enable
#pragma warning(disable:4100) // warning C4100: unreferenced formal parameter
#pragma warning(disable:4201) // warning C4201: nonstandard extension used : nameless struct/union
#pragma warning(disable:4511) // warning C4511: copy constructor could not be generated
#pragma warning(disable:4512) // warning C4512: assignment operator could not be generated
#pragma warning(disable:4514) // warning C4514: "unreferenced inline function has been removed"
#if _MSC_VER>=1100
#define AM_NOVTABLE __declspec(novtable)
#else
#define AM_NOVTABLE
#endif
#endif // MSC_VER
// Because of differences between Visual C++ and older Microsoft SDKs,
// you may have defined _DEBUG without defining DEBUG. This logic
// ensures that both will be set if Visual C++ sets _DEBUG.
#ifdef _DEBUG
#ifndef DEBUG
#define DEBUG
#endif
#endif
#include <windows.h>
#include <windowsx.h>
#include <olectl.h>
#include <ddraw.h>
#include <mmsystem.h>
#ifndef NUMELMS
#if _WIN32_WINNT < 0x0600
#define NUMELMS(aa) (sizeof(aa)/sizeof((aa)[0]))
#else
#define NUMELMS(aa) ARRAYSIZE(aa)
#endif
#endif
///////////////////////////////////////////////////////////////////////////
// The following definitions come from the Platform SDK and are required if
// the applicaiton is being compiled with the headers from Visual C++ 6.0.
/////////////////////////////////////////////////// ////////////////////////
#ifndef InterlockedExchangePointer
#define InterlockedExchangePointer(Target, Value) \
(PVOID)InterlockedExchange((PLONG)(Target), (LONG)(Value))
#endif
#ifndef _WAVEFORMATEXTENSIBLE_
#define _WAVEFORMATEXTENSIBLE_
typedef struct {
WAVEFORMATEX Format;
union {
WORD wValidBitsPerSample; /* bits of precision */
WORD wSamplesPerBlock; /* valid if wBitsPerSample==0 */
WORD wReserved; /* If neither applies, set to zero. */
} Samples;
DWORD dwChannelMask; /* which channels are */
/* present in stream */
GUID SubFormat;
} WAVEFORMATEXTENSIBLE, *PWAVEFORMATEXTENSIBLE;
#endif // !_WAVEFORMATEXTENSIBLE_
#if !defined(WAVE_FORMAT_EXTENSIBLE)
#define WAVE_FORMAT_EXTENSIBLE 0xFFFE
#endif // !defined(WAVE_FORMAT_EXTENSIBLE)
#ifndef GetWindowLongPtr
#define GetWindowLongPtrA GetWindowLongA
#define GetWindowLongPtrW GetWindowLongW
#ifdef UNICODE
#define GetWindowLongPtr GetWindowLongPtrW
#else
#define GetWindowLongPtr GetWindowLongPtrA
#endif // !UNICODE
#endif // !GetWindowLongPtr
#ifndef SetWindowLongPtr
#define SetWindowLongPtrA SetWindowLongA
#define SetWindowLongPtrW SetWindowLongW
#ifdef UNICODE
#define SetWindowLongPtr SetWindowLongPtrW
#else
#define SetWindowLongPtr SetWindowLongPtrA
#endif // !UNICODE
#endif // !SetWindowLongPtr
#ifndef GWLP_WNDPROC
#define GWLP_WNDPROC (-4)
#endif
#ifndef GWLP_HINSTANCE
#define GWLP_HINSTANCE (-6)
#endif
#ifndef GWLP_HWNDPARENT
#define GWLP_HWNDPARENT (-8)
#endif
#ifndef GWLP_USERDATA
#define GWLP_USERDATA (-21)
#endif
#ifndef GWLP_ID
#define GWLP_ID (-12)
#endif
#ifndef DWLP_MSGRESULT
#define DWLP_MSGRESULT 0
#endif
#ifndef DWLP_DLGPROC
#define DWLP_DLGPROC DWLP_MSGRESULT + sizeof(LRESULT)
#endif
#ifndef DWLP_USER
#define DWLP_USER DWLP_DLGPROC + sizeof(DLGPROC)
#endif
#pragma warning(push)
#pragma warning(disable: 4312 4244)
// _GetWindowLongPtr
// Templated version of GetWindowLongPtr, to suppress spurious compiler warning.
template <class T>
T _GetWindowLongPtr(HWND hwnd, int nIndex)
{
return (T)GetWindowLongPtr(hwnd, nIndex);
}
// _SetWindowLongPtr
// Templated version of SetWindowLongPtr, to suppress spurious compiler warning.
template <class T>
LONG_PTR _SetWindowLongPtr(HWND hwnd, int nIndex, T p)
{
return SetWindowLongPtr(hwnd, nIndex, (LONG_PTR)p);
}
#pragma warning(pop)
///////////////////////////////////////////////////////////////////////////
// End Platform SDK definitions
///////////////////////////////////////////////////////////////////////////
#include <strmif.h> // Generated IDL header file for streams interfaces
#include <intsafe.h> // required by amvideo.h
#include <reftime.h> // Helper class for REFERENCE_TIME management
#include <wxdebug.h> // Debug support for logging and ASSERTs
#include <amvideo.h> // ActiveMovie video interfaces and definitions
//include amaudio.h explicitly if you need it. it requires the DX SDK.
//#include <amaudio.h> // ActiveMovie audio interfaces and definitions
#include <wxutil.h> // General helper classes for threads etc
#include <combase.h> // Base COM classes to support IUnknown
#include <dllsetup.h> // Filter registration support functions
#include <measure.h> // Performance measurement
#include <comlite.h> // Light weight com function prototypes
#include <cache.h> // Simple cache container class
#include <wxlist.h> // Non MFC generic list class
#include <msgthrd.h> // CMsgThread
#include <mtype.h> // Helper class for managing media types
#include <fourcc.h> // conversions between FOURCCs and GUIDs
#include <control.h> // generated from control.odl
#include <ctlutil.h> // control interface utility classes
#include <evcode.h> // event code definitions
#include <amfilter.h> // Main streams architecture class hierachy
#include <transfrm.h> // Generic transform filter
#include <transip.h> // Generic transform-in-place filter
#include <uuids.h> // declaration of type GUIDs and well-known clsids
#include <source.h> // Generic source filter
#include <outputq.h> // Output pin queueing
#include <errors.h> // HRESULT status and error definitions
#include <renbase.h> // Base class for writing ActiveX renderers
#include <winutil.h> // Helps with filters that manage windows
#include <winctrl.h> // Implements the IVideoWindow interface
#include <videoctl.h> // Specifically video related classes
#include <refclock.h> // Base clock class
#include <sysclock.h> // System clock
#include <pstream.h> // IPersistStream helper class
#include <vtrans.h> // Video Transform Filter base class
#include <amextra.h>
#include <cprop.h> // Base property page class
#include <strmctl.h> // IAMStreamControl support
#include <edevdefs.h> // External device control interface defines
#include <audevcod.h> // audio filter device error event codes
#else
#ifdef DEBUG
#pragma message("STREAMS.H included TWICE")
#endif
#endif // __STREAMS__

View file

@ -0,0 +1,402 @@
//------------------------------------------------------------------------------
// File: StrmCtl.cpp
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1996-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#include <strmctl.h>
CBaseStreamControl::CBaseStreamControl(__inout HRESULT *phr)
: m_StreamState(STREAM_FLOWING)
, m_StreamStateOnStop(STREAM_FLOWING) // means no pending stop
, m_tStartTime(MAX_TIME)
, m_tStopTime(MAX_TIME)
, m_StreamEvent(FALSE, phr)
, m_dwStartCookie(0)
, m_dwStopCookie(0)
, m_pRefClock(NULL)
, m_FilterState(State_Stopped)
, m_bIsFlushing(FALSE)
, m_bStopSendExtra(FALSE)
{}
CBaseStreamControl::~CBaseStreamControl()
{
// Make sure we release the clock.
SetSyncSource(NULL);
return;
}
STDMETHODIMP CBaseStreamControl::StopAt(const REFERENCE_TIME * ptStop, BOOL bSendExtra, DWORD dwCookie)
{
CAutoLock lck(&m_CritSec);
m_bStopSendExtra = FALSE; // reset
m_bStopExtraSent = FALSE;
if (ptStop)
{
if (*ptStop == MAX_TIME)
{
DbgLog((LOG_TRACE,2,TEXT("StopAt: Cancel stop")));
CancelStop();
// If there's now a command to start in the future, we assume
// they want to be stopped when the graph is first run
if (m_FilterState == State_Stopped && m_tStartTime < MAX_TIME) {
m_StreamState = STREAM_DISCARDING;
DbgLog((LOG_TRACE,2,TEXT("graph will begin by DISCARDING")));
}
return NOERROR;
}
DbgLog((LOG_TRACE,2,TEXT("StopAt: %dms extra=%d"),
(int)(*ptStop/10000), bSendExtra));
// if the first command is to stop in the future, then we assume they
// want to be started when the graph is first run
if (m_FilterState == State_Stopped && m_tStartTime > *ptStop) {
m_StreamState = STREAM_FLOWING;
DbgLog((LOG_TRACE,2,TEXT("graph will begin by FLOWING")));
}
m_bStopSendExtra = bSendExtra;
m_tStopTime = *ptStop;
m_dwStopCookie = dwCookie;
m_StreamStateOnStop = STREAM_DISCARDING;
}
else
{
DbgLog((LOG_TRACE,2,TEXT("StopAt: now")));
// sending an extra frame when told to stop now would mess people up
m_bStopSendExtra = FALSE;
m_tStopTime = MAX_TIME;
m_dwStopCookie = 0;
m_StreamState = STREAM_DISCARDING;
m_StreamStateOnStop = STREAM_FLOWING; // no pending stop
}
// we might change our mind what to do with a sample we're blocking
m_StreamEvent.Set();
return NOERROR;
}
STDMETHODIMP CBaseStreamControl::StartAt
( const REFERENCE_TIME *ptStart, DWORD dwCookie )
{
CAutoLock lck(&m_CritSec);
if (ptStart)
{
if (*ptStart == MAX_TIME)
{
DbgLog((LOG_TRACE,2,TEXT("StartAt: Cancel start")));
CancelStart();
// If there's now a command to stop in the future, we assume
// they want to be started when the graph is first run
if (m_FilterState == State_Stopped && m_tStopTime < MAX_TIME) {
DbgLog((LOG_TRACE,2,TEXT("graph will begin by FLOWING")));
m_StreamState = STREAM_FLOWING;
}
return NOERROR;
}
DbgLog((LOG_TRACE,2,TEXT("StartAt: %dms"), (int)(*ptStart/10000)));
// if the first command is to start in the future, then we assume they
// want to be stopped when the graph is first run
if (m_FilterState == State_Stopped && m_tStopTime >= *ptStart) {
DbgLog((LOG_TRACE,2,TEXT("graph will begin by DISCARDING")));
m_StreamState = STREAM_DISCARDING;
}
m_tStartTime = *ptStart;
m_dwStartCookie = dwCookie;
// if (m_tStopTime == m_tStartTime) CancelStop();
}
else
{
DbgLog((LOG_TRACE,2,TEXT("StartAt: now")));
m_tStartTime = MAX_TIME;
m_dwStartCookie = 0;
m_StreamState = STREAM_FLOWING;
}
// we might change our mind what to do with a sample we're blocking
m_StreamEvent.Set();
return NOERROR;
}
// Retrieve information about current settings
STDMETHODIMP CBaseStreamControl::GetInfo(__out AM_STREAM_INFO *pInfo)
{
if (pInfo == NULL)
return E_POINTER;
pInfo->tStart = m_tStartTime;
pInfo->tStop = m_tStopTime;
pInfo->dwStartCookie = m_dwStartCookie;
pInfo->dwStopCookie = m_dwStopCookie;
pInfo->dwFlags = m_bStopSendExtra ? AM_STREAM_INFO_STOP_SEND_EXTRA : 0;
pInfo->dwFlags |= m_tStartTime == MAX_TIME ? 0 : AM_STREAM_INFO_START_DEFINED;
pInfo->dwFlags |= m_tStopTime == MAX_TIME ? 0 : AM_STREAM_INFO_STOP_DEFINED;
switch (m_StreamState) {
default:
DbgBreak("Invalid stream state");
case STREAM_FLOWING:
break;
case STREAM_DISCARDING:
pInfo->dwFlags |= AM_STREAM_INFO_DISCARDING;
break;
}
return S_OK;
}
void CBaseStreamControl::ExecuteStop()
{
ASSERT(CritCheckIn(&m_CritSec));
m_StreamState = m_StreamStateOnStop;
if (m_dwStopCookie && m_pSink) {
DbgLog((LOG_TRACE,2,TEXT("*sending EC_STREAM_CONTROL_STOPPED (%d)"),
m_dwStopCookie));
m_pSink->Notify(EC_STREAM_CONTROL_STOPPED, (LONG_PTR)this, m_dwStopCookie);
}
CancelStop(); // This will do the tidy up
}
void CBaseStreamControl::ExecuteStart()
{
ASSERT(CritCheckIn(&m_CritSec));
m_StreamState = STREAM_FLOWING;
if (m_dwStartCookie) {
DbgLog((LOG_TRACE,2,TEXT("*sending EC_STREAM_CONTROL_STARTED (%d)"),
m_dwStartCookie));
m_pSink->Notify(EC_STREAM_CONTROL_STARTED, (LONG_PTR)this, m_dwStartCookie);
}
CancelStart(); // This will do the tidy up
}
void CBaseStreamControl::CancelStop()
{
ASSERT(CritCheckIn(&m_CritSec));
m_tStopTime = MAX_TIME;
m_dwStopCookie = 0;
m_StreamStateOnStop = STREAM_FLOWING;
}
void CBaseStreamControl::CancelStart()
{
ASSERT(CritCheckIn(&m_CritSec));
m_tStartTime = MAX_TIME;
m_dwStartCookie = 0;
}
// This guy will return one of the three StreamControlState's. Here's what the caller
// should do for each one:
//
// STREAM_FLOWING: Proceed as usual (render or pass the sample on)
// STREAM_DISCARDING: Calculate the time 'til *pSampleStart and wait that long
// for the event handle (GetStreamEventHandle()). If the
// wait expires, throw the sample away. If the event
// fires, call me back, I've changed my mind.
// I use pSampleStart (not Stop) so that live sources don't
// block for the duration of their samples, since the clock
// will always read approximately pSampleStart when called
// All through this code, you'll notice the following rules:
// - When start and stop time are the same, it's as if start was first
// - An event is considered inside the sample when it's >= sample start time
// but < sample stop time
// - if any part of the sample is supposed to be sent, we'll send the whole
// thing since we don't break it into smaller pieces
// - If we skip over a start or stop without doing it, we still signal the event
// and reset ourselves in case somebody's waiting for the event, and to make
// sure we notice that the event is past and should be forgotten
// Here are the 19 cases that have to be handled (x=start o=stop <-->=sample):
//
// 1. xo<--> start then stop
// 2. ox<--> stop then start
// 3. x<o-> start
// 4. o<x-> stop then start
// 5. x<-->o start
// 6. o<-->x stop
// 7. <x->o start
// 8. <o->x no change
// 9. <xo> start
// 10. <ox> stop then start
// 11. <-->xo no change
// 12. <-->ox no change
// 13. x<--> start
// 14. <x-> start
// 15. <-->x no change
// 16. o<--> stop
// 17. <o-> no change
// 18. <-->o no change
// 19. <--> no change
enum CBaseStreamControl::StreamControlState CBaseStreamControl::CheckSampleTimes
( __in const REFERENCE_TIME * pSampleStart, __in const REFERENCE_TIME * pSampleStop )
{
CAutoLock lck(&m_CritSec);
ASSERT(!m_bIsFlushing);
ASSERT(pSampleStart && pSampleStop);
// Don't ask me how I came up with the code below to handle all 19 cases
// - DannyMi
if (m_tStopTime >= *pSampleStart)
{
if (m_tStartTime >= *pSampleStop)
return m_StreamState; // cases 8 11 12 15 17 18 19
if (m_tStopTime < m_tStartTime)
ExecuteStop(); // case 10
ExecuteStart(); // cases 3 5 7 9 13 14
return m_StreamState;
}
if (m_tStartTime >= *pSampleStop)
{
ExecuteStop(); // cases 6 16
return m_StreamState;
}
if (m_tStartTime <= m_tStopTime)
{
ExecuteStart();
ExecuteStop();
return m_StreamState; // case 1
}
else
{
ExecuteStop();
ExecuteStart();
return m_StreamState; // cases 2 4
}
}
enum CBaseStreamControl::StreamControlState CBaseStreamControl::CheckStreamState( IMediaSample * pSample )
{
REFERENCE_TIME rtBufferStart, rtBufferStop;
const BOOL bNoBufferTimes =
pSample == NULL ||
FAILED(pSample->GetTime(&rtBufferStart, &rtBufferStop));
StreamControlState state;
LONG lWait;
do
{
// something has to break out of the blocking
if (m_bIsFlushing || m_FilterState == State_Stopped)
return STREAM_DISCARDING;
if (bNoBufferTimes) {
// Can't do anything until we get a time stamp
state = m_StreamState;
break;
} else {
state = CheckSampleTimes( &rtBufferStart, &rtBufferStop );
if (state == STREAM_FLOWING)
break;
// we aren't supposed to send this, but we've been
// told to send one more than we were supposed to
// (and the stop isn't still pending and we're streaming)
if (m_bStopSendExtra && !m_bStopExtraSent &&
m_tStopTime == MAX_TIME &&
m_FilterState != State_Stopped) {
m_bStopExtraSent = TRUE;
DbgLog((LOG_TRACE,2,TEXT("%d sending an EXTRA frame"),
m_dwStopCookie));
state = STREAM_FLOWING;
break;
}
}
// We're in discarding mode
// If we've no clock, discard as fast as we can
if (!m_pRefClock) {
break;
// If we're paused, we can't discard in a timely manner because
// there's no such thing as stream times. We must block until
// we run or stop, or we'll end up throwing the whole stream away
// as quickly as possible
} else if (m_FilterState == State_Paused) {
lWait = INFINITE;
} else {
// wait until it's time for the sample until we say "discard"
// ("discard in a timely fashion")
REFERENCE_TIME rtNow;
EXECUTE_ASSERT(SUCCEEDED(m_pRefClock->GetTime(&rtNow)));
rtNow -= m_tRunStart; // Into relative ref-time
lWait = LONG((rtBufferStart - rtNow)/10000); // 100ns -> ms
if (lWait < 10) break; // Not worth waiting - discard early
}
} while(WaitForSingleObject(GetStreamEventHandle(), lWait) != WAIT_TIMEOUT);
return state;
}
void CBaseStreamControl::NotifyFilterState( FILTER_STATE new_state, REFERENCE_TIME tStart )
{
CAutoLock lck(&m_CritSec);
// or we will get confused
if (m_FilterState == new_state)
return;
switch (new_state)
{
case State_Stopped:
DbgLog((LOG_TRACE,2,TEXT("Filter is STOPPED")));
// execute any pending starts and stops in the right order,
// to make sure all notifications get sent, and we end up
// in the right state to begin next time (??? why not?)
if (m_tStartTime != MAX_TIME && m_tStopTime == MAX_TIME) {
ExecuteStart();
} else if (m_tStopTime != MAX_TIME && m_tStartTime == MAX_TIME) {
ExecuteStop();
} else if (m_tStopTime != MAX_TIME && m_tStartTime != MAX_TIME) {
if (m_tStartTime <= m_tStopTime) {
ExecuteStart();
ExecuteStop();
} else {
ExecuteStop();
ExecuteStart();
}
}
// always start off flowing when the graph starts streaming
// unless told otherwise
m_StreamState = STREAM_FLOWING;
m_FilterState = new_state;
break;
case State_Running:
DbgLog((LOG_TRACE,2,TEXT("Filter is RUNNING")));
m_tRunStart = tStart;
// fall-through
default: // case State_Paused:
m_FilterState = new_state;
}
// unblock!
m_StreamEvent.Set();
}
void CBaseStreamControl::Flushing(BOOL bInProgress)
{
CAutoLock lck(&m_CritSec);
m_bIsFlushing = bInProgress;
m_StreamEvent.Set();
}

View file

@ -0,0 +1,157 @@
//------------------------------------------------------------------------------
// File: StrmCtl.h
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1996-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef __strmctl_h__
#define __strmctl_h__
class CBaseStreamControl : public IAMStreamControl
{
public:
// Used by the implementation
enum StreamControlState
{ STREAM_FLOWING = 0x1000,
STREAM_DISCARDING
};
private:
enum StreamControlState m_StreamState; // Current stream state
enum StreamControlState m_StreamStateOnStop; // State after next stop
// (i.e.Blocking or Discarding)
REFERENCE_TIME m_tStartTime; // MAX_TIME implies none
REFERENCE_TIME m_tStopTime; // MAX_TIME implies none
DWORD m_dwStartCookie; // Cookie for notification to app
DWORD m_dwStopCookie; // Cookie for notification to app
volatile BOOL m_bIsFlushing; // No optimization pls!
volatile BOOL m_bStopSendExtra; // bSendExtra was set
volatile BOOL m_bStopExtraSent; // the extra one was sent
CCritSec m_CritSec; // CritSec to guard above attributes
// Event to fire when we can come
// out of blocking, or to come out of waiting
// to discard if we change our minds.
//
CAMEvent m_StreamEvent;
// All of these methods execute immediately. Helpers for others.
//
void ExecuteStop();
void ExecuteStart();
void CancelStop();
void CancelStart();
// Some things we need to be told by our owning filter
// Your pin must also expose IAMStreamControl when QI'd for it!
//
IReferenceClock * m_pRefClock; // Need it to set advises
// Filter must tell us via
// SetSyncSource
IMediaEventSink * m_pSink; // Event sink
// Filter must tell us after it
// creates it in JoinFilterGraph()
FILTER_STATE m_FilterState; // Just need it!
// Filter must tell us via
// NotifyFilterState
REFERENCE_TIME m_tRunStart; // Per the Run call to the filter
// This guy will return one of the three StreamControlState's. Here's what
// the caller should do for each one:
//
// STREAM_FLOWING: Proceed as usual (render or pass the sample on)
// STREAM_DISCARDING: Calculate the time 'til *pSampleStop and wait
// that long for the event handle
// (GetStreamEventHandle()). If the wait
// expires, throw the sample away. If the event
// fires, call me back - I've changed my mind.
//
enum StreamControlState CheckSampleTimes( __in const REFERENCE_TIME * pSampleStart,
__in const REFERENCE_TIME * pSampleStop );
public:
// You don't have to tell us much when we're created, but there are other
// obligations that must be met. See SetSyncSource & NotifyFilterState
// below.
//
CBaseStreamControl(__inout_opt HRESULT *phr = NULL);
~CBaseStreamControl();
// If you want this class to work properly, there are thing you need to
// (keep) telling it. Filters with pins that use this class
// should ensure that they pass through to this method any calls they
// receive on their SetSyncSource.
// We need a clock to see what time it is. This is for the
// "discard in a timely fashion" logic. If we discard everything as
// quick as possible, a whole 60 minute file could get discarded in the
// first 10 seconds, and if somebody wants to turn streaming on at 30
// minutes into the file, and they make the call more than a few seconds
// after the graph is run, it may be too late!
// So we hold every sample until it's time has gone, then we discard it.
// The filter should call this when it gets a SetSyncSource
//
void SetSyncSource( IReferenceClock * pRefClock )
{
CAutoLock lck(&m_CritSec);
if (m_pRefClock) m_pRefClock->Release();
m_pRefClock = pRefClock;
if (m_pRefClock) m_pRefClock->AddRef();
}
// Set event sink for notifications
// The filter should call this in its JoinFilterGraph after it creates the
// IMediaEventSink
//
void SetFilterGraph( IMediaEventSink *pSink ) {
m_pSink = pSink;
}
// Since we schedule in stream time, we need the tStart and must track the
// state of our owning filter.
// The app should call this ever state change
//
void NotifyFilterState( FILTER_STATE new_state, REFERENCE_TIME tStart = 0 );
// Filter should call Flushing(TRUE) in BeginFlush,
// and Flushing(FALSE) in EndFlush.
//
void Flushing( BOOL bInProgress );
// The two main methods of IAMStreamControl
// Class adds default values suitable for immediate
// muting and unmuting of the stream.
STDMETHODIMP StopAt( const REFERENCE_TIME * ptStop = NULL,
BOOL bSendExtra = FALSE,
DWORD dwCookie = 0 );
STDMETHODIMP StartAt( const REFERENCE_TIME * ptStart = NULL,
DWORD dwCookie = 0 );
STDMETHODIMP GetInfo( __out AM_STREAM_INFO *pInfo);
// Helper function for pin's receive method. Call this with
// the sample and we'll tell you what to do with it. We'll do a
// WaitForSingleObject within this call if one is required. This is
// a "What should I do with this sample?" kind of call. We'll tell the
// caller to either flow it or discard it.
// If pSample is NULL we evaluate based on the current state
// settings
enum StreamControlState CheckStreamState( IMediaSample * pSample );
private:
// These don't require locking, but we are relying on the fact that
// m_StreamState can be retrieved with integrity, and is a snap shot that
// may have just been, or may be just about to be, changed.
HANDLE GetStreamEventHandle() const { return m_StreamEvent; }
enum StreamControlState GetStreamState() const { return m_StreamState; }
BOOL IsStreaming() const { return m_StreamState == STREAM_FLOWING; }
};
#endif

View file

@ -0,0 +1,74 @@
//------------------------------------------------------------------------------
// File: SysClock.cpp
//
// Desc: DirectShow base classes - implements a system clock based on
// IReferenceClock.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#include <limits.h>
#ifdef FILTER_DLL
/* List of class IDs and creator functions for the class factory. This
provides the link between the OLE entry point in the DLL and an object
being created. The class factory will call the static CreateInstance
function when it is asked to create a CLSID_SystemClock object */
CFactoryTemplate g_Templates[1] = {
{&CLSID_SystemClock, CSystemClock::CreateInstance}
};
int g_cTemplates = sizeof(g_Templates) / sizeof(g_Templates[0]);
#endif
/* This goes in the factory template table to create new instances */
CUnknown * WINAPI CSystemClock::CreateInstance(__inout_opt LPUNKNOWN pUnk, __inout HRESULT *phr)
{
return new CSystemClock(NAME("System reference clock"),pUnk, phr);
}
CSystemClock::CSystemClock(__in_opt LPCTSTR pName, __inout_opt LPUNKNOWN pUnk, __inout HRESULT *phr) :
CBaseReferenceClock(pName, pUnk, phr)
{
}
STDMETHODIMP CSystemClock::NonDelegatingQueryInterface(
REFIID riid,
__deref_out void ** ppv)
{
if (riid == IID_IPersist)
{
return GetInterface(static_cast<IPersist *>(this), ppv);
}
else if (riid == IID_IAMClockAdjust)
{
return GetInterface(static_cast<IAMClockAdjust *>(this), ppv);
}
else
{
return CBaseReferenceClock::NonDelegatingQueryInterface(riid, ppv);
}
}
/* Return the clock's clsid */
STDMETHODIMP
CSystemClock::GetClassID(__out CLSID *pClsID)
{
CheckPointer(pClsID,E_POINTER);
ValidateReadWritePtr(pClsID,sizeof(CLSID));
*pClsID = CLSID_SystemClock;
return NOERROR;
}
STDMETHODIMP
CSystemClock::SetClockDelta(REFERENCE_TIME rtDelta)
{
return SetTimeDelta(rtDelta);
}

View file

@ -0,0 +1,39 @@
//------------------------------------------------------------------------------
// File: SysClock.h
//
// Desc: DirectShow base classes - defines a system clock implementation of
// IReferenceClock.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef __SYSTEMCLOCK__
#define __SYSTEMCLOCK__
//
// Base clock. Uses timeGetTime ONLY
// Uses most of the code in the base reference clock.
// Provides GetTime
//
class CSystemClock : public CBaseReferenceClock, public IAMClockAdjust, public IPersist
{
public:
// We must be able to create an instance of ourselves
static CUnknown * WINAPI CreateInstance(__inout_opt LPUNKNOWN pUnk, __inout HRESULT *phr);
CSystemClock(__in_opt LPCTSTR pName, __inout_opt LPUNKNOWN pUnk, __inout HRESULT *phr);
DECLARE_IUNKNOWN
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid, __deref_out void ** ppv);
// Yield up our class id so that we can be persisted
// Implement required Ipersist method
STDMETHODIMP GetClassID(__out CLSID *pClsID);
// IAMClockAdjust methods
STDMETHODIMP SetClockDelta(REFERENCE_TIME rtDelta);
}; //CSystemClock
#endif /* __SYSTEMCLOCK__ */

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,304 @@
//------------------------------------------------------------------------------
// File: Transfrm.h
//
// Desc: DirectShow base classes - defines classes from which simple
// transform codecs may be derived.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
// It assumes the codec has one input and one output stream, and has no
// interest in memory management, interface negotiation or anything else.
//
// derive your class from this, and supply Transform and the media type/format
// negotiation functions. Implement that class, compile and link and
// you're done.
#ifndef __TRANSFRM__
#define __TRANSFRM__
// ======================================================================
// This is the com object that represents a simple transform filter. It
// supports IBaseFilter, IMediaFilter and two pins through nested interfaces
// ======================================================================
class CTransformFilter;
// ==================================================
// Implements the input pin
// ==================================================
class CTransformInputPin : public CBaseInputPin
{
friend class CTransformFilter;
protected:
CTransformFilter *m_pTransformFilter;
public:
CTransformInputPin(
__in_opt LPCTSTR pObjectName,
__inout CTransformFilter *pTransformFilter,
__inout HRESULT * phr,
__in_opt LPCWSTR pName);
#ifdef UNICODE
CTransformInputPin(
__in_opt LPCSTR pObjectName,
__inout CTransformFilter *pTransformFilter,
__inout HRESULT * phr,
__in_opt LPCWSTR pName);
#endif
STDMETHODIMP QueryId(__deref_out LPWSTR * Id)
{
return AMGetWideString(L"In", Id);
}
// Grab and release extra interfaces if required
HRESULT CheckConnect(IPin *pPin);
HRESULT BreakConnect();
HRESULT CompleteConnect(IPin *pReceivePin);
// check that we can support this output type
HRESULT CheckMediaType(const CMediaType* mtIn);
// set the connection media type
HRESULT SetMediaType(const CMediaType* mt);
// --- IMemInputPin -----
// here's the next block of data from the stream.
// AddRef it yourself if you need to hold it beyond the end
// of this call.
STDMETHODIMP Receive(IMediaSample * pSample);
// provide EndOfStream that passes straight downstream
// (there is no queued data)
STDMETHODIMP EndOfStream(void);
// passes it to CTransformFilter::BeginFlush
STDMETHODIMP BeginFlush(void);
// passes it to CTransformFilter::EndFlush
STDMETHODIMP EndFlush(void);
STDMETHODIMP NewSegment(
REFERENCE_TIME tStart,
REFERENCE_TIME tStop,
double dRate);
// Check if it's OK to process samples
virtual HRESULT CheckStreaming();
// Media type
public:
CMediaType& CurrentMediaType() { return m_mt; };
};
// ==================================================
// Implements the output pin
// ==================================================
class CTransformOutputPin : public CBaseOutputPin
{
friend class CTransformFilter;
protected:
CTransformFilter *m_pTransformFilter;
public:
// implement IMediaPosition by passing upstream
IUnknown * m_pPosition;
CTransformOutputPin(
__in_opt LPCTSTR pObjectName,
__inout CTransformFilter *pTransformFilter,
__inout HRESULT * phr,
__in_opt LPCWSTR pName);
#ifdef UNICODE
CTransformOutputPin(
__in_opt LPCSTR pObjectName,
__inout CTransformFilter *pTransformFilter,
__inout HRESULT * phr,
__in_opt LPCWSTR pName);
#endif
~CTransformOutputPin();
// override to expose IMediaPosition
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid, __deref_out void **ppv);
// --- CBaseOutputPin ------------
STDMETHODIMP QueryId(__deref_out LPWSTR * Id)
{
return AMGetWideString(L"Out", Id);
}
// Grab and release extra interfaces if required
HRESULT CheckConnect(IPin *pPin);
HRESULT BreakConnect();
HRESULT CompleteConnect(IPin *pReceivePin);
// check that we can support this output type
HRESULT CheckMediaType(const CMediaType* mtOut);
// set the connection media type
HRESULT SetMediaType(const CMediaType *pmt);
// called from CBaseOutputPin during connection to ask for
// the count and size of buffers we need.
HRESULT DecideBufferSize(
IMemAllocator * pAlloc,
__inout ALLOCATOR_PROPERTIES *pProp);
// returns the preferred formats for a pin
HRESULT GetMediaType(int iPosition, __inout CMediaType *pMediaType);
// inherited from IQualityControl via CBasePin
STDMETHODIMP Notify(IBaseFilter * pSender, Quality q);
// Media type
public:
CMediaType& CurrentMediaType() { return m_mt; };
};
class AM_NOVTABLE CTransformFilter : public CBaseFilter
{
public:
// map getpin/getpincount for base enum of pins to owner
// override this to return more specialised pin objects
virtual int GetPinCount();
virtual CBasePin * GetPin(int n);
STDMETHODIMP FindPin(LPCWSTR Id, __deref_out IPin **ppPin);
// override state changes to allow derived transform filter
// to control streaming start/stop
STDMETHODIMP Stop();
STDMETHODIMP Pause();
public:
CTransformFilter(__in_opt LPCTSTR , __inout_opt LPUNKNOWN, REFCLSID clsid);
#ifdef UNICODE
CTransformFilter(__in_opt LPCSTR , __inout_opt LPUNKNOWN, REFCLSID clsid);
#endif
~CTransformFilter();
// =================================================================
// ----- override these bits ---------------------------------------
// =================================================================
// These must be supplied in a derived class
virtual HRESULT Transform(IMediaSample * pIn, IMediaSample *pOut);
// check if you can support mtIn
virtual HRESULT CheckInputType(const CMediaType* mtIn) PURE;
// check if you can support the transform from this input to this output
virtual HRESULT CheckTransform(const CMediaType* mtIn, const CMediaType* mtOut) PURE;
// this goes in the factory template table to create new instances
// static CCOMObject * CreateInstance(__inout_opt LPUNKNOWN, HRESULT *);
// call the SetProperties function with appropriate arguments
virtual HRESULT DecideBufferSize(
IMemAllocator * pAllocator,
__inout ALLOCATOR_PROPERTIES *pprop) PURE;
// override to suggest OUTPUT pin media types
virtual HRESULT GetMediaType(int iPosition, __inout CMediaType *pMediaType) PURE;
// =================================================================
// ----- Optional Override Methods -----------------------
// =================================================================
// you can also override these if you want to know about streaming
virtual HRESULT StartStreaming();
virtual HRESULT StopStreaming();
// override if you can do anything constructive with quality notifications
virtual HRESULT AlterQuality(Quality q);
// override this to know when the media type is actually set
virtual HRESULT SetMediaType(PIN_DIRECTION direction,const CMediaType *pmt);
// chance to grab extra interfaces on connection
virtual HRESULT CheckConnect(PIN_DIRECTION dir,IPin *pPin);
virtual HRESULT BreakConnect(PIN_DIRECTION dir);
virtual HRESULT CompleteConnect(PIN_DIRECTION direction,IPin *pReceivePin);
// chance to customize the transform process
virtual HRESULT Receive(IMediaSample *pSample);
// Standard setup for output sample
HRESULT InitializeOutputSample(IMediaSample *pSample, __deref_out IMediaSample **ppOutSample);
// if you override Receive, you may need to override these three too
virtual HRESULT EndOfStream(void);
virtual HRESULT BeginFlush(void);
virtual HRESULT EndFlush(void);
virtual HRESULT NewSegment(
REFERENCE_TIME tStart,
REFERENCE_TIME tStop,
double dRate);
#ifdef PERF
// Override to register performance measurement with a less generic string
// You should do this to avoid confusion with other filters
virtual void RegisterPerfId()
{m_idTransform = MSR_REGISTER(TEXT("Transform"));}
#endif // PERF
// implementation details
protected:
#ifdef PERF
int m_idTransform; // performance measuring id
#endif
BOOL m_bEOSDelivered; // have we sent EndOfStream
BOOL m_bSampleSkipped; // Did we just skip a frame
BOOL m_bQualityChanged; // Have we degraded?
// critical section protecting filter state.
CCritSec m_csFilter;
// critical section stopping state changes (ie Stop) while we're
// processing a sample.
//
// This critical section is held when processing
// events that occur on the receive thread - Receive() and EndOfStream().
//
// If you want to hold both m_csReceive and m_csFilter then grab
// m_csFilter FIRST - like CTransformFilter::Stop() does.
CCritSec m_csReceive;
// these hold our input and output pins
friend class CTransformInputPin;
friend class CTransformOutputPin;
CTransformInputPin *m_pInput;
CTransformOutputPin *m_pOutput;
};
#endif /* __TRANSFRM__ */

View file

@ -0,0 +1,974 @@
//------------------------------------------------------------------------------
// File: TransIP.cpp
//
// Desc: DirectShow base classes - implements class for simple Transform-
// In-Place filters such as audio.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
// How allocators are decided.
//
// An in-place transform tries to do its work in someone else's buffers.
// It tries to persuade the filters on either side to use the same allocator
// (and for that matter the same media type). In desperation, if the downstream
// filter refuses to supply an allocator and the upstream filter offers only
// a read-only one then it will provide an allocator.
// if the upstream filter insists on a read-only allocator then the transform
// filter will (reluctantly) copy the data before transforming it.
//
// In order to pass an allocator through it needs to remember the one it got
// from the first connection to pass it on to the second one.
//
// It is good if we can avoid insisting on a particular order of connection
// (There is a precedent for insisting on the input
// being connected first. Insisting on the output being connected first is
// not allowed. That would break RenderFile.)
//
// The base pin classes (CBaseOutputPin and CBaseInputPin) both have a
// m_pAllocator member which is used in places like
// CBaseOutputPin::GetDeliveryBuffer and CBaseInputPin::Inactive.
// To avoid lots of extra overriding, we should keep these happy
// by using these pointers.
//
// When each pin is connected, it will set the corresponding m_pAllocator
// and will have a single ref-count on that allocator.
//
// Refcounts are acquired by GetAllocator calls which return AddReffed
// allocators and are released in one of:
// CBaseInputPin::Disconnect
// CBaseOutputPin::BreakConect
// In each case m_pAllocator is set to NULL after the release, so this
// is the last chance to ever release it. If there should ever be
// multiple refcounts associated with the same pointer, this had better
// be cleared up before that happens. To avoid such problems, we'll
// stick with one per pointer.
// RECONNECTING and STATE CHANGES
//
// Each pin could be disconnected, connected with a read-only allocator,
// connected with an upstream read/write allocator, connected with an
// allocator from downstream or connected with its own allocator.
// Five states for each pin gives a data space of 25 states.
//
// Notation:
//
// R/W == read/write
// R-O == read-only
//
// <input pin state> <output pin state> <comments>
//
// 00 means an unconnected pin.
// <- means using a R/W allocator from the upstream filter
// <= means using a R-O allocator from an upstream filter
// || means using our own (R/W) allocator.
// -> means using a R/W allocator from a downstream filter
// (a R-O allocator from downstream is nonsense, it can't ever work).
//
//
// That makes 25 possible states. Some states are nonsense (two different
// allocators from the same place). These are just an artifact of the notation.
// <= <- Nonsense.
// <- <= Nonsense
// Some states are illegal (the output pin never accepts a R-O allocator):
// 00 <= !! Error !!
// <= <= !! Error !!
// || <= !! Error !!
// -> <= !! Error !!
// Three states appears to be inaccessible:
// -> || Inaccessible
// || -> Inaccessible
// || <- Inaccessible
// Some states only ever occur as intermediates with a pending reconnect which
// is guaranteed to finish in another state.
// -> 00 ?? unstable goes to || 00
// 00 <- ?? unstable goes to 00 ||
// -> <- ?? unstable goes to -> ->
// <- || ?? unstable goes to <- <-
// <- -> ?? unstable goes to <- <-
// And that leaves 11 possible resting states:
// 1 00 00 Nothing connected.
// 2 <- 00 Input pin connected.
// 3 <= 00 Input pin connected using R-O allocator.
// 4 || 00 Needs several state changes to get here.
// 5 00 || Output pin connected using our allocator
// 6 00 -> Downstream only connected
// 7 || || Undesirable but can be forced upon us.
// 8 <= || Copy forced. <= -> is preferable
// 9 <= -> OK - forced to copy.
// 10 <- <- Transform in place (ideal)
// 11 -> -> Transform in place (ideal)
//
// The object of the exercise is to ensure that we finish up in states
// 10 or 11 whenever possible. State 10 is only possible if the upstream
// filter has a R/W allocator (the AVI splitter notoriously
// doesn't) and state 11 is only possible if the downstream filter does
// offer an allocator.
//
// The transition table (entries marked * go via a reconnect)
//
// There are 8 possible transitions:
// A: Connect upstream to filter with R-O allocator that insists on using it.
// B: Connect upstream to filter with R-O allocator but chooses not to use it.
// C: Connect upstream to filter with R/W allocator and insists on using it.
// D: Connect upstream to filter with R/W allocator but chooses not to use it.
// E: Connect downstream to a filter that offers an allocator
// F: Connect downstream to a filter that does not offer an allocator
// G: disconnect upstream
// H: Disconnect downstream
//
// A B C D E F G H
// ---------------------------------------------------------
// 00 00 1 | 3 3 2 2 6 5 . . |1 00 00
// <- 00 2 | . . . . *10/11 10 1 . |2 <- 00
// <= 00 3 | . . . . *9/11 *7/8 1 . |3 <= 00
// || 00 4 | . . . . *8 *7 1 . |4 || 00
// 00 || 5 | 8 7 *10 7 . . . 1 |5 00 ||
// 00 -> 6 | 9 11 *10 11 . . . 1 |6 00 ->
// || || 7 | . . . . . . 5 4 |7 || ||
// <= || 8 | . . . . . . 5 3 |8 <= ||
// <= -> 9 | . . . . . . 6 3 |9 <= ->
// <- <- 10| . . . . . . *5/6 2 |10 <- <-
// -> -> 11| . . . . . . 6 *2/3 |11 -> ->
// ---------------------------------------------------------
// A B C D E F G H
//
// All these states are accessible without requiring any filter to
// change its behaviour but not all transitions are accessible, for
// instance a transition from state 4 to anywhere other than
// state 8 requires that the upstream filter first offer a R-O allocator
// and then changes its mind and offer R/W. This is NOT allowable - it
// leads to things like the output pin getting a R/W allocator from
// upstream and then the input pin being told it can only have a R-O one.
// Note that you CAN change (say) the upstream filter for a different one, but
// only as a disconnect / connect, not as a Reconnect. (Exercise for
// the reader is to see how you get into state 4).
//
// The reconnection stuff goes as follows (some of the cases shown here as
// "no reconnect" may get one to finalise media type - an old story).
// If there is a reconnect where it says "no reconnect" here then the
// reconnection must not change the allocator choice.
//
// state 2: <- 00 transition E <- <- case C <- <- (no change)
// case D -> <- and then to -> ->
//
// state 2: <- 00 transition F <- <- (no reconnect)
//
// state 3: <= 00 transition E <= -> case A <= -> (no change)
// case B -> ->
// transition F <= || case A <= || (no change)
// case B || ||
//
// state 4: || 00 transition E || || case B -> || and then all cases to -> ->
// F || || case B || || (no change)
//
// state 5: 00 || transition A <= || (no reconnect)
// B || || (no reconnect)
// C <- || all cases <- <-
// D || || (unfortunate, but upstream's choice)
//
// state 6: 00 -> transition A <= -> (no reconnect)
// B -> -> (no reconnect)
// C <- -> all cases <- <-
// D -> -> (no reconnect)
//
// state 10:<- <- transition G 00 <- case E 00 ->
// case F 00 ||
//
// state 11:-> -> transition H -> 00 case A <= 00 (schizo)
// case B <= 00
// case C <- 00 (schizo)
// case D <- 00
//
// The Rules:
// To sort out media types:
// The input is reconnected
// if the input pin is connected and the output pin connects
// The output is reconnected
// If the output pin is connected
// and the input pin connects to a different media type
//
// To sort out allocators:
// The input is reconnected
// if the output disconnects and the input was using a downstream allocator
// The output pin calls SetAllocator to pass on a new allocator
// if the output is connected and
// if the input disconnects and the output was using an upstream allocator
// if the input acquires an allocator different from the output one
// and that new allocator is not R-O
//
// Data is copied (i.e. call getbuffer and copy the data before transforming it)
// if the two allocators are different.
// CHAINS of filters:
//
// We sit between two filters (call them A and Z). We should finish up
// with the same allocator on both of our pins and that should be the
// same one that A and Z would have agreed on if we hadn't been in the
// way. Furthermore, it should not matter how many in-place transforms
// are in the way. Let B, C, D... be in-place transforms ("us").
// Here's how it goes:
//
// 1.
// A connects to B. They agree on A's allocator.
// A-a->B
//
// 2.
// B connects to C. Same story. There is no point in a reconnect, but
// B will request an input reconnect anyway.
// A-a->B-a->C
//
// 3.
// C connects to Z.
// C insists on using A's allocator, but compromises by requesting a reconnect.
// of C's input.
// A-a->B-?->C-a->Z
//
// We now have pending reconnects on both A--->B and B--->C
//
// 4.
// The A--->B link is reconnected.
// A asks B for an allocator. B sees that it has a downstream connection so
// asks its downstream input pin i.e. C's input pin for an allocator. C sees
// that it too has a downstream connection so asks Z for an allocator.
//
// Even though Z's input pin is connected, it is being asked for an allocator.
// It could refuse, in which case the chain is done and will use A's allocator
// Alternatively, Z may supply one. A chooses either Z's or A's own one.
// B's input pin gets NotifyAllocator called to tell it the decision and it
// propagates this downstream by calling ReceiveAllocator on its output pin
// which calls NotifyAllocator on the next input pin downstream etc.
// If the choice is Z then it goes:
// A-z->B-a->C-a->Z
// A-z->B-z->C-a->Z
// A-z->B-z->C-z->Z
//
// And that's IT!! Any further (essentially spurious) reconnects peter out
// with no change in the chain.
#include <streams.h>
#include <measure.h>
#include <transip.h>
// =================================================================
// Implements the CTransInPlaceFilter class
// =================================================================
CTransInPlaceFilter::CTransInPlaceFilter
( __in_opt LPCTSTR pName,
__inout_opt LPUNKNOWN pUnk,
REFCLSID clsid,
__inout HRESULT *phr,
bool bModifiesData
)
: CTransformFilter(pName, pUnk, clsid),
m_bModifiesData(bModifiesData)
{
#ifdef PERF
RegisterPerfId();
#endif // PERF
} // constructor
#ifdef UNICODE
CTransInPlaceFilter::CTransInPlaceFilter
( __in_opt LPCSTR pName,
__inout_opt LPUNKNOWN pUnk,
REFCLSID clsid,
__inout HRESULT *phr,
bool bModifiesData
)
: CTransformFilter(pName, pUnk, clsid),
m_bModifiesData(bModifiesData)
{
#ifdef PERF
RegisterPerfId();
#endif // PERF
} // constructor
#endif
// return a non-addrefed CBasePin * for the user to addref if he holds onto it
// for longer than his pointer to us. We create the pins dynamically when they
// are asked for rather than in the constructor. This is because we want to
// give the derived class an oppportunity to return different pin objects
// As soon as any pin is needed we create both (this is different from the
// usual transform filter) because enumerators, allocators etc are passed
// through from one pin to another and it becomes very painful if the other
// pin isn't there. If we fail to create either pin we ensure we fail both.
CBasePin *
CTransInPlaceFilter::GetPin(int n)
{
HRESULT hr = S_OK;
// Create an input pin if not already done
if (m_pInput == NULL) {
m_pInput = new CTransInPlaceInputPin( NAME("TransInPlace input pin")
, this // Owner filter
, &hr // Result code
, L"Input" // Pin name
);
// Constructor for CTransInPlaceInputPin can't fail
ASSERT(SUCCEEDED(hr));
}
// Create an output pin if not already done
if (m_pInput!=NULL && m_pOutput == NULL) {
m_pOutput = new CTransInPlaceOutputPin( NAME("TransInPlace output pin")
, this // Owner filter
, &hr // Result code
, L"Output" // Pin name
);
// a failed return code should delete the object
ASSERT(SUCCEEDED(hr));
if (m_pOutput == NULL) {
delete m_pInput;
m_pInput = NULL;
}
}
// Return the appropriate pin
ASSERT (n>=0 && n<=1);
if (n == 0) {
return m_pInput;
} else if (n==1) {
return m_pOutput;
} else {
return NULL;
}
} // GetPin
// dir is the direction of our pin.
// pReceivePin is the pin we are connecting to.
HRESULT CTransInPlaceFilter::CompleteConnect(PIN_DIRECTION dir, IPin *pReceivePin)
{
UNREFERENCED_PARAMETER(pReceivePin);
ASSERT(m_pInput);
ASSERT(m_pOutput);
// if we are not part of a graph, then don't indirect the pointer
// this probably prevents use of the filter without a filtergraph
if (!m_pGraph) {
return VFW_E_NOT_IN_GRAPH;
}
// Always reconnect the input to account for buffering changes
//
// Because we don't get to suggest a type on ReceiveConnection
// we need another way of making sure the right type gets used.
//
// One way would be to have our EnumMediaTypes return our output
// connection type first but more deterministic and simple is to
// call ReconnectEx passing the type we want to reconnect with
// via the base class ReconeectPin method.
if (dir == PINDIR_OUTPUT) {
if( m_pInput->IsConnected() ) {
return ReconnectPin( m_pInput, &m_pOutput->CurrentMediaType() );
}
return NOERROR;
}
ASSERT(dir == PINDIR_INPUT);
// Reconnect output if necessary
if( m_pOutput->IsConnected() ) {
if ( m_pInput->CurrentMediaType()
!= m_pOutput->CurrentMediaType()
) {
return ReconnectPin( m_pOutput, &m_pInput->CurrentMediaType() );
}
}
return NOERROR;
} // ComnpleteConnect
//
// DecideBufferSize
//
// Tell the output pin's allocator what size buffers we require.
// *pAlloc will be the allocator our output pin is using.
//
HRESULT CTransInPlaceFilter::DecideBufferSize
( IMemAllocator *pAlloc
, __inout ALLOCATOR_PROPERTIES *pProperties
)
{
ALLOCATOR_PROPERTIES Request, Actual;
HRESULT hr;
// If we are connected upstream, get his views
if (m_pInput->IsConnected()) {
// Get the input pin allocator, and get its size and count.
// we don't care about his alignment and prefix.
hr = InputPin()->PeekAllocator()->GetProperties(&Request);
if (FAILED(hr)) {
// Input connected but with a secretive allocator - enough!
return hr;
}
} else {
// Propose one byte
// If this isn't enough then when the other pin does get connected
// we can revise it.
ZeroMemory(&Request, sizeof(Request));
Request.cBuffers = 1;
Request.cbBuffer = 1;
}
DbgLog((LOG_MEMORY,1,TEXT("Setting Allocator Requirements")));
DbgLog((LOG_MEMORY,1,TEXT("Count %d, Size %d"),
Request.cBuffers, Request.cbBuffer));
// Pass the allocator requirements to our output side
// but do a little sanity checking first or we'll just hit
// asserts in the allocator.
pProperties->cBuffers = Request.cBuffers;
pProperties->cbBuffer = Request.cbBuffer;
pProperties->cbAlign = Request.cbAlign;
if (pProperties->cBuffers<=0) {pProperties->cBuffers = 1; }
if (pProperties->cbBuffer<=0) {pProperties->cbBuffer = 1; }
hr = pAlloc->SetProperties(pProperties, &Actual);
if (FAILED(hr)) {
return hr;
}
DbgLog((LOG_MEMORY,1,TEXT("Obtained Allocator Requirements")));
DbgLog((LOG_MEMORY,1,TEXT("Count %d, Size %d, Alignment %d"),
Actual.cBuffers, Actual.cbBuffer, Actual.cbAlign));
// Make sure we got the right alignment and at least the minimum required
if ( (Request.cBuffers > Actual.cBuffers)
|| (Request.cbBuffer > Actual.cbBuffer)
|| (Request.cbAlign > Actual.cbAlign)
) {
return E_FAIL;
}
return NOERROR;
} // DecideBufferSize
//
// Copy
//
// return a pointer to an identical copy of pSample
__out_opt IMediaSample * CTransInPlaceFilter::Copy(IMediaSample *pSource)
{
IMediaSample * pDest;
HRESULT hr;
REFERENCE_TIME tStart, tStop;
const BOOL bTime = S_OK == pSource->GetTime( &tStart, &tStop);
// this may block for an indeterminate amount of time
hr = OutputPin()->PeekAllocator()->GetBuffer(
&pDest
, bTime ? &tStart : NULL
, bTime ? &tStop : NULL
, m_bSampleSkipped ? AM_GBF_PREVFRAMESKIPPED : 0
);
if (FAILED(hr)) {
return NULL;
}
ASSERT(pDest);
IMediaSample2 *pSample2;
if (SUCCEEDED(pDest->QueryInterface(IID_IMediaSample2, (void **)&pSample2))) {
HRESULT hrProps = pSample2->SetProperties(
FIELD_OFFSET(AM_SAMPLE2_PROPERTIES, pbBuffer),
(PBYTE)m_pInput->SampleProps());
pSample2->Release();
if (FAILED(hrProps)) {
pDest->Release();
return NULL;
}
} else {
if (bTime) {
pDest->SetTime(&tStart, &tStop);
}
if (S_OK == pSource->IsSyncPoint()) {
pDest->SetSyncPoint(TRUE);
}
if (S_OK == pSource->IsDiscontinuity() || m_bSampleSkipped) {
pDest->SetDiscontinuity(TRUE);
}
if (S_OK == pSource->IsPreroll()) {
pDest->SetPreroll(TRUE);
}
// Copy the media type
AM_MEDIA_TYPE *pMediaType;
if (S_OK == pSource->GetMediaType(&pMediaType)) {
pDest->SetMediaType(pMediaType);
DeleteMediaType( pMediaType );
}
}
m_bSampleSkipped = FALSE;
// Copy the sample media times
REFERENCE_TIME TimeStart, TimeEnd;
if (pSource->GetMediaTime(&TimeStart,&TimeEnd) == NOERROR) {
pDest->SetMediaTime(&TimeStart,&TimeEnd);
}
// Copy the actual data length and the actual data.
{
const long lDataLength = pSource->GetActualDataLength();
if (FAILED(pDest->SetActualDataLength(lDataLength))) {
pDest->Release();
return NULL;
}
// Copy the sample data
{
BYTE *pSourceBuffer, *pDestBuffer;
long lSourceSize = pSource->GetSize();
long lDestSize = pDest->GetSize();
ASSERT(lDestSize >= lSourceSize && lDestSize >= lDataLength);
if (FAILED(pSource->GetPointer(&pSourceBuffer)) ||
FAILED(pDest->GetPointer(&pDestBuffer)) ||
lDestSize < lDataLength ||
lDataLength < 0) {
pDest->Release();
return NULL;
}
ASSERT(lDestSize == 0 || pSourceBuffer != NULL && pDestBuffer != NULL);
CopyMemory( (PVOID) pDestBuffer, (PVOID) pSourceBuffer, lDataLength );
}
}
return pDest;
} // Copy
// override this to customize the transform process
HRESULT
CTransInPlaceFilter::Receive(IMediaSample *pSample)
{
/* Check for other streams and pass them on */
AM_SAMPLE2_PROPERTIES * const pProps = m_pInput->SampleProps();
if (pProps->dwStreamId != AM_STREAM_MEDIA) {
return m_pOutput->Deliver(pSample);
}
HRESULT hr;
// Start timing the TransInPlace (if PERF is defined)
MSR_START(m_idTransInPlace);
if (UsingDifferentAllocators()) {
// We have to copy the data.
pSample = Copy(pSample);
if (pSample==NULL) {
MSR_STOP(m_idTransInPlace);
return E_UNEXPECTED;
}
}
// have the derived class transform the data
hr = Transform(pSample);
// Stop the clock and log it (if PERF is defined)
MSR_STOP(m_idTransInPlace);
if (FAILED(hr)) {
DbgLog((LOG_TRACE, 1, TEXT("Error from TransInPlace")));
if (UsingDifferentAllocators()) {
pSample->Release();
}
return hr;
}
// the Transform() function can return S_FALSE to indicate that the
// sample should not be delivered; we only deliver the sample if it's
// really S_OK (same as NOERROR, of course.)
if (hr == NOERROR) {
hr = m_pOutput->Deliver(pSample);
} else {
// But it would be an error to return this private workaround
// to the caller ...
if (S_FALSE == hr) {
// S_FALSE returned from Transform is a PRIVATE agreement
// We should return NOERROR from Receive() in this cause because
// returning S_FALSE from Receive() means that this is the end
// of the stream and no more data should be sent.
m_bSampleSkipped = TRUE;
if (!m_bQualityChanged) {
NotifyEvent(EC_QUALITY_CHANGE,0,0);
m_bQualityChanged = TRUE;
}
hr = NOERROR;
}
}
// release the output buffer. If the connected pin still needs it,
// it will have addrefed it itself.
if (UsingDifferentAllocators()) {
pSample->Release();
}
return hr;
} // Receive
// =================================================================
// Implements the CTransInPlaceInputPin class
// =================================================================
// constructor
CTransInPlaceInputPin::CTransInPlaceInputPin
( __in_opt LPCTSTR pObjectName
, __inout CTransInPlaceFilter *pFilter
, __inout HRESULT *phr
, __in_opt LPCWSTR pName
)
: CTransformInputPin(pObjectName,
pFilter,
phr,
pName)
, m_bReadOnly(FALSE)
, m_pTIPFilter(pFilter)
{
DbgLog((LOG_TRACE, 2
, TEXT("CTransInPlaceInputPin::CTransInPlaceInputPin")));
} // constructor
// =================================================================
// Implements IMemInputPin interface
// =================================================================
// If the downstream filter has one then offer that (even if our own output
// pin is not using it yet. If the upstream filter chooses it then we will
// tell our output pin to ReceiveAllocator).
// Else if our output pin is using an allocator then offer that.
// ( This could mean offering the upstream filter his own allocator,
// it could mean offerring our own
// ) or it could mean offering the one from downstream
// Else fail to offer any allocator at all.
STDMETHODIMP CTransInPlaceInputPin::GetAllocator(__deref_out IMemAllocator ** ppAllocator)
{
CheckPointer(ppAllocator,E_POINTER);
ValidateReadWritePtr(ppAllocator,sizeof(IMemAllocator *));
CAutoLock cObjectLock(m_pLock);
HRESULT hr;
if ( m_pTIPFilter->m_pOutput->IsConnected() ) {
// Store the allocator we got
hr = m_pTIPFilter->OutputPin()->ConnectedIMemInputPin()
->GetAllocator( ppAllocator );
if (SUCCEEDED(hr)) {
m_pTIPFilter->OutputPin()->SetAllocator( *ppAllocator );
}
}
else {
// Help upstream filter (eg TIP filter which is having to do a copy)
// by providing a temp allocator here - we'll never use
// this allocator because when our output is connected we'll
// reconnect this pin
hr = CTransformInputPin::GetAllocator( ppAllocator );
}
return hr;
} // GetAllocator
/* Get told which allocator the upstream output pin is actually going to use */
STDMETHODIMP
CTransInPlaceInputPin::NotifyAllocator(
IMemAllocator * pAllocator,
BOOL bReadOnly)
{
HRESULT hr = S_OK;
CheckPointer(pAllocator,E_POINTER);
ValidateReadPtr(pAllocator,sizeof(IMemAllocator));
CAutoLock cObjectLock(m_pLock);
m_bReadOnly = bReadOnly;
// If we modify data then don't accept the allocator if it's
// the same as the output pin's allocator
// If our output is not connected just accept the allocator
// We're never going to use this allocator because when our
// output pin is connected we'll reconnect this pin
if (!m_pTIPFilter->OutputPin()->IsConnected()) {
return CTransformInputPin::NotifyAllocator(pAllocator, bReadOnly);
}
// If the allocator is read-only and we're modifying data
// and the allocator is the same as the output pin's
// then reject
if (bReadOnly && m_pTIPFilter->m_bModifiesData) {
IMemAllocator *pOutputAllocator =
m_pTIPFilter->OutputPin()->PeekAllocator();
// Make sure we have an output allocator
if (pOutputAllocator == NULL) {
hr = m_pTIPFilter->OutputPin()->ConnectedIMemInputPin()->
GetAllocator(&pOutputAllocator);
if(FAILED(hr)) {
hr = CreateMemoryAllocator(&pOutputAllocator);
}
if (SUCCEEDED(hr)) {
m_pTIPFilter->OutputPin()->SetAllocator(pOutputAllocator);
pOutputAllocator->Release();
}
}
if (pAllocator == pOutputAllocator) {
hr = E_FAIL;
} else if(SUCCEEDED(hr)) {
// Must copy so set the allocator properties on the output
ALLOCATOR_PROPERTIES Props, Actual;
hr = pAllocator->GetProperties(&Props);
if (SUCCEEDED(hr)) {
hr = pOutputAllocator->SetProperties(&Props, &Actual);
}
if (SUCCEEDED(hr)) {
if ( (Props.cBuffers > Actual.cBuffers)
|| (Props.cbBuffer > Actual.cbBuffer)
|| (Props.cbAlign > Actual.cbAlign)
) {
hr = E_FAIL;
}
}
// Set the allocator on the output pin
if (SUCCEEDED(hr)) {
hr = m_pTIPFilter->OutputPin()->ConnectedIMemInputPin()
->NotifyAllocator( pOutputAllocator, FALSE );
}
}
} else {
hr = m_pTIPFilter->OutputPin()->ConnectedIMemInputPin()
->NotifyAllocator( pAllocator, bReadOnly );
if (SUCCEEDED(hr)) {
m_pTIPFilter->OutputPin()->SetAllocator( pAllocator );
}
}
if (SUCCEEDED(hr)) {
// It's possible that the old and the new are the same thing.
// AddRef before release ensures that we don't unload it.
pAllocator->AddRef();
if( m_pAllocator != NULL )
m_pAllocator->Release();
m_pAllocator = pAllocator; // We have an allocator for the input pin
}
return hr;
} // NotifyAllocator
// EnumMediaTypes
// - pass through to our downstream filter
STDMETHODIMP CTransInPlaceInputPin::EnumMediaTypes( __deref_out IEnumMediaTypes **ppEnum )
{
// Can only pass through if connected
if( !m_pTIPFilter->m_pOutput->IsConnected() )
return VFW_E_NOT_CONNECTED;
return m_pTIPFilter->m_pOutput->GetConnected()->EnumMediaTypes( ppEnum );
} // EnumMediaTypes
// CheckMediaType
// - agree to anything if not connected,
// otherwise pass through to the downstream filter.
// This assumes that the filter does not change the media type.
HRESULT CTransInPlaceInputPin::CheckMediaType(const CMediaType *pmt )
{
HRESULT hr = m_pTIPFilter->CheckInputType(pmt);
if (hr!=S_OK) return hr;
if( m_pTIPFilter->m_pOutput->IsConnected() )
return m_pTIPFilter->m_pOutput->GetConnected()->QueryAccept( pmt );
else
return S_OK;
} // CheckMediaType
// If upstream asks us what our requirements are, we will try to ask downstream
// if that doesn't work, we'll just take the defaults.
STDMETHODIMP
CTransInPlaceInputPin::GetAllocatorRequirements(__out ALLOCATOR_PROPERTIES *pProps)
{
if( m_pTIPFilter->m_pOutput->IsConnected() )
return m_pTIPFilter->OutputPin()
->ConnectedIMemInputPin()->GetAllocatorRequirements( pProps );
else
return E_NOTIMPL;
} // GetAllocatorRequirements
// CTransInPlaceInputPin::CompleteConnect() calls CBaseInputPin::CompleteConnect()
// and then calls CTransInPlaceFilter::CompleteConnect(). It does this because
// CTransInPlaceFilter::CompleteConnect() can reconnect a pin and we do not
// want to reconnect a pin if CBaseInputPin::CompleteConnect() fails.
HRESULT
CTransInPlaceInputPin::CompleteConnect(IPin *pReceivePin)
{
HRESULT hr = CBaseInputPin::CompleteConnect(pReceivePin);
if (FAILED(hr)) {
return hr;
}
return m_pTransformFilter->CompleteConnect(PINDIR_INPUT,pReceivePin);
} // CompleteConnect
// =================================================================
// Implements the CTransInPlaceOutputPin class
// =================================================================
// constructor
CTransInPlaceOutputPin::CTransInPlaceOutputPin(
__in_opt LPCTSTR pObjectName,
__inout CTransInPlaceFilter *pFilter,
__inout HRESULT * phr,
__in_opt LPCWSTR pPinName)
: CTransformOutputPin( pObjectName
, pFilter
, phr
, pPinName),
m_pTIPFilter(pFilter)
{
DbgLog(( LOG_TRACE, 2
, TEXT("CTransInPlaceOutputPin::CTransInPlaceOutputPin")));
} // constructor
// EnumMediaTypes
// - pass through to our upstream filter
STDMETHODIMP CTransInPlaceOutputPin::EnumMediaTypes( __deref_out IEnumMediaTypes **ppEnum )
{
// Can only pass through if connected.
if( ! m_pTIPFilter->m_pInput->IsConnected() )
return VFW_E_NOT_CONNECTED;
return m_pTIPFilter->m_pInput->GetConnected()->EnumMediaTypes( ppEnum );
} // EnumMediaTypes
// CheckMediaType
// - agree to anything if not connected,
// otherwise pass through to the upstream filter.
HRESULT CTransInPlaceOutputPin::CheckMediaType(const CMediaType *pmt )
{
// Don't accept any output pin type changes if we're copying
// between allocators - it's too late to change the input
// allocator size.
if (m_pTIPFilter->UsingDifferentAllocators() && !m_pFilter->IsStopped()) {
if (*pmt == m_mt) {
return S_OK;
} else {
return VFW_E_TYPE_NOT_ACCEPTED;
}
}
// Assumes the type does not change. That's why we're calling
// CheckINPUTType here on the OUTPUT pin.
HRESULT hr = m_pTIPFilter->CheckInputType(pmt);
if (hr!=S_OK) return hr;
if( m_pTIPFilter->m_pInput->IsConnected() )
return m_pTIPFilter->m_pInput->GetConnected()->QueryAccept( pmt );
else
return S_OK;
} // CheckMediaType
/* Save the allocator pointer in the output pin
*/
void
CTransInPlaceOutputPin::SetAllocator(IMemAllocator * pAllocator)
{
pAllocator->AddRef();
if (m_pAllocator) {
m_pAllocator->Release();
}
m_pAllocator = pAllocator;
} // SetAllocator
// CTransInPlaceOutputPin::CompleteConnect() calls CBaseOutputPin::CompleteConnect()
// and then calls CTransInPlaceFilter::CompleteConnect(). It does this because
// CTransInPlaceFilter::CompleteConnect() can reconnect a pin and we do not want to
// reconnect a pin if CBaseOutputPin::CompleteConnect() fails.
// CBaseOutputPin::CompleteConnect() often fails when our output pin is being connected
// to the Video Mixing Renderer.
HRESULT
CTransInPlaceOutputPin::CompleteConnect(IPin *pReceivePin)
{
HRESULT hr = CBaseOutputPin::CompleteConnect(pReceivePin);
if (FAILED(hr)) {
return hr;
}
return m_pTransformFilter->CompleteConnect(PINDIR_OUTPUT,pReceivePin);
} // CompleteConnect

View file

@ -0,0 +1,250 @@
//------------------------------------------------------------------------------
// File: TransIP.h
//
// Desc: DirectShow base classes - defines classes from which simple
// Transform-In-Place filters may be derived.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
//
// The difference between this and Transfrm.h is that Transfrm copies the data.
//
// It assumes the filter has one input and one output stream, and has no
// interest in memory management, interface negotiation or anything else.
//
// Derive your class from this, and supply Transform and the media type/format
// negotiation functions. Implement that class, compile and link and
// you're done.
#ifndef __TRANSIP__
#define __TRANSIP__
// ======================================================================
// This is the com object that represents a simple transform filter. It
// supports IBaseFilter, IMediaFilter and two pins through nested interfaces
// ======================================================================
class CTransInPlaceFilter;
// Several of the pin functions call filter functions to do the work,
// so you can often use the pin classes unaltered, just overriding the
// functions in CTransInPlaceFilter. If that's not enough and you want
// to derive your own pin class, override GetPin in the filter to supply
// your own pin classes to the filter.
// ==================================================
// Implements the input pin
// ==================================================
class CTransInPlaceInputPin : public CTransformInputPin
{
protected:
CTransInPlaceFilter * const m_pTIPFilter; // our filter
BOOL m_bReadOnly; // incoming stream is read only
public:
CTransInPlaceInputPin(
__in_opt LPCTSTR pObjectName,
__inout CTransInPlaceFilter *pFilter,
__inout HRESULT *phr,
__in_opt LPCWSTR pName);
// --- IMemInputPin -----
// Provide an enumerator for media types by getting one from downstream
STDMETHODIMP EnumMediaTypes( __deref_out IEnumMediaTypes **ppEnum );
// Say whether media type is acceptable.
HRESULT CheckMediaType(const CMediaType* pmt);
// Return our upstream allocator
STDMETHODIMP GetAllocator(__deref_out IMemAllocator ** ppAllocator);
// get told which allocator the upstream output pin is actually
// going to use.
STDMETHODIMP NotifyAllocator(IMemAllocator * pAllocator,
BOOL bReadOnly);
// Allow the filter to see what allocator we have
// N.B. This does NOT AddRef
__out IMemAllocator * PeekAllocator() const
{ return m_pAllocator; }
// Pass this on downstream if it ever gets called.
STDMETHODIMP GetAllocatorRequirements(__out ALLOCATOR_PROPERTIES *pProps);
HRESULT CompleteConnect(IPin *pReceivePin);
inline const BOOL ReadOnly() { return m_bReadOnly ; }
}; // CTransInPlaceInputPin
// ==================================================
// Implements the output pin
// ==================================================
class CTransInPlaceOutputPin : public CTransformOutputPin
{
protected:
// m_pFilter points to our CBaseFilter
CTransInPlaceFilter * const m_pTIPFilter;
public:
CTransInPlaceOutputPin(
__in_opt LPCTSTR pObjectName,
__inout CTransInPlaceFilter *pFilter,
__inout HRESULT *phr,
__in_opt LPCWSTR pName);
// --- CBaseOutputPin ------------
// negotiate the allocator and its buffer size/count
// Insists on using our own allocator. (Actually the one upstream of us).
// We don't override this - instead we just agree the default
// then let the upstream filter decide for itself on reconnect
// virtual HRESULT DecideAllocator(IMemInputPin * pPin, IMemAllocator ** pAlloc);
// Provide a media type enumerator. Get it from upstream.
STDMETHODIMP EnumMediaTypes( __deref_out IEnumMediaTypes **ppEnum );
// Say whether media type is acceptable.
HRESULT CheckMediaType(const CMediaType* pmt);
// This just saves the allocator being used on the output pin
// Also called by input pin's GetAllocator()
void SetAllocator(IMemAllocator * pAllocator);
__out_opt IMemInputPin * ConnectedIMemInputPin()
{ return m_pInputPin; }
// Allow the filter to see what allocator we have
// N.B. This does NOT AddRef
__out IMemAllocator * PeekAllocator() const
{ return m_pAllocator; }
HRESULT CompleteConnect(IPin *pReceivePin);
}; // CTransInPlaceOutputPin
class AM_NOVTABLE CTransInPlaceFilter : public CTransformFilter
{
public:
// map getpin/getpincount for base enum of pins to owner
// override this to return more specialised pin objects
virtual CBasePin *GetPin(int n);
public:
// Set bModifiesData == false if your derived filter does
// not modify the data samples (for instance it's just copying
// them somewhere else or looking at the timestamps).
CTransInPlaceFilter(__in_opt LPCTSTR, __inout_opt LPUNKNOWN, REFCLSID clsid, __inout HRESULT *,
bool bModifiesData = true);
#ifdef UNICODE
CTransInPlaceFilter(__in_opt LPCSTR, __inout_opt LPUNKNOWN, REFCLSID clsid, __inout HRESULT *,
bool bModifiesData = true);
#endif
// The following are defined to avoid undefined pure virtuals.
// Even if they are never called, they will give linkage warnings/errors
// We override EnumMediaTypes to bypass the transform class enumerator
// which would otherwise call this.
HRESULT GetMediaType(int iPosition, __inout CMediaType *pMediaType)
{ DbgBreak("CTransInPlaceFilter::GetMediaType should never be called");
return E_UNEXPECTED;
}
// This is called when we actually have to provide our own allocator.
HRESULT DecideBufferSize(IMemAllocator*, __inout ALLOCATOR_PROPERTIES *);
// The functions which call this in CTransform are overridden in this
// class to call CheckInputType with the assumption that the type
// does not change. In Debug builds some calls will be made and
// we just ensure that they do not assert.
HRESULT CheckTransform(const CMediaType *mtIn, const CMediaType *mtOut)
{
return S_OK;
};
// =================================================================
// ----- You may want to override this -----------------------------
// =================================================================
HRESULT CompleteConnect(PIN_DIRECTION dir,IPin *pReceivePin);
// chance to customize the transform process
virtual HRESULT Receive(IMediaSample *pSample);
// =================================================================
// ----- You MUST override these -----------------------------------
// =================================================================
virtual HRESULT Transform(IMediaSample *pSample) PURE;
// this goes in the factory template table to create new instances
// static CCOMObject * CreateInstance(LPUNKNOWN, HRESULT *);
#ifdef PERF
// Override to register performance measurement with a less generic string
// You should do this to avoid confusion with other filters
virtual void RegisterPerfId()
{m_idTransInPlace = MSR_REGISTER(TEXT("TransInPlace"));}
#endif // PERF
// implementation details
protected:
__out_opt IMediaSample * CTransInPlaceFilter::Copy(IMediaSample *pSource);
#ifdef PERF
int m_idTransInPlace; // performance measuring id
#endif // PERF
bool m_bModifiesData; // Does this filter change the data?
// these hold our input and output pins
friend class CTransInPlaceInputPin;
friend class CTransInPlaceOutputPin;
__out CTransInPlaceInputPin *InputPin() const
{
return (CTransInPlaceInputPin *)m_pInput;
};
__out CTransInPlaceOutputPin *OutputPin() const
{
return (CTransInPlaceOutputPin *)m_pOutput;
};
// Helper to see if the input and output types match
BOOL TypesMatch()
{
return InputPin()->CurrentMediaType() ==
OutputPin()->CurrentMediaType();
}
// Are the input and output allocators different?
BOOL UsingDifferentAllocators() const
{
return InputPin()->PeekAllocator() != OutputPin()->PeekAllocator();
}
}; // CTransInPlaceFilter
#endif /* __TRANSIP__ */

View file

@ -0,0 +1,746 @@
//------------------------------------------------------------------------------
// File: VideoCtl.cpp
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#include "ddmm.h"
// Load a string from the resource file string table. The buffer must be at
// least STR_MAX_LENGTH bytes. The easiest way to use this is to declare a
// buffer in the property page class and use it for all string loading. It
// cannot be static as multiple property pages may be active simultaneously
LPTSTR WINAPI StringFromResource(__out_ecount(STR_MAX_LENGTH) LPTSTR pBuffer, int iResourceID)
{
if (LoadString(g_hInst,iResourceID,pBuffer,STR_MAX_LENGTH) == 0) {
return TEXT("");
}
return pBuffer;
}
#ifdef UNICODE
LPSTR WINAPI StringFromResource(__out_ecount(STR_MAX_LENGTH) LPSTR pBuffer, int iResourceID)
{
if (LoadStringA(g_hInst,iResourceID,pBuffer,STR_MAX_LENGTH) == 0) {
return "";
}
return pBuffer;
}
#endif
// Property pages typically are called through their OLE interfaces. These
// use UNICODE strings regardless of how the binary is built. So when we
// load strings from the resource file we sometimes want to convert them
// to UNICODE. This method is passed the target UNICODE buffer and does a
// convert after loading the string (if built UNICODE this is not needed)
// On WinNT we can explicitly call LoadStringW which saves two conversions
#ifndef UNICODE
LPWSTR WINAPI WideStringFromResource(__out_ecount(STR_MAX_LENGTH) LPWSTR pBuffer, int iResourceID)
{
*pBuffer = 0;
if (g_amPlatform == VER_PLATFORM_WIN32_NT) {
LoadStringW(g_hInst,iResourceID,pBuffer,STR_MAX_LENGTH);
} else {
CHAR szBuffer[STR_MAX_LENGTH];
DWORD dwStringLength = LoadString(g_hInst,iResourceID,szBuffer,STR_MAX_LENGTH);
// if we loaded a string convert it to wide characters, ensuring
// that we also null terminate the result.
if (dwStringLength++) {
MultiByteToWideChar(CP_ACP,0,szBuffer,dwStringLength,pBuffer,STR_MAX_LENGTH);
}
}
return pBuffer;
}
#endif
// Helper function to calculate the size of the dialog
BOOL WINAPI GetDialogSize(int iResourceID,
DLGPROC pDlgProc,
LPARAM lParam,
__out SIZE *pResult)
{
RECT rc;
HWND hwnd;
// Create a temporary property page
hwnd = CreateDialogParam(g_hInst,
MAKEINTRESOURCE(iResourceID),
GetDesktopWindow(),
pDlgProc,
lParam);
if (hwnd == NULL) {
return FALSE;
}
GetWindowRect(hwnd, &rc);
pResult->cx = rc.right - rc.left;
pResult->cy = rc.bottom - rc.top;
DestroyWindow(hwnd);
return TRUE;
}
// Class that aggregates on the IDirectDraw interface. Although DirectDraw
// has the ability in its interfaces to be aggregated they're not currently
// implemented. This makes it difficult for various parts of Quartz that want
// to aggregate these interfaces. In particular the video renderer passes out
// media samples that expose IDirectDraw and IDirectDrawSurface. The filter
// graph manager also exposes IDirectDraw as a plug in distributor. For these
// objects we provide these aggregation classes that republish the interfaces
STDMETHODIMP CAggDirectDraw::NonDelegatingQueryInterface(REFIID riid, __deref_out void **ppv)
{
ASSERT(m_pDirectDraw);
// Do we have this interface
if (riid == IID_IDirectDraw) {
return GetInterface((IDirectDraw *)this,ppv);
} else {
return CUnknown::NonDelegatingQueryInterface(riid,ppv);
}
}
STDMETHODIMP CAggDirectDraw::Compact()
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->Compact();
}
STDMETHODIMP CAggDirectDraw::CreateClipper(DWORD dwFlags, __deref_out LPDIRECTDRAWCLIPPER *lplpDDClipper, __inout_opt IUnknown *pUnkOuter)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->CreateClipper(dwFlags,lplpDDClipper,pUnkOuter);
}
STDMETHODIMP CAggDirectDraw::CreatePalette(DWORD dwFlags,
__in LPPALETTEENTRY lpColorTable,
__deref_out LPDIRECTDRAWPALETTE *lplpDDPalette,
__inout_opt IUnknown *pUnkOuter)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->CreatePalette(dwFlags,lpColorTable,lplpDDPalette,pUnkOuter);
}
STDMETHODIMP CAggDirectDraw::CreateSurface(__in LPDDSURFACEDESC lpDDSurfaceDesc,
__deref_out LPDIRECTDRAWSURFACE *lplpDDSurface,
__inout_opt IUnknown *pUnkOuter)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->CreateSurface(lpDDSurfaceDesc,lplpDDSurface,pUnkOuter);
}
STDMETHODIMP CAggDirectDraw::DuplicateSurface(__in LPDIRECTDRAWSURFACE lpDDSurface,
__deref_out LPDIRECTDRAWSURFACE *lplpDupDDSurface)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->DuplicateSurface(lpDDSurface,lplpDupDDSurface);
}
STDMETHODIMP CAggDirectDraw::EnumDisplayModes(DWORD dwSurfaceDescCount,
__in LPDDSURFACEDESC lplpDDSurfaceDescList,
__in LPVOID lpContext,
__in LPDDENUMMODESCALLBACK lpEnumCallback)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->EnumDisplayModes(dwSurfaceDescCount,lplpDDSurfaceDescList,lpContext,lpEnumCallback);
}
STDMETHODIMP CAggDirectDraw::EnumSurfaces(DWORD dwFlags,
__in LPDDSURFACEDESC lpDDSD,
__in LPVOID lpContext,
__in LPDDENUMSURFACESCALLBACK lpEnumCallback)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->EnumSurfaces(dwFlags,lpDDSD,lpContext,lpEnumCallback);
}
STDMETHODIMP CAggDirectDraw::FlipToGDISurface()
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->FlipToGDISurface();
}
STDMETHODIMP CAggDirectDraw::GetCaps(__out LPDDCAPS lpDDDriverCaps,__out LPDDCAPS lpDDHELCaps)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->GetCaps(lpDDDriverCaps,lpDDHELCaps);
}
STDMETHODIMP CAggDirectDraw::GetDisplayMode(__out LPDDSURFACEDESC lpDDSurfaceDesc)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->GetDisplayMode(lpDDSurfaceDesc);
}
STDMETHODIMP CAggDirectDraw::GetFourCCCodes(__inout LPDWORD lpNumCodes,__out_ecount(*lpNumCodes) LPDWORD lpCodes)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->GetFourCCCodes(lpNumCodes,lpCodes);
}
STDMETHODIMP CAggDirectDraw::GetGDISurface(__deref_out LPDIRECTDRAWSURFACE *lplpGDIDDSurface)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->GetGDISurface(lplpGDIDDSurface);
}
STDMETHODIMP CAggDirectDraw::GetMonitorFrequency(__out LPDWORD lpdwFrequency)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->GetMonitorFrequency(lpdwFrequency);
}
STDMETHODIMP CAggDirectDraw::GetScanLine(__out LPDWORD lpdwScanLine)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->GetScanLine(lpdwScanLine);
}
STDMETHODIMP CAggDirectDraw::GetVerticalBlankStatus(__out LPBOOL lpblsInVB)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->GetVerticalBlankStatus(lpblsInVB);
}
STDMETHODIMP CAggDirectDraw::Initialize(__in GUID *lpGUID)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->Initialize(lpGUID);
}
STDMETHODIMP CAggDirectDraw::RestoreDisplayMode()
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->RestoreDisplayMode();
}
STDMETHODIMP CAggDirectDraw::SetCooperativeLevel(HWND hWnd,DWORD dwFlags)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->SetCooperativeLevel(hWnd,dwFlags);
}
STDMETHODIMP CAggDirectDraw::SetDisplayMode(DWORD dwWidth,DWORD dwHeight,DWORD dwBpp)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->SetDisplayMode(dwWidth,dwHeight,dwBpp);
}
STDMETHODIMP CAggDirectDraw::WaitForVerticalBlank(DWORD dwFlags,HANDLE hEvent)
{
ASSERT(m_pDirectDraw);
return m_pDirectDraw->WaitForVerticalBlank(dwFlags,hEvent);
}
// Class that aggregates an IDirectDrawSurface interface. Although DirectDraw
// has the ability in its interfaces to be aggregated they're not currently
// implemented. This makes it difficult for various parts of Quartz that want
// to aggregate these interfaces. In particular the video renderer passes out
// media samples that expose IDirectDraw and IDirectDrawSurface. The filter
// graph manager also exposes IDirectDraw as a plug in distributor. For these
// objects we provide these aggregation classes that republish the interfaces
STDMETHODIMP CAggDrawSurface::NonDelegatingQueryInterface(REFIID riid, __deref_out void **ppv)
{
ASSERT(m_pDirectDrawSurface);
// Do we have this interface
if (riid == IID_IDirectDrawSurface) {
return GetInterface((IDirectDrawSurface *)this,ppv);
} else {
return CUnknown::NonDelegatingQueryInterface(riid,ppv);
}
}
STDMETHODIMP CAggDrawSurface::AddAttachedSurface(__in LPDIRECTDRAWSURFACE lpDDSAttachedSurface)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->AddAttachedSurface(lpDDSAttachedSurface);
}
STDMETHODIMP CAggDrawSurface::AddOverlayDirtyRect(__in LPRECT lpRect)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->AddOverlayDirtyRect(lpRect);
}
STDMETHODIMP CAggDrawSurface::Blt(__in LPRECT lpDestRect,
__in LPDIRECTDRAWSURFACE lpDDSrcSurface,
__in LPRECT lpSrcRect,
DWORD dwFlags,
__in LPDDBLTFX lpDDBltFx)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->Blt(lpDestRect,lpDDSrcSurface,lpSrcRect,dwFlags,lpDDBltFx);
}
STDMETHODIMP CAggDrawSurface::BltBatch(__in_ecount(dwCount) LPDDBLTBATCH lpDDBltBatch,DWORD dwCount,DWORD dwFlags)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->BltBatch(lpDDBltBatch,dwCount,dwFlags);
}
STDMETHODIMP CAggDrawSurface::BltFast(DWORD dwX,DWORD dwY,
__in LPDIRECTDRAWSURFACE lpDDSrcSurface,
__in LPRECT lpSrcRect,
DWORD dwTrans)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->BltFast(dwX,dwY,lpDDSrcSurface,lpSrcRect,dwTrans);
}
STDMETHODIMP CAggDrawSurface::DeleteAttachedSurface(DWORD dwFlags,
__in LPDIRECTDRAWSURFACE lpDDSAttachedSurface)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->DeleteAttachedSurface(dwFlags,lpDDSAttachedSurface);
}
STDMETHODIMP CAggDrawSurface::EnumAttachedSurfaces(__in LPVOID lpContext,
__in LPDDENUMSURFACESCALLBACK lpEnumSurfacesCallback)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->EnumAttachedSurfaces(lpContext,lpEnumSurfacesCallback);
}
STDMETHODIMP CAggDrawSurface::EnumOverlayZOrders(DWORD dwFlags,
__in LPVOID lpContext,
__in LPDDENUMSURFACESCALLBACK lpfnCallback)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->EnumOverlayZOrders(dwFlags,lpContext,lpfnCallback);
}
STDMETHODIMP CAggDrawSurface::Flip(__in LPDIRECTDRAWSURFACE lpDDSurfaceTargetOverride,DWORD dwFlags)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->Flip(lpDDSurfaceTargetOverride,dwFlags);
}
STDMETHODIMP CAggDrawSurface::GetAttachedSurface(__in LPDDSCAPS lpDDSCaps,
__deref_out LPDIRECTDRAWSURFACE *lplpDDAttachedSurface)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->GetAttachedSurface(lpDDSCaps,lplpDDAttachedSurface);
}
STDMETHODIMP CAggDrawSurface::GetBltStatus(DWORD dwFlags)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->GetBltStatus(dwFlags);
}
STDMETHODIMP CAggDrawSurface::GetCaps(__out LPDDSCAPS lpDDSCaps)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->GetCaps(lpDDSCaps);
}
STDMETHODIMP CAggDrawSurface::GetClipper(__deref_out LPDIRECTDRAWCLIPPER *lplpDDClipper)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->GetClipper(lplpDDClipper);
}
STDMETHODIMP CAggDrawSurface::GetColorKey(DWORD dwFlags,__out LPDDCOLORKEY lpDDColorKey)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->GetColorKey(dwFlags,lpDDColorKey);
}
STDMETHODIMP CAggDrawSurface::GetDC(__out HDC *lphDC)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->GetDC(lphDC);
}
STDMETHODIMP CAggDrawSurface::GetFlipStatus(DWORD dwFlags)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->GetFlipStatus(dwFlags);
}
STDMETHODIMP CAggDrawSurface::GetOverlayPosition(__out LPLONG lpdwX,__out LPLONG lpdwY)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->GetOverlayPosition(lpdwX,lpdwY);
}
STDMETHODIMP CAggDrawSurface::GetPalette(__deref_out LPDIRECTDRAWPALETTE *lplpDDPalette)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->GetPalette(lplpDDPalette);
}
STDMETHODIMP CAggDrawSurface::GetPixelFormat(__out LPDDPIXELFORMAT lpDDPixelFormat)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->GetPixelFormat(lpDDPixelFormat);
}
// A bit of a warning here: Our media samples in DirectShow aggregate on
// IDirectDraw and IDirectDrawSurface (ie are available through IMediaSample
// by QueryInterface). Unfortunately the underlying DirectDraw code cannot
// be aggregated so we have to use these classes. The snag is that when we
// call a different surface and pass in this interface as perhaps the source
// surface the call will fail because DirectDraw dereferences the pointer to
// get at its private data structures. Therefore we supply this workaround to give
// access to the real IDirectDraw surface. A filter can call GetSurfaceDesc
// and we will fill in the lpSurface pointer with the real underlying surface
STDMETHODIMP CAggDrawSurface::GetSurfaceDesc(__out LPDDSURFACEDESC lpDDSurfaceDesc)
{
ASSERT(m_pDirectDrawSurface);
// First call down to the underlying DirectDraw
HRESULT hr = m_pDirectDrawSurface->GetSurfaceDesc(lpDDSurfaceDesc);
if (FAILED(hr)) {
return hr;
}
// Store the real DirectDrawSurface interface
lpDDSurfaceDesc->lpSurface = m_pDirectDrawSurface;
return hr;
}
STDMETHODIMP CAggDrawSurface::Initialize(__in LPDIRECTDRAW lpDD,__in LPDDSURFACEDESC lpDDSurfaceDesc)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->Initialize(lpDD,lpDDSurfaceDesc);
}
STDMETHODIMP CAggDrawSurface::IsLost()
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->IsLost();
}
STDMETHODIMP CAggDrawSurface::Lock(__in LPRECT lpDestRect,
__inout LPDDSURFACEDESC lpDDSurfaceDesc,
DWORD dwFlags,
HANDLE hEvent)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->Lock(lpDestRect,lpDDSurfaceDesc,dwFlags,hEvent);
}
STDMETHODIMP CAggDrawSurface::ReleaseDC(HDC hDC)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->ReleaseDC(hDC);
}
STDMETHODIMP CAggDrawSurface::Restore()
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->Restore();
}
STDMETHODIMP CAggDrawSurface::SetClipper(__in LPDIRECTDRAWCLIPPER lpDDClipper)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->SetClipper(lpDDClipper);
}
STDMETHODIMP CAggDrawSurface::SetColorKey(DWORD dwFlags,__in LPDDCOLORKEY lpDDColorKey)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->SetColorKey(dwFlags,lpDDColorKey);
}
STDMETHODIMP CAggDrawSurface::SetOverlayPosition(LONG dwX,LONG dwY)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->SetOverlayPosition(dwX,dwY);
}
STDMETHODIMP CAggDrawSurface::SetPalette(__in LPDIRECTDRAWPALETTE lpDDPalette)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->SetPalette(lpDDPalette);
}
STDMETHODIMP CAggDrawSurface::Unlock(__in LPVOID lpSurfaceData)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->Unlock(lpSurfaceData);
}
STDMETHODIMP CAggDrawSurface::UpdateOverlay(__in LPRECT lpSrcRect,
__in LPDIRECTDRAWSURFACE lpDDDestSurface,
__in LPRECT lpDestRect,
DWORD dwFlags,
__in LPDDOVERLAYFX lpDDOverlayFX)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->UpdateOverlay(lpSrcRect,lpDDDestSurface,lpDestRect,dwFlags,lpDDOverlayFX);
}
STDMETHODIMP CAggDrawSurface::UpdateOverlayDisplay(DWORD dwFlags)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->UpdateOverlayDisplay(dwFlags);
}
STDMETHODIMP CAggDrawSurface::UpdateOverlayZOrder(DWORD dwFlags,__in LPDIRECTDRAWSURFACE lpDDSReference)
{
ASSERT(m_pDirectDrawSurface);
return m_pDirectDrawSurface->UpdateOverlayZOrder(dwFlags,lpDDSReference);
}
// DirectShow must work on multiple platforms. In particular, it also runs on
// Windows NT 3.51 which does not have DirectDraw capabilities. The filters
// cannot therefore link statically to the DirectDraw library. To make their
// lives that little bit easier we provide this class that manages loading
// and unloading the library and creating the initial IDirectDraw interface
CLoadDirectDraw::CLoadDirectDraw() :
m_pDirectDraw(NULL),
m_hDirectDraw(NULL)
{
}
// Destructor forces unload
CLoadDirectDraw::~CLoadDirectDraw()
{
ReleaseDirectDraw();
if (m_hDirectDraw) {
NOTE("Unloading library");
FreeLibrary(m_hDirectDraw);
}
}
// We can't be sure that DirectDraw is always available so we can't statically
// link to the library. Therefore we load the library, get the function entry
// point addresses and call them to create the driver objects. We return S_OK
// if we manage to load DirectDraw correctly otherwise we return E_NOINTERFACE
// We initialise a DirectDraw instance by explicitely loading the library and
// calling GetProcAddress on the DirectDrawCreate entry point that it exports
// On a multi monitor system, we can get the DirectDraw object for any
// monitor (device) with the optional szDevice parameter
HRESULT CLoadDirectDraw::LoadDirectDraw(__in LPSTR szDevice)
{
PDRAWCREATE pDrawCreate;
PDRAWENUM pDrawEnum;
LPDIRECTDRAWENUMERATEEXA pDrawEnumEx;
HRESULT hr = NOERROR;
NOTE("Entering DoLoadDirectDraw");
// Is DirectDraw already loaded
if (m_pDirectDraw) {
NOTE("Already loaded");
ASSERT(m_hDirectDraw);
return NOERROR;
}
// Make sure the library is available
if(!m_hDirectDraw)
{
UINT ErrorMode = SetErrorMode(SEM_NOOPENFILEERRORBOX);
m_hDirectDraw = LoadLibrary(TEXT("DDRAW.DLL"));
SetErrorMode(ErrorMode);
if (m_hDirectDraw == NULL) {
DbgLog((LOG_ERROR,1,TEXT("Can't load DDRAW.DLL")));
NOTE("No library");
return E_NOINTERFACE;
}
}
// Get the DLL address for the creator function
pDrawCreate = (PDRAWCREATE)GetProcAddress(m_hDirectDraw,"DirectDrawCreate");
// force ANSI, we assume it
pDrawEnum = (PDRAWENUM)GetProcAddress(m_hDirectDraw,"DirectDrawEnumerateA");
pDrawEnumEx = (LPDIRECTDRAWENUMERATEEXA)GetProcAddress(m_hDirectDraw,
"DirectDrawEnumerateExA");
// We don't NEED DirectDrawEnumerateEx, that's just for multimon stuff
if (pDrawCreate == NULL || pDrawEnum == NULL) {
DbgLog((LOG_ERROR,1,TEXT("Can't get functions: Create=%x Enum=%x"),
pDrawCreate, pDrawEnum));
NOTE("No entry point");
ReleaseDirectDraw();
return E_NOINTERFACE;
}
DbgLog((LOG_TRACE,3,TEXT("Creating DDraw for device %s"),
szDevice ? szDevice : "<NULL>"));
// Create a DirectDraw display provider for this device, using the fancy
// multimon-aware version, if it exists
if (pDrawEnumEx)
m_pDirectDraw = DirectDrawCreateFromDeviceEx(szDevice, pDrawCreate,
pDrawEnumEx);
else
m_pDirectDraw = DirectDrawCreateFromDevice(szDevice, pDrawCreate,
pDrawEnum);
if (m_pDirectDraw == NULL) {
DbgLog((LOG_ERROR,1,TEXT("Can't create DDraw")));
NOTE("No instance");
ReleaseDirectDraw();
return E_NOINTERFACE;
}
return NOERROR;
}
// Called to release any DirectDraw provider we previously loaded. We may be
// called at any time especially when something goes horribly wrong and when
// we need to clean up before returning so we can't guarantee that all state
// variables are consistent so free only those really allocated allocated
// This should only be called once all reference counts have been released
void CLoadDirectDraw::ReleaseDirectDraw()
{
NOTE("Releasing DirectDraw driver");
// Release any DirectDraw provider interface
if (m_pDirectDraw) {
NOTE("Releasing instance");
m_pDirectDraw->Release();
m_pDirectDraw = NULL;
}
}
// Return NOERROR (S_OK) if DirectDraw has been loaded by this object
HRESULT CLoadDirectDraw::IsDirectDrawLoaded()
{
NOTE("Entering IsDirectDrawLoaded");
if (m_pDirectDraw == NULL) {
NOTE("DirectDraw not loaded");
return S_FALSE;
}
return NOERROR;
}
// Return the IDirectDraw interface we look after
LPDIRECTDRAW CLoadDirectDraw::GetDirectDraw()
{
NOTE("Entering GetDirectDraw");
if (m_pDirectDraw == NULL) {
NOTE("No DirectDraw");
return NULL;
}
NOTE("Returning DirectDraw");
m_pDirectDraw->AddRef();
return m_pDirectDraw;
}
// Are we running on Direct Draw version 1? We need to find out as
// we rely on specific bug fixes in DirectDraw 2 for fullscreen playback. To
// find out, we simply see if it supports IDirectDraw2. Only version 2 and
// higher support this.
BOOL CLoadDirectDraw::IsDirectDrawVersion1()
{
if (m_pDirectDraw == NULL)
return FALSE;
IDirectDraw2 *p = NULL;
HRESULT hr = m_pDirectDraw->QueryInterface(IID_IDirectDraw2, (void **)&p);
if (p)
p->Release();
if (hr == NOERROR) {
DbgLog((LOG_TRACE,3,TEXT("Direct Draw Version 2 or greater")));
return FALSE;
} else {
DbgLog((LOG_TRACE,3,TEXT("Direct Draw Version 1")));
return TRUE;
}
}

View file

@ -0,0 +1,168 @@
//------------------------------------------------------------------------------
// File: VideoCtl.h
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef __VIDEOCTL__
#define __VIDEOCTL__
// These help with property page implementations. The first can be used to
// load any string from a resource file. The buffer to load into is passed
// as an input parameter. The same buffer is the return value if the string
// was found otherwise it returns TEXT(""). The GetDialogSize is passed the
// resource ID of a dialog box and returns the size of it in screen pixels
#define STR_MAX_LENGTH 256
LPTSTR WINAPI StringFromResource(__out_ecount(STR_MAX_LENGTH) LPTSTR pBuffer, int iResourceID);
#ifdef UNICODE
#define WideStringFromResource StringFromResource
LPSTR WINAPI StringFromResource(__out_ecount(STR_MAX_LENGTH) LPSTR pBuffer, int iResourceID);
#else
LPWSTR WINAPI WideStringFromResource(__out_ecount(STR_MAX_LENGTH) LPWSTR pBuffer, int iResourceID);
#endif
BOOL WINAPI GetDialogSize(int iResourceID, // Dialog box resource identifier
DLGPROC pDlgProc, // Pointer to dialog procedure
LPARAM lParam, // Any user data wanted in pDlgProc
__out SIZE *pResult);// Returns the size of dialog box
// Class that aggregates an IDirectDraw interface
class CAggDirectDraw : public IDirectDraw, public CUnknown
{
protected:
LPDIRECTDRAW m_pDirectDraw;
public:
DECLARE_IUNKNOWN
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid,__deref_out void **ppv);
// Constructor and destructor
CAggDirectDraw(__in_opt LPCTSTR pName,__inout_opt LPUNKNOWN pUnk) :
CUnknown(pName,pUnk),
m_pDirectDraw(NULL) { };
virtual CAggDirectDraw::~CAggDirectDraw() { };
// Set the object we should be aggregating
void SetDirectDraw(__inout LPDIRECTDRAW pDirectDraw) {
m_pDirectDraw = pDirectDraw;
}
// IDirectDraw methods
STDMETHODIMP Compact();
STDMETHODIMP CreateClipper(DWORD dwFlags,__deref_out LPDIRECTDRAWCLIPPER *lplpDDClipper,__inout_opt IUnknown *pUnkOuter);
STDMETHODIMP CreatePalette(DWORD dwFlags,__in LPPALETTEENTRY lpColorTable,__deref_out LPDIRECTDRAWPALETTE *lplpDDPalette,__inout_opt IUnknown *pUnkOuter);
STDMETHODIMP CreateSurface(__in LPDDSURFACEDESC lpDDSurfaceDesc,__deref_out LPDIRECTDRAWSURFACE *lplpDDSurface,__inout_opt IUnknown *pUnkOuter);
STDMETHODIMP DuplicateSurface(__in LPDIRECTDRAWSURFACE lpDDSurface,__deref_out LPDIRECTDRAWSURFACE *lplpDupDDSurface);
STDMETHODIMP EnumDisplayModes(DWORD dwSurfaceDescCount,__in LPDDSURFACEDESC lplpDDSurfaceDescList,__in LPVOID lpContext,__in LPDDENUMMODESCALLBACK lpEnumCallback);
STDMETHODIMP EnumSurfaces(DWORD dwFlags,__in LPDDSURFACEDESC lpDDSD,__in LPVOID lpContext,__in LPDDENUMSURFACESCALLBACK lpEnumCallback);
STDMETHODIMP FlipToGDISurface();
STDMETHODIMP GetCaps(__out LPDDCAPS lpDDDriverCaps,__out LPDDCAPS lpDDHELCaps);
STDMETHODIMP GetDisplayMode(__out LPDDSURFACEDESC lpDDSurfaceDesc);
STDMETHODIMP GetFourCCCodes(__inout LPDWORD lpNumCodes,__out_ecount(*lpNumCodes) LPDWORD lpCodes);
STDMETHODIMP GetGDISurface(__deref_out LPDIRECTDRAWSURFACE *lplpGDIDDSurface);
STDMETHODIMP GetMonitorFrequency(__out LPDWORD lpdwFrequency);
STDMETHODIMP GetScanLine(__out LPDWORD lpdwScanLine);
STDMETHODIMP GetVerticalBlankStatus(__out LPBOOL lpblsInVB);
STDMETHODIMP Initialize(__in GUID *lpGUID);
STDMETHODIMP RestoreDisplayMode();
STDMETHODIMP SetCooperativeLevel(HWND hWnd,DWORD dwFlags);
STDMETHODIMP SetDisplayMode(DWORD dwWidth,DWORD dwHeight,DWORD dwBpp);
STDMETHODIMP WaitForVerticalBlank(DWORD dwFlags,HANDLE hEvent);
};
// Class that aggregates an IDirectDrawSurface interface
class CAggDrawSurface : public IDirectDrawSurface, public CUnknown
{
protected:
LPDIRECTDRAWSURFACE m_pDirectDrawSurface;
public:
DECLARE_IUNKNOWN
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid,__deref_out void **ppv);
// Constructor and destructor
CAggDrawSurface(__in_opt LPCTSTR pName,__inout_opt LPUNKNOWN pUnk) :
CUnknown(pName,pUnk),
m_pDirectDrawSurface(NULL) { };
virtual ~CAggDrawSurface() { };
// Set the object we should be aggregating
void SetDirectDrawSurface(__inout LPDIRECTDRAWSURFACE pDirectDrawSurface) {
m_pDirectDrawSurface = pDirectDrawSurface;
}
// IDirectDrawSurface methods
STDMETHODIMP AddAttachedSurface(__in LPDIRECTDRAWSURFACE lpDDSAttachedSurface);
STDMETHODIMP AddOverlayDirtyRect(__in LPRECT lpRect);
STDMETHODIMP Blt(__in LPRECT lpDestRect,__in LPDIRECTDRAWSURFACE lpDDSrcSurface,__in LPRECT lpSrcRect,DWORD dwFlags,__in LPDDBLTFX lpDDBltFx);
STDMETHODIMP BltBatch(__in_ecount(dwCount) LPDDBLTBATCH lpDDBltBatch,DWORD dwCount,DWORD dwFlags);
STDMETHODIMP BltFast(DWORD dwX,DWORD dwY,__in LPDIRECTDRAWSURFACE lpDDSrcSurface,__in LPRECT lpSrcRect,DWORD dwTrans);
STDMETHODIMP DeleteAttachedSurface(DWORD dwFlags,__in LPDIRECTDRAWSURFACE lpDDSAttachedSurface);
STDMETHODIMP EnumAttachedSurfaces(__in LPVOID lpContext,__in LPDDENUMSURFACESCALLBACK lpEnumSurfacesCallback);
STDMETHODIMP EnumOverlayZOrders(DWORD dwFlags,__in LPVOID lpContext,__in LPDDENUMSURFACESCALLBACK lpfnCallback);
STDMETHODIMP Flip(__in LPDIRECTDRAWSURFACE lpDDSurfaceTargetOverride,DWORD dwFlags);
STDMETHODIMP GetAttachedSurface(__in LPDDSCAPS lpDDSCaps,__deref_out LPDIRECTDRAWSURFACE *lplpDDAttachedSurface);
STDMETHODIMP GetBltStatus(DWORD dwFlags);
STDMETHODIMP GetCaps(__out LPDDSCAPS lpDDSCaps);
STDMETHODIMP GetClipper(__deref_out LPDIRECTDRAWCLIPPER *lplpDDClipper);
STDMETHODIMP GetColorKey(DWORD dwFlags,__out LPDDCOLORKEY lpDDColorKey);
STDMETHODIMP GetDC(__out HDC *lphDC);
STDMETHODIMP GetFlipStatus(DWORD dwFlags);
STDMETHODIMP GetOverlayPosition(__out LPLONG lpdwX,__out LPLONG lpdwY);
STDMETHODIMP GetPalette(__deref_out LPDIRECTDRAWPALETTE *lplpDDPalette);
STDMETHODIMP GetPixelFormat(__out LPDDPIXELFORMAT lpDDPixelFormat);
STDMETHODIMP GetSurfaceDesc(__out LPDDSURFACEDESC lpDDSurfaceDesc);
STDMETHODIMP Initialize(__in LPDIRECTDRAW lpDD,__in LPDDSURFACEDESC lpDDSurfaceDesc);
STDMETHODIMP IsLost();
STDMETHODIMP Lock(__in LPRECT lpDestRect,__inout LPDDSURFACEDESC lpDDSurfaceDesc,DWORD dwFlags,HANDLE hEvent);
STDMETHODIMP ReleaseDC(HDC hDC);
STDMETHODIMP Restore();
STDMETHODIMP SetClipper(__in LPDIRECTDRAWCLIPPER lpDDClipper);
STDMETHODIMP SetColorKey(DWORD dwFlags,__in LPDDCOLORKEY lpDDColorKey);
STDMETHODIMP SetOverlayPosition(LONG dwX,LONG dwY);
STDMETHODIMP SetPalette(__in LPDIRECTDRAWPALETTE lpDDPalette);
STDMETHODIMP Unlock(__in LPVOID lpSurfaceData);
STDMETHODIMP UpdateOverlay(__in LPRECT lpSrcRect,__in LPDIRECTDRAWSURFACE lpDDDestSurface,__in LPRECT lpDestRect,DWORD dwFlags,__in LPDDOVERLAYFX lpDDOverlayFX);
STDMETHODIMP UpdateOverlayDisplay(DWORD dwFlags);
STDMETHODIMP UpdateOverlayZOrder(DWORD dwFlags,__in LPDIRECTDRAWSURFACE lpDDSReference);
};
class CLoadDirectDraw
{
LPDIRECTDRAW m_pDirectDraw; // The DirectDraw driver instance
HINSTANCE m_hDirectDraw; // Handle to the loaded library
public:
CLoadDirectDraw();
~CLoadDirectDraw();
HRESULT LoadDirectDraw(__in LPSTR szDevice);
void ReleaseDirectDraw();
HRESULT IsDirectDrawLoaded();
LPDIRECTDRAW GetDirectDraw();
BOOL IsDirectDrawVersion1();
};
#endif // __VIDEOCTL__

View file

@ -0,0 +1,468 @@
//------------------------------------------------------------------------------
// File: Vtrans.cpp
//
// Desc: DirectShow base classes.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#include <measure.h>
// #include <vtransfr.h> // now in precomp file streams.h
CVideoTransformFilter::CVideoTransformFilter
( __in_opt LPCTSTR pName, __inout_opt LPUNKNOWN pUnk, REFCLSID clsid)
: CTransformFilter(pName, pUnk, clsid)
, m_itrLate(0)
, m_nKeyFramePeriod(0) // No QM until we see at least 2 key frames
, m_nFramesSinceKeyFrame(0)
, m_bSkipping(FALSE)
, m_tDecodeStart(0)
, m_itrAvgDecode(300000) // 30mSec - probably allows skipping
, m_bQualityChanged(FALSE)
{
#ifdef PERF
RegisterPerfId();
#endif // PERF
}
CVideoTransformFilter::~CVideoTransformFilter()
{
// nothing to do
}
// Reset our quality management state
HRESULT CVideoTransformFilter::StartStreaming()
{
m_itrLate = 0;
m_nKeyFramePeriod = 0; // No QM until we see at least 2 key frames
m_nFramesSinceKeyFrame = 0;
m_bSkipping = FALSE;
m_tDecodeStart = 0;
m_itrAvgDecode = 300000; // 30mSec - probably allows skipping
m_bQualityChanged = FALSE;
m_bSampleSkipped = FALSE;
return NOERROR;
}
// Overriden to reset quality management information
HRESULT CVideoTransformFilter::EndFlush()
{
{
// Synchronize
CAutoLock lck(&m_csReceive);
// Reset our stats
//
// Note - we don't want to call derived classes here,
// we only want to reset our internal variables and this
// is a convenient way to do it
CVideoTransformFilter::StartStreaming();
}
return CTransformFilter::EndFlush();
}
HRESULT CVideoTransformFilter::AbortPlayback(HRESULT hr)
{
NotifyEvent(EC_ERRORABORT, hr, 0);
m_pOutput->DeliverEndOfStream();
return hr;
}
// Receive()
//
// Accept a sample from upstream, decide whether to process it
// or drop it. If we process it then get a buffer from the
// allocator of the downstream connection, transform it into the
// new buffer and deliver it to the downstream filter.
// If we decide not to process it then we do not get a buffer.
// Remember that although this code will notice format changes coming into
// the input pin, it will NOT change its output format if that results
// in the filter needing to make a corresponding output format change. Your
// derived filter will have to take care of that. (eg. a palette change if
// the input and output is an 8 bit format). If the input sample is discarded
// and nothing is sent out for this Receive, please remember to put the format
// change on the first output sample that you actually do send.
// If your filter will produce the same output type even when the input type
// changes, then this base class code will do everything you need.
HRESULT CVideoTransformFilter::Receive(IMediaSample *pSample)
{
// If the next filter downstream is the video renderer, then it may
// be able to operate in DirectDraw mode which saves copying the data
// and gives higher performance. In that case the buffer which we
// get from GetDeliveryBuffer will be a DirectDraw buffer, and
// drawing into this buffer draws directly onto the display surface.
// This means that any waiting for the correct time to draw occurs
// during GetDeliveryBuffer, and that once the buffer is given to us
// the video renderer will count it in its statistics as a frame drawn.
// This means that any decision to drop the frame must be taken before
// calling GetDeliveryBuffer.
ASSERT(CritCheckIn(&m_csReceive));
AM_MEDIA_TYPE *pmtOut, *pmt;
#ifdef DEBUG
FOURCCMap fccOut;
#endif
HRESULT hr;
ASSERT(pSample);
IMediaSample * pOutSample;
// If no output pin to deliver to then no point sending us data
ASSERT (m_pOutput != NULL) ;
// The source filter may dynamically ask us to start transforming from a
// different media type than the one we're using now. If we don't, we'll
// draw garbage. (typically, this is a palette change in the movie,
// but could be something more sinister like the compression type changing,
// or even the video size changing)
#define rcS1 ((VIDEOINFOHEADER *)(pmt->pbFormat))->rcSource
#define rcT1 ((VIDEOINFOHEADER *)(pmt->pbFormat))->rcTarget
pSample->GetMediaType(&pmt);
if (pmt != NULL && pmt->pbFormat != NULL) {
// spew some debug output
ASSERT(!IsEqualGUID(pmt->majortype, GUID_NULL));
#ifdef DEBUG
fccOut.SetFOURCC(&pmt->subtype);
LONG lCompression = HEADER(pmt->pbFormat)->biCompression;
LONG lBitCount = HEADER(pmt->pbFormat)->biBitCount;
LONG lStride = (HEADER(pmt->pbFormat)->biWidth * lBitCount + 7) / 8;
lStride = (lStride + 3) & ~3;
DbgLog((LOG_TRACE,3,TEXT("*Changing input type on the fly to")));
DbgLog((LOG_TRACE,3,TEXT("FourCC: %lx Compression: %lx BitCount: %ld"),
fccOut.GetFOURCC(), lCompression, lBitCount));
DbgLog((LOG_TRACE,3,TEXT("biHeight: %ld rcDst: (%ld, %ld, %ld, %ld)"),
HEADER(pmt->pbFormat)->biHeight,
rcT1.left, rcT1.top, rcT1.right, rcT1.bottom));
DbgLog((LOG_TRACE,3,TEXT("rcSrc: (%ld, %ld, %ld, %ld) Stride: %ld"),
rcS1.left, rcS1.top, rcS1.right, rcS1.bottom,
lStride));
#endif
// now switch to using the new format. I am assuming that the
// derived filter will do the right thing when its media type is
// switched and streaming is restarted.
StopStreaming();
m_pInput->CurrentMediaType() = *pmt;
DeleteMediaType(pmt);
// if this fails, playback will stop, so signal an error
hr = StartStreaming();
if (FAILED(hr)) {
return AbortPlayback(hr);
}
}
// Now that we have noticed any format changes on the input sample, it's
// OK to discard it.
if (ShouldSkipFrame(pSample)) {
MSR_NOTE(m_idSkip);
m_bSampleSkipped = TRUE;
return NOERROR;
}
// Set up the output sample
hr = InitializeOutputSample(pSample, &pOutSample);
if (FAILED(hr)) {
return hr;
}
m_bSampleSkipped = FALSE;
// The renderer may ask us to on-the-fly to start transforming to a
// different format. If we don't obey it, we'll draw garbage
#define rcS ((VIDEOINFOHEADER *)(pmtOut->pbFormat))->rcSource
#define rcT ((VIDEOINFOHEADER *)(pmtOut->pbFormat))->rcTarget
pOutSample->GetMediaType(&pmtOut);
if (pmtOut != NULL && pmtOut->pbFormat != NULL) {
// spew some debug output
ASSERT(!IsEqualGUID(pmtOut->majortype, GUID_NULL));
#ifdef DEBUG
fccOut.SetFOURCC(&pmtOut->subtype);
LONG lCompression = HEADER(pmtOut->pbFormat)->biCompression;
LONG lBitCount = HEADER(pmtOut->pbFormat)->biBitCount;
LONG lStride = (HEADER(pmtOut->pbFormat)->biWidth * lBitCount + 7) / 8;
lStride = (lStride + 3) & ~3;
DbgLog((LOG_TRACE,3,TEXT("*Changing output type on the fly to")));
DbgLog((LOG_TRACE,3,TEXT("FourCC: %lx Compression: %lx BitCount: %ld"),
fccOut.GetFOURCC(), lCompression, lBitCount));
DbgLog((LOG_TRACE,3,TEXT("biHeight: %ld rcDst: (%ld, %ld, %ld, %ld)"),
HEADER(pmtOut->pbFormat)->biHeight,
rcT.left, rcT.top, rcT.right, rcT.bottom));
DbgLog((LOG_TRACE,3,TEXT("rcSrc: (%ld, %ld, %ld, %ld) Stride: %ld"),
rcS.left, rcS.top, rcS.right, rcS.bottom,
lStride));
#endif
// now switch to using the new format. I am assuming that the
// derived filter will do the right thing when its media type is
// switched and streaming is restarted.
StopStreaming();
m_pOutput->CurrentMediaType() = *pmtOut;
DeleteMediaType(pmtOut);
hr = StartStreaming();
if (SUCCEEDED(hr)) {
// a new format, means a new empty buffer, so wait for a keyframe
// before passing anything on to the renderer.
// !!! a keyframe may never come, so give up after 30 frames
DbgLog((LOG_TRACE,3,TEXT("Output format change means we must wait for a keyframe")));
m_nWaitForKey = 30;
// if this fails, playback will stop, so signal an error
} else {
// Must release the sample before calling AbortPlayback
// because we might be holding the win16 lock or
// ddraw lock
pOutSample->Release();
AbortPlayback(hr);
return hr;
}
}
// After a discontinuity, we need to wait for the next key frame
if (pSample->IsDiscontinuity() == S_OK) {
DbgLog((LOG_TRACE,3,TEXT("Non-key discontinuity - wait for keyframe")));
m_nWaitForKey = 30;
}
// Start timing the transform (and log it if PERF is defined)
if (SUCCEEDED(hr)) {
m_tDecodeStart = timeGetTime();
MSR_START(m_idTransform);
// have the derived class transform the data
hr = Transform(pSample, pOutSample);
// Stop the clock (and log it if PERF is defined)
MSR_STOP(m_idTransform);
m_tDecodeStart = timeGetTime()-m_tDecodeStart;
m_itrAvgDecode = m_tDecodeStart*(10000/16) + 15*(m_itrAvgDecode/16);
// Maybe we're waiting for a keyframe still?
if (m_nWaitForKey)
m_nWaitForKey--;
if (m_nWaitForKey && pSample->IsSyncPoint() == S_OK)
m_nWaitForKey = FALSE;
// if so, then we don't want to pass this on to the renderer
if (m_nWaitForKey && hr == NOERROR) {
DbgLog((LOG_TRACE,3,TEXT("still waiting for a keyframe")));
hr = S_FALSE;
}
}
if (FAILED(hr)) {
DbgLog((LOG_TRACE,1,TEXT("Error from video transform")));
} else {
// the Transform() function can return S_FALSE to indicate that the
// sample should not be delivered; we only deliver the sample if it's
// really S_OK (same as NOERROR, of course.)
// Try not to return S_FALSE to a direct draw buffer (it's wasteful)
// Try to take the decision earlier - before you get it.
if (hr == NOERROR) {
hr = m_pOutput->Deliver(pOutSample);
} else {
// S_FALSE returned from Transform is a PRIVATE agreement
// We should return NOERROR from Receive() in this case because returning S_FALSE
// from Receive() means that this is the end of the stream and no more data should
// be sent.
if (S_FALSE == hr) {
// We must Release() the sample before doing anything
// like calling the filter graph because having the
// sample means we may have the DirectDraw lock
// (== win16 lock on some versions)
pOutSample->Release();
m_bSampleSkipped = TRUE;
if (!m_bQualityChanged) {
m_bQualityChanged = TRUE;
NotifyEvent(EC_QUALITY_CHANGE,0,0);
}
return NOERROR;
}
}
}
// release the output buffer. If the connected pin still needs it,
// it will have addrefed it itself.
pOutSample->Release();
ASSERT(CritCheckIn(&m_csReceive));
return hr;
}
BOOL CVideoTransformFilter::ShouldSkipFrame( IMediaSample * pIn)
{
REFERENCE_TIME trStart, trStopAt;
HRESULT hr = pIn->GetTime(&trStart, &trStopAt);
// Don't skip frames with no timestamps
if (hr != S_OK)
return FALSE;
int itrFrame = (int)(trStopAt - trStart); // frame duration
if(S_OK==pIn->IsSyncPoint()) {
MSR_INTEGER(m_idFrameType, 1);
if ( m_nKeyFramePeriod < m_nFramesSinceKeyFrame ) {
// record the max
m_nKeyFramePeriod = m_nFramesSinceKeyFrame;
}
m_nFramesSinceKeyFrame = 0;
m_bSkipping = FALSE;
} else {
MSR_INTEGER(m_idFrameType, 2);
if ( m_nFramesSinceKeyFrame>m_nKeyFramePeriod
&& m_nKeyFramePeriod>0
) {
// We haven't seen the key frame yet, but we were clearly being
// overoptimistic about how frequent they are.
m_nKeyFramePeriod = m_nFramesSinceKeyFrame;
}
}
// Whatever we might otherwise decide,
// if we are taking only a small fraction of the required frame time to decode
// then any quality problems are actually coming from somewhere else.
// Could be a net problem at the source for instance. In this case there's
// no point in us skipping frames here.
if (m_itrAvgDecode*4>itrFrame) {
// Don't skip unless we are at least a whole frame late.
// (We would skip B frames if more than 1/2 frame late, but they're safe).
if ( m_itrLate > itrFrame ) {
// Don't skip unless the anticipated key frame would be no more than
// 1 frame early. If the renderer has not been waiting (we *guess*
// it hasn't because we're late) then it will allow frames to be
// played early by up to a frame.
// Let T = Stream time from now to anticipated next key frame
// = (frame duration) * (KeyFramePeriod - FramesSinceKeyFrame)
// So we skip if T - Late < one frame i.e.
// (duration) * (freq - FramesSince) - Late < duration
// or (duration) * (freq - FramesSince - 1) < Late
// We don't dare skip until we have seen some key frames and have
// some idea how often they occur and they are reasonably frequent.
if (m_nKeyFramePeriod>0) {
// It would be crazy - but we could have a stream with key frames
// a very long way apart - and if they are further than about
// 3.5 minutes apart then we could get arithmetic overflow in
// reference time units. Therefore we switch to mSec at this point
int it = (itrFrame/10000)
* (m_nKeyFramePeriod-m_nFramesSinceKeyFrame - 1);
MSR_INTEGER(m_idTimeTillKey, it);
// For debug - might want to see the details - dump them as scratch pad
#ifdef VTRANSPERF
MSR_INTEGER(0, itrFrame);
MSR_INTEGER(0, m_nFramesSinceKeyFrame);
MSR_INTEGER(0, m_nKeyFramePeriod);
#endif
if (m_itrLate/10000 > it) {
m_bSkipping = TRUE;
// Now we are committed. Once we start skipping, we
// cannot stop until we hit a key frame.
} else {
#ifdef VTRANSPERF
MSR_INTEGER(0, 777770); // not near enough to next key
#endif
}
} else {
#ifdef VTRANSPERF
MSR_INTEGER(0, 777771); // Next key not predictable
#endif
}
} else {
#ifdef VTRANSPERF
MSR_INTEGER(0, 777772); // Less than one frame late
MSR_INTEGER(0, m_itrLate);
MSR_INTEGER(0, itrFrame);
#endif
}
} else {
#ifdef VTRANSPERF
MSR_INTEGER(0, 777773); // Decode time short - not not worth skipping
MSR_INTEGER(0, m_itrAvgDecode);
MSR_INTEGER(0, itrFrame);
#endif
}
++m_nFramesSinceKeyFrame;
if (m_bSkipping) {
// We will count down the lateness as we skip each frame.
// We re-assess each frame. The key frame might not arrive when expected.
// We reset m_itrLate if we get a new Quality message, but actually that's
// not likely because we're not sending frames on to the Renderer. In
// fact if we DID get another one it would mean that there's a long
// pipe between us and the renderer and we might need an altogether
// better strategy to avoid hunting!
m_itrLate = m_itrLate - itrFrame;
}
MSR_INTEGER(m_idLate, (int)m_itrLate/10000 ); // Note how late we think we are
if (m_bSkipping) {
if (!m_bQualityChanged) {
m_bQualityChanged = TRUE;
NotifyEvent(EC_QUALITY_CHANGE,0,0);
}
}
return m_bSkipping;
}
HRESULT CVideoTransformFilter::AlterQuality(Quality q)
{
// to reduce the amount of 64 bit arithmetic, m_itrLate is an int.
// +, -, >, == etc are not too bad, but * and / are painful.
if (m_itrLate>300000000) {
// Avoid overflow and silliness - more than 30 secs late is already silly
m_itrLate = 300000000;
} else {
m_itrLate = (int)q.Late;
}
// We ignore the other fields
// We're actually not very good at handling this. In non-direct draw mode
// most of the time can be spent in the renderer which can skip any frame.
// In that case we'd rather the renderer handled things.
// Nevertheless we will keep an eye on it and if we really start getting
// a very long way behind then we will actually skip - but we'll still tell
// the renderer (or whoever is downstream) that they should handle quality.
return E_FAIL; // Tell the renderer to do his thing.
}
// This will avoid several hundred useless warnings if compiled -W4 by MS VC++ v4
#pragma warning(disable:4514)

View file

@ -0,0 +1,143 @@
//------------------------------------------------------------------------------
// File: VTrans.h
//
// Desc: DirectShow base classes - defines a video transform class.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
// This class is derived from CTransformFilter, but is specialised to handle
// the requirements of video quality control by frame dropping.
// This is a non-in-place transform, (i.e. it copies the data) such as a decoder.
class CVideoTransformFilter : public CTransformFilter
{
public:
CVideoTransformFilter(__in_opt LPCTSTR, __inout_opt LPUNKNOWN, REFCLSID clsid);
~CVideoTransformFilter();
HRESULT EndFlush();
// =================================================================
// ----- override these bits ---------------------------------------
// =================================================================
// The following methods are in CTransformFilter which is inherited.
// They are mentioned here for completeness
//
// These MUST be supplied in a derived class
//
// NOTE:
// virtual HRESULT Transform(IMediaSample * pIn, IMediaSample *pOut);
// virtual HRESULT CheckInputType(const CMediaType* mtIn) PURE;
// virtual HRESULT CheckTransform
// (const CMediaType* mtIn, const CMediaType* mtOut) PURE;
// static CCOMObject * CreateInstance(LPUNKNOWN, HRESULT *);
// virtual HRESULT DecideBufferSize
// (IMemAllocator * pAllocator, ALLOCATOR_PROPERTIES *pprop) PURE;
// virtual HRESULT GetMediaType(int iPosition, CMediaType *pMediaType) PURE;
//
// These MAY also be overridden
//
// virtual HRESULT StopStreaming();
// virtual HRESULT SetMediaType(PIN_DIRECTION direction,const CMediaType *pmt);
// virtual HRESULT CheckConnect(PIN_DIRECTION dir,IPin *pPin);
// virtual HRESULT BreakConnect(PIN_DIRECTION dir);
// virtual HRESULT CompleteConnect(PIN_DIRECTION direction,IPin *pReceivePin);
// virtual HRESULT EndOfStream(void);
// virtual HRESULT BeginFlush(void);
// virtual HRESULT EndFlush(void);
// virtual HRESULT NewSegment
// (REFERENCE_TIME tStart,REFERENCE_TIME tStop,double dRate);
#ifdef PERF
// If you override this - ensure that you register all these ids
// as well as any of your own,
virtual void RegisterPerfId() {
m_idSkip = MSR_REGISTER(TEXT("Video Transform Skip frame"));
m_idFrameType = MSR_REGISTER(TEXT("Video transform frame type"));
m_idLate = MSR_REGISTER(TEXT("Video Transform Lateness"));
m_idTimeTillKey = MSR_REGISTER(TEXT("Video Transform Estd. time to next key"));
CTransformFilter::RegisterPerfId();
}
#endif
protected:
// =========== QUALITY MANAGEMENT IMPLEMENTATION ========================
// Frames are assumed to come in three types:
// Type 1: an AVI key frame or an MPEG I frame.
// This frame can be decoded with no history.
// Dropping this frame means that no further frame can be decoded
// until the next type 1 frame.
// Type 1 frames are sync points.
// Type 2: an AVI non-key frame or an MPEG P frame.
// This frame cannot be decoded unless the previous type 1 frame was
// decoded and all type 2 frames since have been decoded.
// Dropping this frame means that no further frame can be decoded
// until the next type 1 frame.
// Type 3: An MPEG B frame.
// This frame cannot be decoded unless the previous type 1 or 2 frame
// has been decoded AND the subsequent type 1 or 2 frame has also
// been decoded. (This requires decoding the frames out of sequence).
// Dropping this frame affects no other frames. This implementation
// does not allow for these. All non-sync-point frames are treated
// as being type 2.
//
// The spacing of frames of type 1 in a file is not guaranteed. There MUST
// be a type 1 frame at (well, near) the start of the file in order to start
// decoding at all. After that there could be one every half second or so,
// there could be one at the start of each scene (aka "cut", "shot") or
// there could be no more at all.
// If there is only a single type 1 frame then NO FRAMES CAN BE DROPPED
// without losing all the rest of the movie. There is no way to tell whether
// this is the case, so we find that we are in the gambling business.
// To try to improve the odds, we record the greatest interval between type 1s
// that we have seen and we bet on things being no worse than this in the
// future.
// You can tell if it's a type 1 frame by calling IsSyncPoint().
// there is no architected way to test for a type 3, so you should override
// the quality management here if you have B-frames.
int m_nKeyFramePeriod; // the largest observed interval between type 1 frames
// 1 means every frame is type 1, 2 means every other.
int m_nFramesSinceKeyFrame; // Used to count frames since the last type 1.
// becomes the new m_nKeyFramePeriod if greater.
BOOL m_bSkipping; // we are skipping to the next type 1 frame
#ifdef PERF
int m_idFrameType; // MSR id Frame type. 1=Key, 2="non-key"
int m_idSkip; // MSR id skipping
int m_idLate; // MSR id lateness
int m_idTimeTillKey; // MSR id for guessed time till next key frame.
#endif
virtual HRESULT StartStreaming();
HRESULT AbortPlayback(HRESULT hr); // if something bad happens
HRESULT Receive(IMediaSample *pSample);
HRESULT AlterQuality(Quality q);
BOOL ShouldSkipFrame(IMediaSample * pIn);
int m_itrLate; // lateness from last Quality message
// (this overflows at 214 secs late).
int m_tDecodeStart; // timeGetTime when decode started.
int m_itrAvgDecode; // Average decode time in reference units.
BOOL m_bNoSkip; // debug - no skipping.
// We send an EC_QUALITY_CHANGE notification to the app if we have to degrade.
// We send one when we start degrading, not one for every frame, this means
// we track whether we've sent one yet.
BOOL m_bQualityChanged;
// When non-zero, don't pass anything to renderer until next keyframe
// If there are few keys, give up and eventually draw something
int m_nWaitForKey;
};

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,224 @@
//------------------------------------------------------------------------------
// File: WinCtrl.h
//
// Desc: DirectShow base classes - defines classes for video control
// interfaces.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef __WINCTRL__
#define __WINCTRL__
#define ABSOL(x) (x < 0 ? -x : x)
#define NEGAT(x) (x > 0 ? -x : x)
// Helper
BOOL WINAPI PossiblyEatMessage(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam);
class CBaseControlWindow : public CBaseVideoWindow, public CBaseWindow
{
protected:
CBaseFilter *m_pFilter; // Pointer to owning media filter
CBasePin *m_pPin; // Controls media types for connection
CCritSec *m_pInterfaceLock; // Externally defined critical section
COLORREF m_BorderColour; // Current window border colour
BOOL m_bAutoShow; // What happens when the state changes
HWND m_hwndOwner; // Owner window that we optionally have
HWND m_hwndDrain; // HWND to post any messages received
BOOL m_bCursorHidden; // Should we hide the window cursor
public:
// Internal methods for other objects to get information out
HRESULT DoSetWindowStyle(long Style,long WindowLong);
HRESULT DoGetWindowStyle(__out long *pStyle,long WindowLong);
BOOL IsAutoShowEnabled() { return m_bAutoShow; };
COLORREF GetBorderColour() { return m_BorderColour; };
HWND GetOwnerWindow() { return m_hwndOwner; };
BOOL IsCursorHidden() { return m_bCursorHidden; };
inline BOOL PossiblyEatMessage(UINT uMsg, WPARAM wParam, LPARAM lParam)
{
return ::PossiblyEatMessage(m_hwndDrain, uMsg, wParam, lParam);
}
// Derived classes must call this to set the pin the filter is using
// We don't have the pin passed in to the constructor (as we do with
// the CBaseFilter object) because filters typically create the
// pins dynamically when requested in CBaseFilter::GetPin. This can
// not be called from our constructor because is is a virtual method
void SetControlWindowPin(CBasePin *pPin) {
m_pPin = pPin;
}
public:
CBaseControlWindow(__inout CBaseFilter *pFilter, // Owning media filter
__in CCritSec *pInterfaceLock, // Locking object
__in_opt LPCTSTR pName, // Object description
__inout_opt LPUNKNOWN pUnk, // Normal COM ownership
__inout HRESULT *phr); // OLE return code
// These are the properties we support
STDMETHODIMP put_Caption(__in BSTR strCaption);
STDMETHODIMP get_Caption(__out BSTR *pstrCaption);
STDMETHODIMP put_AutoShow(long AutoShow);
STDMETHODIMP get_AutoShow(__out long *AutoShow);
STDMETHODIMP put_WindowStyle(long WindowStyle);
STDMETHODIMP get_WindowStyle(__out long *pWindowStyle);
STDMETHODIMP put_WindowStyleEx(long WindowStyleEx);
STDMETHODIMP get_WindowStyleEx(__out long *pWindowStyleEx);
STDMETHODIMP put_WindowState(long WindowState);
STDMETHODIMP get_WindowState(__out long *pWindowState);
STDMETHODIMP put_BackgroundPalette(long BackgroundPalette);
STDMETHODIMP get_BackgroundPalette(__out long *pBackgroundPalette);
STDMETHODIMP put_Visible(long Visible);
STDMETHODIMP get_Visible(__out long *pVisible);
STDMETHODIMP put_Left(long Left);
STDMETHODIMP get_Left(__out long *pLeft);
STDMETHODIMP put_Width(long Width);
STDMETHODIMP get_Width(__out long *pWidth);
STDMETHODIMP put_Top(long Top);
STDMETHODIMP get_Top(__out long *pTop);
STDMETHODIMP put_Height(long Height);
STDMETHODIMP get_Height(__out long *pHeight);
STDMETHODIMP put_Owner(OAHWND Owner);
STDMETHODIMP get_Owner(__out OAHWND *Owner);
STDMETHODIMP put_MessageDrain(OAHWND Drain);
STDMETHODIMP get_MessageDrain(__out OAHWND *Drain);
STDMETHODIMP get_BorderColor(__out long *Color);
STDMETHODIMP put_BorderColor(long Color);
STDMETHODIMP get_FullScreenMode(__out long *FullScreenMode);
STDMETHODIMP put_FullScreenMode(long FullScreenMode);
// And these are the methods
STDMETHODIMP SetWindowForeground(long Focus);
STDMETHODIMP NotifyOwnerMessage(OAHWND hwnd,long uMsg,LONG_PTR wParam,LONG_PTR lParam);
STDMETHODIMP GetMinIdealImageSize(__out long *pWidth,__out long *pHeight);
STDMETHODIMP GetMaxIdealImageSize(__out long *pWidth,__out long *pHeight);
STDMETHODIMP SetWindowPosition(long Left,long Top,long Width,long Height);
STDMETHODIMP GetWindowPosition(__out long *pLeft,__out long *pTop,__out long *pWidth,__out long *pHeight);
STDMETHODIMP GetRestorePosition(__out long *pLeft,__out long *pTop,__out long *pWidth,__out long *pHeight);
STDMETHODIMP HideCursor(long HideCursor);
STDMETHODIMP IsCursorHidden(__out long *CursorHidden);
};
// This class implements the IBasicVideo interface
class CBaseControlVideo : public CBaseBasicVideo
{
protected:
CBaseFilter *m_pFilter; // Pointer to owning media filter
CBasePin *m_pPin; // Controls media types for connection
CCritSec *m_pInterfaceLock; // Externally defined critical section
public:
// Derived classes must provide these for the implementation
virtual HRESULT IsDefaultTargetRect() PURE;
virtual HRESULT SetDefaultTargetRect() PURE;
virtual HRESULT SetTargetRect(RECT *pTargetRect) PURE;
virtual HRESULT GetTargetRect(RECT *pTargetRect) PURE;
virtual HRESULT IsDefaultSourceRect() PURE;
virtual HRESULT SetDefaultSourceRect() PURE;
virtual HRESULT SetSourceRect(RECT *pSourceRect) PURE;
virtual HRESULT GetSourceRect(RECT *pSourceRect) PURE;
virtual HRESULT GetStaticImage(__inout long *pBufferSize,__out_bcount_part(*pBufferSize, *pBufferSize) long *pDIBImage) PURE;
// Derived classes must override this to return a VIDEOINFO representing
// the video format. We cannot call IPin ConnectionMediaType to get this
// format because various filters dynamically change the type when using
// DirectDraw such that the format shows the position of the logical
// bitmap in a frame buffer surface, so the size might be returned as
// 1024x768 pixels instead of 320x240 which is the real video dimensions
__out virtual VIDEOINFOHEADER *GetVideoFormat() PURE;
// Helper functions for creating memory renderings of a DIB image
HRESULT GetImageSize(__in VIDEOINFOHEADER *pVideoInfo,
__out LONG *pBufferSize,
__in RECT *pSourceRect);
HRESULT CopyImage(IMediaSample *pMediaSample,
__in VIDEOINFOHEADER *pVideoInfo,
__inout LONG *pBufferSize,
__out_bcount_part(*pBufferSize, *pBufferSize) BYTE *pVideoImage,
__in RECT *pSourceRect);
// Override this if you want notifying when the rectangles change
virtual HRESULT OnUpdateRectangles() { return NOERROR; };
virtual HRESULT OnVideoSizeChange();
// Derived classes must call this to set the pin the filter is using
// We don't have the pin passed in to the constructor (as we do with
// the CBaseFilter object) because filters typically create the
// pins dynamically when requested in CBaseFilter::GetPin. This can
// not be called from our constructor because is is a virtual method
void SetControlVideoPin(__inout CBasePin *pPin) {
m_pPin = pPin;
}
// Helper methods for checking rectangles
virtual HRESULT CheckSourceRect(__in RECT *pSourceRect);
virtual HRESULT CheckTargetRect(__in RECT *pTargetRect);
public:
CBaseControlVideo(__inout CBaseFilter *pFilter, // Owning media filter
__in CCritSec *pInterfaceLock, // Serialise interface
__in_opt LPCTSTR pName, // Object description
__inout_opt LPUNKNOWN pUnk, // Normal COM ownership
__inout HRESULT *phr); // OLE return code
// These are the properties we support
STDMETHODIMP get_AvgTimePerFrame(__out REFTIME *pAvgTimePerFrame);
STDMETHODIMP get_BitRate(__out long *pBitRate);
STDMETHODIMP get_BitErrorRate(__out long *pBitErrorRate);
STDMETHODIMP get_VideoWidth(__out long *pVideoWidth);
STDMETHODIMP get_VideoHeight(__out long *pVideoHeight);
STDMETHODIMP put_SourceLeft(long SourceLeft);
STDMETHODIMP get_SourceLeft(__out long *pSourceLeft);
STDMETHODIMP put_SourceWidth(long SourceWidth);
STDMETHODIMP get_SourceWidth(__out long *pSourceWidth);
STDMETHODIMP put_SourceTop(long SourceTop);
STDMETHODIMP get_SourceTop(__out long *pSourceTop);
STDMETHODIMP put_SourceHeight(long SourceHeight);
STDMETHODIMP get_SourceHeight(__out long *pSourceHeight);
STDMETHODIMP put_DestinationLeft(long DestinationLeft);
STDMETHODIMP get_DestinationLeft(__out long *pDestinationLeft);
STDMETHODIMP put_DestinationWidth(long DestinationWidth);
STDMETHODIMP get_DestinationWidth(__out long *pDestinationWidth);
STDMETHODIMP put_DestinationTop(long DestinationTop);
STDMETHODIMP get_DestinationTop(__out long *pDestinationTop);
STDMETHODIMP put_DestinationHeight(long DestinationHeight);
STDMETHODIMP get_DestinationHeight(__out long *pDestinationHeight);
// And these are the methods
STDMETHODIMP GetVideoSize(__out long *pWidth,__out long *pHeight);
STDMETHODIMP SetSourcePosition(long Left,long Top,long Width,long Height);
STDMETHODIMP GetSourcePosition(__out long *pLeft,__out long *pTop,__out long *pWidth,__out long *pHeight);
STDMETHODIMP GetVideoPaletteEntries(long StartIndex,long Entries,__out long *pRetrieved,__out_ecount_part(Entries, *pRetrieved) long *pPalette);
STDMETHODIMP SetDefaultSourcePosition();
STDMETHODIMP IsUsingDefaultSource();
STDMETHODIMP SetDestinationPosition(long Left,long Top,long Width,long Height);
STDMETHODIMP GetDestinationPosition(__out long *pLeft,__out long *pTop,__out long *pWidth,__out long *pHeight);
STDMETHODIMP SetDefaultDestinationPosition();
STDMETHODIMP IsUsingDefaultDestination();
STDMETHODIMP GetCurrentImage(__inout long *pBufferSize,__out_bcount_part(*pBufferSize, *pBufferSize) long *pVideoImage);
};
#endif // __WINCTRL__

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,419 @@
//------------------------------------------------------------------------------
// File: WinUtil.h
//
// Desc: DirectShow base classes - defines generic handler classes.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
// Make sure that you call PrepareWindow to initialise the window after
// the object has been constructed. It is a separate method so that
// derived classes can override useful methods like MessageLoop. Also
// any derived class must call DoneWithWindow in its destructor. If it
// doesn't a message may be retrieved and call a derived class member
// function while a thread is executing the base class destructor code
#ifndef __WINUTIL__
#define __WINUTIL__
const int DEFWIDTH = 320; // Initial window width
const int DEFHEIGHT = 240; // Initial window height
const int CAPTION = 256; // Maximum length of caption
const int TIMELENGTH = 50; // Maximum length of times
const int PROFILESTR = 128; // Normal profile string
const WORD PALVERSION = 0x300; // GDI palette version
const LONG PALETTE_VERSION = (LONG) 1; // Initial palette version
const COLORREF VIDEO_COLOUR = 0; // Defaults to black background
const HANDLE hMEMORY = (HANDLE) (-1); // Says to open as memory file
#define WIDTH(x) ((*(x)).right - (*(x)).left)
#define HEIGHT(x) ((*(x)).bottom - (*(x)).top)
#define SHOWSTAGE TEXT("WM_SHOWSTAGE")
#define SHOWSTAGETOP TEXT("WM_SHOWSTAGETOP")
#define REALIZEPALETTE TEXT("WM_REALIZEPALETTE")
class AM_NOVTABLE CBaseWindow
{
protected:
HINSTANCE m_hInstance; // Global module instance handle
HWND m_hwnd; // Handle for our window
HDC m_hdc; // Device context for the window
LONG m_Width; // Client window width
LONG m_Height; // Client window height
BOOL m_bActivated; // Has the window been activated
LPTSTR m_pClassName; // Static string holding class name
DWORD m_ClassStyles; // Passed in to our constructor
DWORD m_WindowStyles; // Likewise the initial window styles
DWORD m_WindowStylesEx; // And the extended window styles
UINT m_ShowStageMessage; // Have the window shown with focus
UINT m_ShowStageTop; // Makes the window WS_EX_TOPMOST
UINT m_RealizePalette; // Makes us realize our new palette
HDC m_MemoryDC; // Used for fast BitBlt operations
HPALETTE m_hPalette; // Handle to any palette we may have
BYTE m_bNoRealize; // Don't realize palette now
BYTE m_bBackground; // Should we realise in background
BYTE m_bRealizing; // already realizing the palette
CCritSec m_WindowLock; // Serialise window object access
BOOL m_bDoGetDC; // Should this window get a DC
bool m_bDoPostToDestroy; // Use PostMessage to destroy
CCritSec m_PaletteLock; // This lock protects m_hPalette.
// It should be held anytime the
// program use the value of m_hPalette.
// Maps windows message procedure into C++ methods
friend LRESULT CALLBACK WndProc(HWND hwnd, // Window handle
UINT uMsg, // Message ID
WPARAM wParam, // First parameter
LPARAM lParam); // Other parameter
virtual LRESULT OnPaletteChange(HWND hwnd, UINT Message);
public:
CBaseWindow(BOOL bDoGetDC = TRUE, bool bPostToDestroy = false);
#ifdef DEBUG
virtual ~CBaseWindow();
#endif
virtual HRESULT DoneWithWindow();
virtual HRESULT PrepareWindow();
virtual HRESULT InactivateWindow();
virtual HRESULT ActivateWindow();
virtual BOOL OnSize(LONG Width, LONG Height);
virtual BOOL OnClose();
virtual RECT GetDefaultRect();
virtual HRESULT UninitialiseWindow();
virtual HRESULT InitialiseWindow(HWND hwnd);
HRESULT CompleteConnect();
HRESULT DoCreateWindow();
HRESULT PerformanceAlignWindow();
HRESULT DoShowWindow(LONG ShowCmd);
void PaintWindow(BOOL bErase);
void DoSetWindowForeground(BOOL bFocus);
virtual HRESULT SetPalette(HPALETTE hPalette);
void SetRealize(BOOL bRealize)
{
m_bNoRealize = !bRealize;
}
// Jump over to the window thread to set the current palette
HRESULT SetPalette();
void UnsetPalette(void);
virtual HRESULT DoRealisePalette(BOOL bForceBackground = FALSE);
void LockPaletteLock();
void UnlockPaletteLock();
virtual BOOL PossiblyEatMessage(UINT uMsg, WPARAM wParam, LPARAM lParam)
{ return FALSE; };
// Access our window information
bool WindowExists();
LONG GetWindowWidth();
LONG GetWindowHeight();
HWND GetWindowHWND();
HDC GetMemoryHDC();
HDC GetWindowHDC();
#ifdef DEBUG
HPALETTE GetPalette();
#endif // DEBUG
// This is the window procedure the derived object should override
virtual LRESULT OnReceiveMessage(HWND hwnd, // Window handle
UINT uMsg, // Message ID
WPARAM wParam, // First parameter
LPARAM lParam); // Other parameter
// Must be overriden to return class and window styles
virtual LPTSTR GetClassWindowStyles(
__out DWORD *pClassStyles, // Class styles
__out DWORD *pWindowStyles, // Window styles
__out DWORD *pWindowStylesEx) PURE; // Extended styles
};
// This helper class is entirely subservient to the owning CBaseWindow object
// All this object does is to split out the actual drawing operation from the
// main object (because it was becoming too large). We have a number of entry
// points to set things like the draw device contexts, to implement the actual
// drawing and to set the destination rectangle in the client window. We have
// no critical section locking in this class because we are used exclusively
// by the owning window object which looks after serialising calls into us
// If you want to use this class make sure you call NotifyAllocator once the
// allocate has been agreed, also call NotifyMediaType with a pointer to a
// NON stack based CMediaType once that has been set (we keep a pointer to
// the original rather than taking a copy). When the palette changes call
// IncrementPaletteVersion (easiest thing to do is to also call this method
// in the SetMediaType method most filters implement). Finally before you
// start rendering anything call SetDrawContext so that we can get the HDCs
// for drawing from the CBaseWindow object we are given during construction
class CDrawImage
{
protected:
CBaseWindow *m_pBaseWindow; // Owning video window object
CRefTime m_StartSample; // Start time for the current sample
CRefTime m_EndSample; // And likewise it's end sample time
HDC m_hdc; // Main window device context
HDC m_MemoryDC; // Offscreen draw device context
RECT m_TargetRect; // Target destination rectangle
RECT m_SourceRect; // Source image rectangle
BOOL m_bStretch; // Do we have to stretch the images
BOOL m_bUsingImageAllocator; // Are the samples shared DIBSECTIONs
CMediaType *m_pMediaType; // Pointer to the current format
int m_perfidRenderTime; // Time taken to render an image
LONG m_PaletteVersion; // Current palette version cookie
// Draw the video images in the window
void SlowRender(IMediaSample *pMediaSample);
void FastRender(IMediaSample *pMediaSample);
void DisplaySampleTimes(IMediaSample *pSample);
void UpdateColourTable(HDC hdc,__in BITMAPINFOHEADER *pbmi);
void SetStretchMode();
public:
// Used to control the image drawing
CDrawImage(__inout CBaseWindow *pBaseWindow);
BOOL DrawImage(IMediaSample *pMediaSample);
BOOL DrawVideoImageHere(HDC hdc, IMediaSample *pMediaSample,
__in LPRECT lprcSrc, __in LPRECT lprcDst);
void SetDrawContext();
void SetTargetRect(__in RECT *pTargetRect);
void SetSourceRect(__in RECT *pSourceRect);
void GetTargetRect(__out RECT *pTargetRect);
void GetSourceRect(__out RECT *pSourceRect);
virtual RECT ScaleSourceRect(const RECT *pSource);
// Handle updating palettes as they change
LONG GetPaletteVersion();
void ResetPaletteVersion();
void IncrementPaletteVersion();
// Tell us media types and allocator assignments
void NotifyAllocator(BOOL bUsingImageAllocator);
void NotifyMediaType(__in CMediaType *pMediaType);
BOOL UsingImageAllocator();
// Called when we are about to draw an image
void NotifyStartDraw() {
MSR_START(m_perfidRenderTime);
};
// Called when we complete an image rendering
void NotifyEndDraw() {
MSR_STOP(m_perfidRenderTime);
};
};
// This is the structure used to keep information about each GDI DIB. All the
// samples we create from our allocator will have a DIBSECTION allocated to
// them. When we receive the sample we know we can BitBlt straight to an HDC
typedef struct tagDIBDATA {
LONG PaletteVersion; // Current palette version in use
DIBSECTION DibSection; // Details of DIB section allocated
HBITMAP hBitmap; // Handle to bitmap for drawing
HANDLE hMapping; // Handle to shared memory block
BYTE *pBase; // Pointer to base memory address
} DIBDATA;
// This class inherits from CMediaSample and uses all of it's methods but it
// overrides the constructor to initialise itself with the DIBDATA structure
// When we come to render an IMediaSample we will know if we are using our own
// allocator, and if we are, we can cast the IMediaSample to a pointer to one
// of these are retrieve the DIB section information and hence the HBITMAP
class CImageSample : public CMediaSample
{
protected:
DIBDATA m_DibData; // Information about the DIBSECTION
BOOL m_bInit; // Is the DIB information setup
public:
// Constructor
CImageSample(__inout CBaseAllocator *pAllocator,
__in_opt LPCTSTR pName,
__inout HRESULT *phr,
__in_bcount(length) LPBYTE pBuffer,
LONG length);
// Maintain the DIB/DirectDraw state
void SetDIBData(__in DIBDATA *pDibData);
__out DIBDATA *GetDIBData();
};
// This is an allocator based on the abstract CBaseAllocator base class that
// allocates sample buffers in shared memory. The number and size of these
// are determined when the output pin calls Prepare on us. The shared memory
// blocks are used in subsequent calls to GDI CreateDIBSection, once that
// has been done the output pin can fill the buffers with data which will
// then be handed to GDI through BitBlt calls and thereby remove one copy
class CImageAllocator : public CBaseAllocator
{
protected:
CBaseFilter *m_pFilter; // Delegate reference counts to
CMediaType *m_pMediaType; // Pointer to the current format
// Used to create and delete samples
HRESULT Alloc();
void Free();
// Manage the shared DIBSECTION and DCI/DirectDraw buffers
HRESULT CreateDIB(LONG InSize,DIBDATA &DibData);
STDMETHODIMP CheckSizes(__in ALLOCATOR_PROPERTIES *pRequest);
virtual CImageSample *CreateImageSample(__in_bcount(Length) LPBYTE pData,LONG Length);
public:
// Constructor and destructor
CImageAllocator(__inout CBaseFilter *pFilter,__in_opt LPCTSTR pName,__inout HRESULT *phr);
#ifdef DEBUG
~CImageAllocator();
#endif
STDMETHODIMP_(ULONG) NonDelegatingAddRef();
STDMETHODIMP_(ULONG) NonDelegatingRelease();
void NotifyMediaType(__in CMediaType *pMediaType);
// Agree the number of buffers to be used and their size
STDMETHODIMP SetProperties(
__in ALLOCATOR_PROPERTIES *pRequest,
__out ALLOCATOR_PROPERTIES *pActual);
};
// This class is a fairly specialised helper class for image renderers that
// have to create and manage palettes. The CBaseWindow class looks after
// realising palettes once they have been installed. This class can be used
// to create the palette handles from a media format (which must contain a
// VIDEOINFO structure in the format block). We try to make the palette an
// identity palette to maximise performance and also only change palettes
// if actually required to (we compare palette colours before updating).
// All the methods are virtual so that they can be overriden if so required
class CImagePalette
{
protected:
CBaseWindow *m_pBaseWindow; // Window to realise palette in
CBaseFilter *m_pFilter; // Media filter to send events
CDrawImage *m_pDrawImage; // Object who will be drawing
HPALETTE m_hPalette; // The palette handle we own
public:
CImagePalette(__inout CBaseFilter *pBaseFilter,
__inout CBaseWindow *pBaseWindow,
__inout CDrawImage *pDrawImage);
#ifdef DEBUG
virtual ~CImagePalette();
#endif
static HPALETTE MakePalette(const VIDEOINFOHEADER *pVideoInfo, __in LPSTR szDevice);
HRESULT RemovePalette();
static HRESULT MakeIdentityPalette(__inout_ecount_full(iColours) PALETTEENTRY *pEntry,INT iColours, __in LPSTR szDevice);
HRESULT CopyPalette(const CMediaType *pSrc,__out CMediaType *pDest);
BOOL ShouldUpdate(const VIDEOINFOHEADER *pNewInfo,const VIDEOINFOHEADER *pOldInfo);
HRESULT PreparePalette(const CMediaType *pmtNew,const CMediaType *pmtOld,__in LPSTR szDevice);
BOOL DrawVideoImageHere(HDC hdc, IMediaSample *pMediaSample, __in LPRECT lprcSrc, __in LPRECT lprcDst)
{
return m_pDrawImage->DrawVideoImageHere(hdc, pMediaSample, lprcSrc,lprcDst);
}
};
// Another helper class really for video based renderers. Most such renderers
// need to know what the display format is to some degree or another. This
// class initialises itself with the display format. The format can be asked
// for through GetDisplayFormat and various other accessor functions. If a
// filter detects a display format change (perhaps it gets a WM_DEVMODECHANGE
// message then it can call RefreshDisplayType to reset that format). Also
// many video renderers will want to check formats as they are proposed by
// source filters. This class provides methods to check formats and only
// accept those video formats that can be efficiently drawn using GDI calls
class CImageDisplay : public CCritSec
{
protected:
// This holds the display format; biSize should not be too big, so we can
// safely use the VIDEOINFO structure
VIDEOINFO m_Display;
static DWORD CountSetBits(const DWORD Field);
static DWORD CountPrefixBits(const DWORD Field);
static BOOL CheckBitFields(const VIDEOINFO *pInput);
public:
// Constructor and destructor
CImageDisplay();
// Used to manage BITMAPINFOHEADERs and the display format
const VIDEOINFO *GetDisplayFormat();
HRESULT RefreshDisplayType(__in_opt LPSTR szDeviceName);
static BOOL CheckHeaderValidity(const VIDEOINFO *pInput);
static BOOL CheckPaletteHeader(const VIDEOINFO *pInput);
BOOL IsPalettised();
WORD GetDisplayDepth();
// Provide simple video format type checking
HRESULT CheckMediaType(const CMediaType *pmtIn);
HRESULT CheckVideoType(const VIDEOINFO *pInput);
HRESULT UpdateFormat(__inout VIDEOINFO *pVideoInfo);
const DWORD *GetBitMasks(const VIDEOINFO *pVideoInfo);
BOOL GetColourMask(__out DWORD *pMaskRed,
__out DWORD *pMaskGreen,
__out DWORD *pMaskBlue);
};
// Convert a FORMAT_VideoInfo to FORMAT_VideoInfo2
STDAPI ConvertVideoInfoToVideoInfo2(__inout AM_MEDIA_TYPE *pmt);
// Check a media type containing VIDEOINFOHEADER
STDAPI CheckVideoInfoType(const AM_MEDIA_TYPE *pmt);
// Check a media type containing VIDEOINFOHEADER
STDAPI CheckVideoInfo2Type(const AM_MEDIA_TYPE *pmt);
#endif // __WINUTIL__

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,359 @@
//------------------------------------------------------------------------------
// File: WXDebug.h
//
// Desc: DirectShow base classes - provides debugging facilities.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef __WXDEBUG__
#define __WXDEBUG__
// This library provides fairly straight forward debugging functionality, this
// is split into two main sections. The first is assertion handling, there are
// three types of assertions provided here. The most commonly used one is the
// ASSERT(condition) macro which will pop up a message box including the file
// and line number if the condition evaluates to FALSE. Then there is the
// EXECUTE_ASSERT macro which is the same as ASSERT except the condition will
// still be executed in NON debug builds. The final type of assertion is the
// KASSERT macro which is more suitable for pure (perhaps kernel) filters as
// the condition is printed onto the debugger rather than in a message box.
//
// The other part of the debug module facilties is general purpose logging.
// This is accessed by calling DbgLog(). The function takes a type and level
// field which define the type of informational string you are presenting and
// it's relative importance. The type field can be a combination (one or more)
// of LOG_TIMING, LOG_TRACE, LOG_MEMORY, LOG_LOCKING and LOG_ERROR. The level
// is a DWORD value where zero defines highest important. Use of zero as the
// debug logging level is to be encouraged ONLY for major errors or events as
// they will ALWAYS be displayed on the debugger. Other debug output has it's
// level matched against the current debug output level stored in the registry
// for this module and if less than the current setting it will be displayed.
//
// Each module or executable has it's own debug output level for each of the
// five types. These are read in when the DbgInitialise function is called
// for DLLs linking to STRMBASE.LIB this is done automatically when the DLL
// is loaded, executables must call it explicitely with the module instance
// handle given to them through the WINMAIN entry point. An executable must
// also call DbgTerminate when they have finished to clean up the resources
// the debug library uses, once again this is done automatically for DLLs
// These are the five different categories of logging information
enum { LOG_TIMING = 0x01, // Timing and performance measurements
LOG_TRACE = 0x02, // General step point call tracing
LOG_MEMORY = 0x04, // Memory and object allocation/destruction
LOG_LOCKING = 0x08, // Locking/unlocking of critical sections
LOG_ERROR = 0x10, // Debug error notification
LOG_CUSTOM1 = 0x20,
LOG_CUSTOM2 = 0x40,
LOG_CUSTOM3 = 0x80,
LOG_CUSTOM4 = 0x100,
LOG_CUSTOM5 = 0x200,
};
#define LOG_FORCIBLY_SET 0x80000000
enum { CDISP_HEX = 0x01,
CDISP_DEC = 0x02};
// For each object created derived from CBaseObject (in debug builds) we
// create a descriptor that holds it's name (statically allocated memory)
// and a cookie we assign it. We keep a list of all the active objects
// we have registered so that we can dump a list of remaining objects
typedef struct tag_ObjectDesc {
LPCSTR m_szName;
LPCWSTR m_wszName;
DWORD m_dwCookie;
tag_ObjectDesc *m_pNext;
} ObjectDesc;
#define DLLIMPORT __declspec(dllimport)
#define DLLEXPORT __declspec(dllexport)
#ifdef DEBUG
#define NAME(x) TEXT(x)
// These are used internally by the debug library (PRIVATE)
void WINAPI DbgInitKeyLevels(HKEY hKey, bool fTakeMax);
void WINAPI DbgInitGlobalSettings(bool fTakeMax);
void WINAPI DbgInitModuleSettings(bool fTakeMax);
void WINAPI DbgInitModuleName();
DWORD WINAPI DbgRegisterObjectCreation(
LPCSTR szObjectName, LPCWSTR wszObjectName);
BOOL WINAPI DbgRegisterObjectDestruction(DWORD dwCookie);
// These are the PUBLIC entry points
BOOL WINAPI DbgCheckModuleLevel(DWORD Type,DWORD Level);
void WINAPI DbgSetModuleLevel(DWORD Type,DWORD Level);
void WINAPI DbgSetAutoRefreshLevels(bool fAuto);
// Initialise the library with the module handle
void WINAPI DbgInitialise(HINSTANCE hInst);
void WINAPI DbgTerminate();
void WINAPI DbgDumpObjectRegister();
// Display error and logging to the user
void WINAPI DbgAssert(LPCTSTR pCondition,LPCTSTR pFileName,INT iLine);
void WINAPI DbgBreakPoint(LPCTSTR pCondition,LPCTSTR pFileName,INT iLine);
void WINAPI DbgBreakPoint(LPCTSTR pFileName,INT iLine,__format_string LPCTSTR szFormatString,...);
void WINAPI DbgKernelAssert(LPCTSTR pCondition,LPCTSTR pFileName,INT iLine);
void WINAPI DbgLogInfo(DWORD Type,DWORD Level,__format_string LPCTSTR pFormat,...);
#ifdef UNICODE
void WINAPI DbgLogInfo(DWORD Type,DWORD Level,__format_string LPCSTR pFormat,...);
void WINAPI DbgAssert(LPCSTR pCondition,LPCSTR pFileName,INT iLine);
void WINAPI DbgBreakPoint(LPCSTR pCondition,LPCSTR pFileName,INT iLine);
void WINAPI DbgKernelAssert(LPCSTR pCondition,LPCSTR pFileName,INT iLine);
#endif
void WINAPI DbgOutString(LPCTSTR psz);
// Debug infinite wait stuff
DWORD WINAPI DbgWaitForSingleObject(HANDLE h);
DWORD WINAPI DbgWaitForMultipleObjects(DWORD nCount,
__in_ecount(nCount) CONST HANDLE *lpHandles,
BOOL bWaitAll);
void WINAPI DbgSetWaitTimeout(DWORD dwTimeout);
#ifdef __strmif_h__
// Display a media type: Terse at level 2, verbose at level 5
void WINAPI DisplayType(LPCTSTR label, const AM_MEDIA_TYPE *pmtIn);
// Dump lots of information about a filter graph
void WINAPI DumpGraph(IFilterGraph *pGraph, DWORD dwLevel);
#endif
#define KASSERT(_x_) if (!(_x_)) \
DbgKernelAssert(TEXT(#_x_),TEXT(__FILE__),__LINE__)
// Break on the debugger without putting up a message box
// message goes to debugger instead
#define KDbgBreak(_x_) \
DbgKernelAssert(TEXT(#_x_),TEXT(__FILE__),__LINE__)
// We chose a common name for our ASSERT macro, MFC also uses this name
// So long as the implementation evaluates the condition and handles it
// then we will be ok. Rather than override the behaviour expected we
// will leave whatever first defines ASSERT as the handler (i.e. MFC)
#ifndef ASSERT
#define ASSERT(_x_) if (!(_x_)) \
DbgAssert(TEXT(#_x_),TEXT(__FILE__),__LINE__)
#endif
#define DbgAssertAligned( _ptr_, _alignment_ ) ASSERT( ((DWORD_PTR) (_ptr_)) % (_alignment_) == 0)
// Put up a message box informing the user of a halt
// condition in the program
#define DbgBreak(_x_) \
DbgBreakPoint(TEXT(#_x_),TEXT(__FILE__),__LINE__)
#define EXECUTE_ASSERT(_x_) ASSERT(_x_)
#define DbgLog(_x_) DbgLogInfo _x_
// MFC style trace macros
#define NOTE(_x_) DbgLog((LOG_TRACE,5,TEXT(_x_)))
#define NOTE1(_x_,a) DbgLog((LOG_TRACE,5,TEXT(_x_),a))
#define NOTE2(_x_,a,b) DbgLog((LOG_TRACE,5,TEXT(_x_),a,b))
#define NOTE3(_x_,a,b,c) DbgLog((LOG_TRACE,5,TEXT(_x_),a,b,c))
#define NOTE4(_x_,a,b,c,d) DbgLog((LOG_TRACE,5,TEXT(_x_),a,b,c,d))
#define NOTE5(_x_,a,b,c,d,e) DbgLog((LOG_TRACE,5,TEXT(_x_),a,b,c,d,e))
#else
// Retail builds make public debug functions inert - WARNING the source
// files do not define or build any of the entry points in debug builds
// (public entry points compile to nothing) so if you go trying to call
// any of the private entry points in your source they won't compile
#define NAME(_x_) ((LPTSTR) NULL)
#define DbgInitialise(hInst)
#define DbgTerminate()
#define DbgLog(_x_) 0
#define DbgOutString(psz)
#define DbgAssertAligned( _ptr_, _alignment_ ) 0
#define DbgRegisterObjectCreation(pObjectName)
#define DbgRegisterObjectDestruction(dwCookie)
#define DbgDumpObjectRegister()
#define DbgCheckModuleLevel(Type,Level)
#define DbgSetModuleLevel(Type,Level)
#define DbgSetAutoRefreshLevels(fAuto)
#define DbgWaitForSingleObject(h) WaitForSingleObject(h, INFINITE)
#define DbgWaitForMultipleObjects(nCount, lpHandles, bWaitAll) \
WaitForMultipleObjects(nCount, lpHandles, bWaitAll, INFINITE)
#define DbgSetWaitTimeout(dwTimeout)
#define KDbgBreak(_x_)
#define DbgBreak(_x_)
#define KASSERT(_x_) ((void)0)
#ifndef ASSERT
#define ASSERT(_x_) ((void)0)
#endif
#define EXECUTE_ASSERT(_x_) ((void)(_x_))
// MFC style trace macros
#define NOTE(_x_) ((void)0)
#define NOTE1(_x_,a) ((void)0)
#define NOTE2(_x_,a,b) ((void)0)
#define NOTE3(_x_,a,b,c) ((void)0)
#define NOTE4(_x_,a,b,c,d) ((void)0)
#define NOTE5(_x_,a,b,c,d,e) ((void)0)
#define DisplayType(label, pmtIn) ((void)0)
#define DumpGraph(pGraph, label) ((void)0)
#endif
// Checks a pointer which should be non NULL - can be used as follows.
#define CheckPointer(p,ret) {if((p)==NULL) return (ret);}
// HRESULT Foo(VOID *pBar)
// {
// CheckPointer(pBar,E_INVALIDARG)
// }
//
// Or if the function returns a boolean
//
// BOOL Foo(VOID *pBar)
// {
// CheckPointer(pBar,FALSE)
// }
#define ValidateReadPtr(p,cb) 0
#define ValidateWritePtr(p,cb) 0
#define ValidateReadWritePtr(p,cb) 0
#define ValidateStringPtr(p) 0
#define ValidateStringPtrA(p) 0
#define ValidateStringPtrW(p) 0
#ifdef _OBJBASE_H_
// Outputting GUID names. If you want to include the name
// associated with a GUID (eg CLSID_...) then
//
// GuidNames[yourGUID]
//
// Returns the name defined in uuids.h as a string
typedef struct {
CHAR *szName;
GUID guid;
} GUID_STRING_ENTRY;
class CGuidNameList {
public:
CHAR *operator [] (const GUID& guid);
};
extern CGuidNameList GuidNames;
#endif
#ifndef REMIND
// REMIND macro - generates warning as reminder to complete coding
// (eg) usage:
//
// #pragma message (REMIND("Add automation support"))
#define QUOTE(x) #x
#define QQUOTE(y) QUOTE(y)
#define REMIND(str) __FILE__ "(" QQUOTE(__LINE__) ") : " str
#endif
// Method to display objects in a useful format
//
// eg If you want to display a LONGLONG ll in a debug string do (eg)
//
// DbgLog((LOG_TRACE, n, TEXT("Value is %s"), (LPCTSTR)CDisp(ll, CDISP_HEX)));
class CDispBasic
{
public:
CDispBasic() { m_pString = m_String; };
~CDispBasic();
protected:
PTCHAR m_pString; // normally points to m_String... unless too much data
TCHAR m_String[50];
};
class CDisp : public CDispBasic
{
public:
CDisp(LONGLONG ll, int Format = CDISP_HEX); // Display a LONGLONG in CDISP_HEX or CDISP_DEC form
CDisp(REFCLSID clsid); // Display a GUID
CDisp(double d); // Display a floating point number
#ifdef __strmif_h__
#ifdef __STREAMS__
CDisp(CRefTime t); // Display a Reference Time
#endif
CDisp(IPin *pPin); // Display a pin as {filter clsid}(pin name)
CDisp(IUnknown *pUnk); // Display a filter or pin
#endif // __strmif_h__
~CDisp();
// Implement cast to (LPCTSTR) as parameter to logger
operator LPCTSTR()
{
return (LPCTSTR)m_pString;
};
};
#if defined(DEBUG)
class CAutoTrace
{
private:
LPCTSTR _szBlkName;
const int _level;
static const TCHAR _szEntering[];
static const TCHAR _szLeaving[];
public:
CAutoTrace(LPCTSTR szBlkName, const int level = 15)
: _szBlkName(szBlkName), _level(level)
{DbgLog((LOG_TRACE, _level, _szEntering, _szBlkName));}
~CAutoTrace()
{DbgLog((LOG_TRACE, _level, _szLeaving, _szBlkName));}
};
#if defined (__FUNCTION__)
#define AMTRACEFN() CAutoTrace __trace(TEXT(__FUNCTION__))
#define AMTRACE(_x_) CAutoTrace __trace(TEXT(__FUNCTION__))
#else
#define AMTRACE(_x_) CAutoTrace __trace _x_
#define AMTRACEFN()
#endif
#else
#define AMTRACE(_x_)
#define AMTRACEFN()
#endif
#endif // __WXDEBUG__

View file

@ -0,0 +1,891 @@
//------------------------------------------------------------------------------
// File: WXList.cpp
//
// Desc: DirectShow base classes - implements a non-MFC based generic list
// template class.
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
/* A generic list of pointers to objects.
Objectives: avoid using MFC libraries in ndm kernel mode and
provide a really useful list type.
The class is thread safe in that separate threads may add and
delete items in the list concurrently although the application
must ensure that constructor and destructor access is suitably
synchronised.
The list name must not conflict with MFC classes as an
application may use both
The nodes form a doubly linked, NULL terminated chain with an anchor
block (the list object per se) holding pointers to the first and last
nodes and a count of the nodes.
There is a node cache to reduce the allocation and freeing overhead.
It optionally (determined at construction time) has an Event which is
set whenever the list becomes non-empty and reset whenever it becomes
empty.
It optionally (determined at construction time) has a Critical Section
which is entered during the important part of each operation. (About
all you can do outside it is some parameter checking).
The node cache is a repository of nodes that are NOT in the list to speed
up storage allocation. Each list has its own cache to reduce locking and
serialising. The list accesses are serialised anyway for a given list - a
common cache would mean that we would have to separately serialise access
of all lists within the cache. Because the cache only stores nodes that are
not in the list, releasing the cache does not release any list nodes. This
means that list nodes can be copied or rechained from one list to another
without danger of creating a dangling reference if the original cache goes
away.
Questionable design decisions:
1. Retaining the warts for compatibility
2. Keeping an element count -i.e. counting whenever we do anything
instead of only when we want the count.
3. Making the chain pointers NULL terminated. If the list object
itself looks just like a node and the list is kept as a ring then
it reduces the number of special cases. All inserts look the same.
*/
#include <streams.h>
/* set cursor to the position of each element of list in turn */
#define INTERNALTRAVERSELIST(list, cursor) \
for ( cursor = (list).GetHeadPositionI() \
; cursor!=NULL \
; cursor = (list).Next(cursor) \
)
/* set cursor to the position of each element of list in turn
in reverse order
*/
#define INTERNALREVERSETRAVERSELIST(list, cursor) \
for ( cursor = (list).GetTailPositionI() \
; cursor!=NULL \
; cursor = (list).Prev(cursor) \
)
/* Constructor calls a separate initialisation function that
creates a node cache, optionally creates a lock object
and optionally creates a signaling object.
By default we create a locking object, a DEFAULTCACHE sized
cache but no event object so the list cannot be used in calls
to WaitForSingleObject
*/
CBaseList::CBaseList(__in_opt LPCTSTR pName, // Descriptive list name
INT iItems) : // Node cache size
#ifdef DEBUG
CBaseObject(pName),
#endif
m_pFirst(NULL),
m_pLast(NULL),
m_Count(0),
m_Cache(iItems)
{
} // constructor
CBaseList::CBaseList(__in_opt LPCTSTR pName) : // Descriptive list name
#ifdef DEBUG
CBaseObject(pName),
#endif
m_pFirst(NULL),
m_pLast(NULL),
m_Count(0),
m_Cache(DEFAULTCACHE)
{
} // constructor
#ifdef UNICODE
CBaseList::CBaseList(__in_opt LPCSTR pName, // Descriptive list name
INT iItems) : // Node cache size
#ifdef DEBUG
CBaseObject(pName),
#endif
m_pFirst(NULL),
m_pLast(NULL),
m_Count(0),
m_Cache(iItems)
{
} // constructor
CBaseList::CBaseList(__in_opt LPCSTR pName) : // Descriptive list name
#ifdef DEBUG
CBaseObject(pName),
#endif
m_pFirst(NULL),
m_pLast(NULL),
m_Count(0),
m_Cache(DEFAULTCACHE)
{
} // constructor
#endif
/* The destructor enumerates all the node objects in the list and
in the cache deleting each in turn. We do not do any processing
on the objects that the list holds (i.e. points to) so if they
represent interfaces for example the creator of the list should
ensure that each of them is released before deleting us
*/
CBaseList::~CBaseList()
{
/* Delete all our list nodes */
RemoveAll();
} // destructor
/* Remove all the nodes from the list but don't do anything
with the objects that each node looks after (this is the
responsibility of the creator).
Aa a last act we reset the signalling event
(if available) to indicate to clients that the list
does not have any entries in it.
*/
void CBaseList::RemoveAll()
{
/* Free up all the CNode objects NOTE we don't bother putting the
deleted nodes into the cache as this method is only really called
in serious times of change such as when we are being deleted at
which point the cache will be deleted anway */
CNode *pn = m_pFirst;
while (pn) {
CNode *op = pn;
pn = pn->Next();
delete op;
}
/* Reset the object count and the list pointers */
m_Count = 0;
m_pFirst = m_pLast = NULL;
} // RemoveAll
/* Return a position enumerator for the entire list.
A position enumerator is a pointer to a node object cast to a
transparent type so all we do is return the head/tail node
pointer in the list.
WARNING because the position is a pointer to a node there is
an implicit assumption for users a the list class that after
deleting an object from the list that any other position
enumerators that you have may be invalid (since the node
may be gone).
*/
__out_opt POSITION CBaseList::GetHeadPositionI() const
{
return (POSITION) m_pFirst;
} // GetHeadPosition
__out_opt POSITION CBaseList::GetTailPositionI() const
{
return (POSITION) m_pLast;
} // GetTailPosition
/* Get the number of objects in the list,
Get the lock before accessing the count.
Locking may not be entirely necessary but it has the side effect
of making sure that all operations are complete before we get it.
So for example if a list is being added to this list then that
will have completed in full before we continue rather than seeing
an intermediate albeit valid state
*/
int CBaseList::GetCountI() const
{
return m_Count;
} // GetCount
/* Return the object at rp, update rp to the next object from
the list or NULL if you have moved over the last object.
You may still call this function once we return NULL but
we will continue to return a NULL position value
*/
__out void *CBaseList::GetNextI(__inout POSITION& rp) const
{
/* have we reached the end of the list */
if (rp == NULL) {
return NULL;
}
/* Lock the object before continuing */
void *pObject;
/* Copy the original position then step on */
CNode *pn = (CNode *) rp;
ASSERT(pn != NULL);
rp = (POSITION) pn->Next();
/* Get the object at the original position from the list */
pObject = pn->GetData();
// ASSERT(pObject != NULL); // NULL pointers in the list are allowed.
return pObject;
} //GetNext
/* Return the object at p.
Asking for the object at NULL ASSERTs then returns NULL
The object is NOT locked. The list is not being changed
in any way. If another thread is busy deleting the object
then locking would only result in a change from one bad
behaviour to another.
*/
__out_opt void *CBaseList::GetI(__in_opt POSITION p) const
{
if (p == NULL) {
return NULL;
}
CNode * pn = (CNode *) p;
void *pObject = pn->GetData();
// ASSERT(pObject != NULL); // NULL pointers in the list are allowed.
return pObject;
} //Get
__out void *CBaseList::GetValidI(__in POSITION p) const
{
CNode * pn = (CNode *) p;
void *pObject = pn->GetData();
// ASSERT(pObject != NULL); // NULL pointers in the list are allowed.
return pObject;
} //Get
/* Return the first position in the list which holds the given pointer.
Return NULL if it's not found.
*/
__out_opt POSITION CBaseList::FindI( __in void * pObj) const
{
POSITION pn;
INTERNALTRAVERSELIST(*this, pn){
if (GetI(pn)==pObj) {
return pn;
}
}
return NULL;
} // Find
/* Remove the first node in the list (deletes the pointer to its object
from the list, does not free the object itself).
Return the pointer to its object or NULL if empty
*/
__out_opt void *CBaseList::RemoveHeadI()
{
/* All we do is get the head position and ask for that to be deleted.
We could special case this since some of the code path checking
in Remove() is redundant as we know there is no previous
node for example but it seems to gain little over the
added complexity
*/
return RemoveI((POSITION)m_pFirst);
} // RemoveHead
/* Remove the last node in the list (deletes the pointer to its object
from the list, does not free the object itself).
Return the pointer to its object or NULL if empty
*/
__out_opt void *CBaseList::RemoveTailI()
{
/* All we do is get the tail position and ask for that to be deleted.
We could special case this since some of the code path checking
in Remove() is redundant as we know there is no previous
node for example but it seems to gain little over the
added complexity
*/
return RemoveI((POSITION)m_pLast);
} // RemoveTail
/* Remove the pointer to the object in this position from the list.
Deal with all the chain pointers
Return a pointer to the object removed from the list.
The node object that is freed as a result
of this operation is added to the node cache where
it can be used again.
Remove(NULL) is a harmless no-op - but probably is a wart.
*/
__out_opt void *CBaseList::RemoveI(__in_opt POSITION pos)
{
/* Lock the critical section before continuing */
// ASSERT (pos!=NULL); // Removing NULL is to be harmless!
if (pos==NULL) return NULL;
CNode *pCurrent = (CNode *) pos;
ASSERT(pCurrent != NULL);
/* Update the previous node */
CNode *pNode = pCurrent->Prev();
if (pNode == NULL) {
m_pFirst = pCurrent->Next();
} else {
pNode->SetNext(pCurrent->Next());
}
/* Update the following node */
pNode = pCurrent->Next();
if (pNode == NULL) {
m_pLast = pCurrent->Prev();
} else {
pNode->SetPrev(pCurrent->Prev());
}
/* Get the object this node was looking after */
void *pObject = pCurrent->GetData();
// ASSERT(pObject != NULL); // NULL pointers in the list are allowed.
/* Try and add the node object to the cache -
a NULL return code from the cache means we ran out of room.
The cache size is fixed by a constructor argument when the
list is created and defaults to DEFAULTCACHE.
This means that the cache will have room for this many
node objects. So if you have a list of media samples
and you know there will never be more than five active at
any given time of them for example then override the default
constructor
*/
m_Cache.AddToCache(pCurrent);
/* If the list is empty then reset the list event */
--m_Count;
ASSERT(m_Count >= 0);
return pObject;
} // Remove
/* Add this object to the tail end of our list
Return the new tail position.
*/
__out_opt POSITION CBaseList::AddTailI(__in void *pObject)
{
/* Lock the critical section before continuing */
CNode *pNode;
// ASSERT(pObject); // NULL pointers in the list are allowed.
/* If there is a node objects in the cache then use
that otherwise we will have to create a new one */
pNode = (CNode *) m_Cache.RemoveFromCache();
if (pNode == NULL) {
pNode = new CNode;
}
/* Check we have a valid object */
if (pNode == NULL) {
return NULL;
}
/* Initialise all the CNode object
just in case it came from the cache
*/
pNode->SetData(pObject);
pNode->SetNext(NULL);
pNode->SetPrev(m_pLast);
if (m_pLast == NULL) {
m_pFirst = pNode;
} else {
m_pLast->SetNext(pNode);
}
/* Set the new last node pointer and also increment the number
of list entries, the critical section is unlocked when we
exit the function
*/
m_pLast = pNode;
++m_Count;
return (POSITION) pNode;
} // AddTail(object)
/* Add this object to the head end of our list
Return the new head position.
*/
__out_opt POSITION CBaseList::AddHeadI(__in void *pObject)
{
CNode *pNode;
// ASSERT(pObject); // NULL pointers in the list are allowed.
/* If there is a node objects in the cache then use
that otherwise we will have to create a new one */
pNode = (CNode *) m_Cache.RemoveFromCache();
if (pNode == NULL) {
pNode = new CNode;
}
/* Check we have a valid object */
if (pNode == NULL) {
return NULL;
}
/* Initialise all the CNode object
just in case it came from the cache
*/
pNode->SetData(pObject);
/* chain it in (set four pointers) */
pNode->SetPrev(NULL);
pNode->SetNext(m_pFirst);
if (m_pFirst == NULL) {
m_pLast = pNode;
} else {
m_pFirst->SetPrev(pNode);
}
m_pFirst = pNode;
++m_Count;
return (POSITION) pNode;
} // AddHead(object)
/* Add all the elements in *pList to the tail of this list.
Return TRUE if it all worked, FALSE if it didn't.
If it fails some elements may have been added.
*/
BOOL CBaseList::AddTail(__in CBaseList *pList)
{
/* lock the object before starting then enumerate
each entry in the source list and add them one by one to
our list (while still holding the object lock)
Lock the other list too.
*/
POSITION pos = pList->GetHeadPositionI();
while (pos) {
if (NULL == AddTailI(pList->GetNextI(pos))) {
return FALSE;
}
}
return TRUE;
} // AddTail(list)
/* Add all the elements in *pList to the head of this list.
Return TRUE if it all worked, FALSE if it didn't.
If it fails some elements may have been added.
*/
BOOL CBaseList::AddHead(__in CBaseList *pList)
{
/* lock the object before starting then enumerate
each entry in the source list and add them one by one to
our list (while still holding the object lock)
Lock the other list too.
To avoid reversing the list, traverse it backwards.
*/
POSITION pos;
INTERNALREVERSETRAVERSELIST(*pList, pos) {
if (NULL== AddHeadI(pList->GetValidI(pos))){
return FALSE;
}
}
return TRUE;
} // AddHead(list)
/* Add the object after position p
p is still valid after the operation.
AddAfter(NULL,x) adds x to the start - same as AddHead
Return the position of the new object, NULL if it failed
*/
__out_opt POSITION CBaseList::AddAfterI(__in_opt POSITION pos, __in void * pObj)
{
if (pos==NULL)
return AddHeadI(pObj);
/* As someone else might be furkling with the list -
Lock the critical section before continuing
*/
CNode *pAfter = (CNode *) pos;
ASSERT(pAfter != NULL);
if (pAfter==m_pLast)
return AddTailI(pObj);
/* set pnode to point to a new node, preferably from the cache */
CNode *pNode = (CNode *) m_Cache.RemoveFromCache();
if (pNode == NULL) {
pNode = new CNode;
}
/* Check we have a valid object */
if (pNode == NULL) {
return NULL;
}
/* Initialise all the CNode object
just in case it came from the cache
*/
pNode->SetData(pObj);
/* It is to be added to the middle of the list - there is a before
and after node. Chain it after pAfter, before pBefore.
*/
CNode * pBefore = pAfter->Next();
ASSERT(pBefore != NULL);
/* chain it in (set four pointers) */
pNode->SetPrev(pAfter);
pNode->SetNext(pBefore);
pBefore->SetPrev(pNode);
pAfter->SetNext(pNode);
++m_Count;
return (POSITION) pNode;
} // AddAfter(object)
BOOL CBaseList::AddAfter(__in_opt POSITION p, __in CBaseList *pList)
{
POSITION pos;
INTERNALTRAVERSELIST(*pList, pos) {
/* p follows along the elements being added */
p = AddAfterI(p, pList->GetValidI(pos));
if (p==NULL) return FALSE;
}
return TRUE;
} // AddAfter(list)
/* Mirror images:
Add the element or list after position p.
p is still valid after the operation.
AddBefore(NULL,x) adds x to the end - same as AddTail
*/
__out_opt POSITION CBaseList::AddBeforeI(__in_opt POSITION pos, __in void * pObj)
{
if (pos==NULL)
return AddTailI(pObj);
/* set pnode to point to a new node, preferably from the cache */
CNode *pBefore = (CNode *) pos;
ASSERT(pBefore != NULL);
if (pBefore==m_pFirst)
return AddHeadI(pObj);
CNode * pNode = (CNode *) m_Cache.RemoveFromCache();
if (pNode == NULL) {
pNode = new CNode;
}
/* Check we have a valid object */
if (pNode == NULL) {
return NULL;
}
/* Initialise all the CNode object
just in case it came from the cache
*/
pNode->SetData(pObj);
/* It is to be added to the middle of the list - there is a before
and after node. Chain it after pAfter, before pBefore.
*/
CNode * pAfter = pBefore->Prev();
ASSERT(pAfter != NULL);
/* chain it in (set four pointers) */
pNode->SetPrev(pAfter);
pNode->SetNext(pBefore);
pBefore->SetPrev(pNode);
pAfter->SetNext(pNode);
++m_Count;
return (POSITION) pNode;
} // Addbefore(object)
BOOL CBaseList::AddBefore(__in_opt POSITION p, __in CBaseList *pList)
{
POSITION pos;
INTERNALREVERSETRAVERSELIST(*pList, pos) {
/* p follows along the elements being added */
p = AddBeforeI(p, pList->GetValidI(pos));
if (p==NULL) return FALSE;
}
return TRUE;
} // AddBefore(list)
/* Split *this after position p in *this
Retain as *this the tail portion of the original *this
Add the head portion to the tail end of *pList
Return TRUE if it all worked, FALSE if it didn't.
e.g.
foo->MoveToTail(foo->GetHeadPosition(), bar);
moves one element from the head of foo to the tail of bar
foo->MoveToTail(NULL, bar);
is a no-op
foo->MoveToTail(foo->GetTailPosition, bar);
concatenates foo onto the end of bar and empties foo.
A better, except excessively long name might be
MoveElementsFromHeadThroughPositionToOtherTail
*/
BOOL CBaseList::MoveToTail
(__in_opt POSITION pos, __in CBaseList *pList)
{
/* Algorithm:
Note that the elements (including their order) in the concatenation
of *pList to the head of *this is invariant.
1. Count elements to be moved
2. Join *pList onto the head of this to make one long chain
3. Set first/Last pointers in *this and *pList
4. Break the chain at the new place
5. Adjust counts
6. Set/Reset any events
*/
if (pos==NULL) return TRUE; // no-op. Eliminates special cases later.
/* Make cMove the number of nodes to move */
CNode * p = (CNode *)pos;
int cMove = 0; // number of nodes to move
while(p!=NULL) {
p = p->Prev();
++cMove;
}
/* Join the two chains together */
if (pList->m_pLast!=NULL)
pList->m_pLast->SetNext(m_pFirst);
if (m_pFirst!=NULL)
m_pFirst->SetPrev(pList->m_pLast);
/* set first and last pointers */
p = (CNode *)pos;
if (pList->m_pFirst==NULL)
pList->m_pFirst = m_pFirst;
m_pFirst = p->Next();
if (m_pFirst==NULL)
m_pLast = NULL;
pList->m_pLast = p;
/* Break the chain after p to create the new pieces */
if (m_pFirst!=NULL)
m_pFirst->SetPrev(NULL);
p->SetNext(NULL);
/* Adjust the counts */
m_Count -= cMove;
pList->m_Count += cMove;
return TRUE;
} // MoveToTail
/* Mirror image of MoveToTail:
Split *this before position p in *this.
Retain in *this the head portion of the original *this
Add the tail portion to the start (i.e. head) of *pList
Return TRUE if it all worked, FALSE if it didn't.
e.g.
foo->MoveToHead(foo->GetTailPosition(), bar);
moves one element from the tail of foo to the head of bar
foo->MoveToHead(NULL, bar);
is a no-op
foo->MoveToHead(foo->GetHeadPosition, bar);
concatenates foo onto the start of bar and empties foo.
*/
BOOL CBaseList::MoveToHead
(__in_opt POSITION pos, __in CBaseList *pList)
{
/* See the comments on the algorithm in MoveToTail */
if (pos==NULL) return TRUE; // no-op. Eliminates special cases later.
/* Make cMove the number of nodes to move */
CNode * p = (CNode *)pos;
int cMove = 0; // number of nodes to move
while(p!=NULL) {
p = p->Next();
++cMove;
}
/* Join the two chains together */
if (pList->m_pFirst!=NULL)
pList->m_pFirst->SetPrev(m_pLast);
if (m_pLast!=NULL)
m_pLast->SetNext(pList->m_pFirst);
/* set first and last pointers */
p = (CNode *)pos;
if (pList->m_pLast==NULL)
pList->m_pLast = m_pLast;
m_pLast = p->Prev();
if (m_pLast==NULL)
m_pFirst = NULL;
pList->m_pFirst = p;
/* Break the chain after p to create the new pieces */
if (m_pLast!=NULL)
m_pLast->SetNext(NULL);
p->SetPrev(NULL);
/* Adjust the counts */
m_Count -= cMove;
pList->m_Count += cMove;
return TRUE;
} // MoveToHead
/* Reverse the order of the [pointers to] objects in *this
*/
void CBaseList::Reverse()
{
/* algorithm:
The obvious booby trap is that you flip pointers around and lose
addressability to the node that you are going to process next.
The easy way to avoid this is do do one chain at a time.
Run along the forward chain,
For each node, set the reverse pointer to the one ahead of us.
The reverse chain is now a copy of the old forward chain, including
the NULL termination.
Run along the reverse chain (i.e. old forward chain again)
For each node set the forward pointer of the node ahead to point back
to the one we're standing on.
The first node needs special treatment,
it's new forward pointer is NULL.
Finally set the First/Last pointers
*/
CNode * p;
// Yes we COULD use a traverse, but it would look funny!
p = m_pFirst;
while (p!=NULL) {
CNode * q;
q = p->Next();
p->SetNext(p->Prev());
p->SetPrev(q);
p = q;
}
p = m_pFirst;
m_pFirst = m_pLast;
m_pLast = p;
#if 0 // old version
if (m_pFirst==NULL) return; // empty list
if (m_pFirst->Next()==NULL) return; // single node list
/* run along forward chain */
for ( p = m_pFirst
; p!=NULL
; p = p->Next()
){
p->SetPrev(p->Next());
}
/* special case first element */
m_pFirst->SetNext(NULL); // fix the old first element
/* run along new reverse chain i.e. old forward chain again */
for ( p = m_pFirst // start at the old first element
; p->Prev()!=NULL // while there's a node still to be set
; p = p->Prev() // work in the same direction as before
){
p->Prev()->SetNext(p);
}
/* fix forward and reverse pointers
- the triple XOR swap would work but all the casts look hideous */
p = m_pFirst;
m_pFirst = m_pLast;
m_pLast = p;
#endif
} // Reverse

View file

@ -0,0 +1,553 @@
//------------------------------------------------------------------------------
// File: WXList.h
//
// Desc: DirectShow base classes - defines a non-MFC generic template list
// class.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
/* A generic list of pointers to objects.
No storage management or copying is done on the objects pointed to.
Objectives: avoid using MFC libraries in ndm kernel mode and
provide a really useful list type.
The class is thread safe in that separate threads may add and
delete items in the list concurrently although the application
must ensure that constructor and destructor access is suitably
synchronised. An application can cause deadlock with operations
which use two lists by simultaneously calling
list1->Operation(list2) and list2->Operation(list1). So don't!
The names must not conflict with MFC classes as an application
may use both.
*/
#ifndef __WXLIST__
#define __WXLIST__
/* A POSITION represents (in some fashion that's opaque) a cursor
on the list that can be set to identify any element. NULL is
a valid value and several operations regard NULL as the position
"one step off the end of the list". (In an n element list there
are n+1 places to insert and NULL is that "n+1-th" value).
The POSITION of an element in the list is only invalidated if
that element is deleted. Move operations may mean that what
was a valid POSITION in one list is now a valid POSITION in
a different list.
Some operations which at first sight are illegal are allowed as
harmless no-ops. For instance RemoveHead is legal on an empty
list and it returns NULL. This allows an atomic way to test if
there is an element there, and if so, get it. The two operations
AddTail and RemoveHead thus implement a MONITOR (See Hoare's paper).
Single element operations return POSITIONs, non-NULL means it worked.
whole list operations return a BOOL. TRUE means it all worked.
This definition is the same as the POSITION type for MFCs, so we must
avoid defining it twice.
*/
#ifndef __AFX_H__
struct __POSITION { int unused; };
typedef __POSITION* POSITION;
#endif
const int DEFAULTCACHE = 10; /* Default node object cache size */
/* A class representing one node in a list.
Each node knows a pointer to it's adjacent nodes and also a pointer
to the object that it looks after.
All of these pointers can be retrieved or set through member functions.
*/
class CBaseList
#ifdef DEBUG
: public CBaseObject
#endif
{
/* Making these classes inherit from CBaseObject does nothing
functionally but it allows us to check there are no memory
leaks in debug builds.
*/
public:
#ifdef DEBUG
class CNode : public CBaseObject {
#else
class CNode {
#endif
CNode *m_pPrev; /* Previous node in the list */
CNode *m_pNext; /* Next node in the list */
void *m_pObject; /* Pointer to the object */
public:
/* Constructor - initialise the object's pointers */
CNode()
#ifdef DEBUG
: CBaseObject(NAME("List node"))
#endif
{
};
/* Return the previous node before this one */
__out CNode *Prev() const { return m_pPrev; };
/* Return the next node after this one */
__out CNode *Next() const { return m_pNext; };
/* Set the previous node before this one */
void SetPrev(__in_opt CNode *p) { m_pPrev = p; };
/* Set the next node after this one */
void SetNext(__in_opt CNode *p) { m_pNext = p; };
/* Get the pointer to the object for this node */
__out void *GetData() const { return m_pObject; };
/* Set the pointer to the object for this node */
void SetData(__in void *p) { m_pObject = p; };
};
class CNodeCache
{
public:
CNodeCache(INT iCacheSize) : m_iCacheSize(iCacheSize),
m_pHead(NULL),
m_iUsed(0)
{};
~CNodeCache() {
CNode *pNode = m_pHead;
while (pNode) {
CNode *pCurrent = pNode;
pNode = pNode->Next();
delete pCurrent;
}
};
void AddToCache(__inout CNode *pNode)
{
if (m_iUsed < m_iCacheSize) {
pNode->SetNext(m_pHead);
m_pHead = pNode;
m_iUsed++;
} else {
delete pNode;
}
};
CNode *RemoveFromCache()
{
CNode *pNode = m_pHead;
if (pNode != NULL) {
m_pHead = pNode->Next();
m_iUsed--;
ASSERT(m_iUsed >= 0);
} else {
ASSERT(m_iUsed == 0);
}
return pNode;
};
private:
INT m_iCacheSize;
INT m_iUsed;
CNode *m_pHead;
};
protected:
CNode* m_pFirst; /* Pointer to first node in the list */
CNode* m_pLast; /* Pointer to the last node in the list */
LONG m_Count; /* Number of nodes currently in the list */
private:
CNodeCache m_Cache; /* Cache of unused node pointers */
private:
/* These override the default copy constructor and assignment
operator for all list classes. They are in the private class
declaration section so that anybody trying to pass a list
object by value will generate a compile time error of
"cannot access the private member function". If these were
not here then the compiler will create default constructors
and assignment operators which when executed first take a
copy of all member variables and then during destruction
delete them all. This must not be done for any heap
allocated data.
*/
CBaseList(const CBaseList &refList);
CBaseList &operator=(const CBaseList &refList);
public:
CBaseList(__in_opt LPCTSTR pName,
INT iItems);
CBaseList(__in_opt LPCTSTR pName);
#ifdef UNICODE
CBaseList(__in_opt LPCSTR pName,
INT iItems);
CBaseList(__in_opt LPCSTR pName);
#endif
~CBaseList();
/* Remove all the nodes from *this i.e. make the list empty */
void RemoveAll();
/* Return a cursor which identifies the first element of *this */
__out_opt POSITION GetHeadPositionI() const;
/* Return a cursor which identifies the last element of *this */
__out_opt POSITION GetTailPositionI() const;
/* Return the number of objects in *this */
int GetCountI() const;
protected:
/* Return the pointer to the object at rp,
Update rp to the next node in *this
but make it NULL if it was at the end of *this.
This is a wart retained for backwards compatibility.
GetPrev is not implemented.
Use Next, Prev and Get separately.
*/
__out void *GetNextI(__inout POSITION& rp) const;
/* Return a pointer to the object at p
Asking for the object at NULL will return NULL harmlessly.
*/
__out_opt void *GetI(__in_opt POSITION p) const;
__out void *GetValidI(__in POSITION p) const;
public:
/* return the next / prev position in *this
return NULL when going past the end/start.
Next(NULL) is same as GetHeadPosition()
Prev(NULL) is same as GetTailPosition()
An n element list therefore behaves like a n+1 element
cycle with NULL at the start/end.
!!WARNING!! - This handling of NULL is DIFFERENT from GetNext.
Some reasons are:
1. For a list of n items there are n+1 positions to insert
These are conveniently encoded as the n POSITIONs and NULL.
2. If you are keeping a list sorted (fairly common) and you
search forward for an element to insert before and don't
find it you finish up with NULL as the element before which
to insert. You then want that NULL to be a valid POSITION
so that you can insert before it and you want that insertion
point to mean the (n+1)-th one that doesn't have a POSITION.
(symmetrically if you are working backwards through the list).
3. It simplifies the algebra which the methods generate.
e.g. AddBefore(p,x) is identical to AddAfter(Prev(p),x)
in ALL cases. All the other arguments probably are reflections
of the algebraic point.
*/
__out_opt POSITION Next(__in_opt POSITION pos) const
{
if (pos == NULL) {
return (POSITION) m_pFirst;
}
CNode *pn = (CNode *) pos;
return (POSITION) pn->Next();
} //Next
// See Next
__out_opt POSITION Prev(__in_opt POSITION pos) const
{
if (pos == NULL) {
return (POSITION) m_pLast;
}
CNode *pn = (CNode *) pos;
return (POSITION) pn->Prev();
} //Prev
/* Return the first position in *this which holds the given
pointer. Return NULL if the pointer was not not found.
*/
protected:
__out_opt POSITION FindI( __in void * pObj) const;
// ??? Should there be (or even should there be only)
// ??? POSITION FindNextAfter(void * pObj, POSITION p)
// ??? And of course FindPrevBefore too.
// ??? List.Find(&Obj) then becomes List.FindNextAfter(&Obj, NULL)
/* Remove the first node in *this (deletes the pointer to its
object from the list, does not free the object itself).
Return the pointer to its object.
If *this was already empty it will harmlessly return NULL.
*/
__out_opt void *RemoveHeadI();
/* Remove the last node in *this (deletes the pointer to its
object from the list, does not free the object itself).
Return the pointer to its object.
If *this was already empty it will harmlessly return NULL.
*/
__out_opt void *RemoveTailI();
/* Remove the node identified by p from the list (deletes the pointer
to its object from the list, does not free the object itself).
Asking to Remove the object at NULL will harmlessly return NULL.
Return the pointer to the object removed.
*/
__out_opt void *RemoveI(__in_opt POSITION p);
/* Add single object *pObj to become a new last element of the list.
Return the new tail position, NULL if it fails.
If you are adding a COM objects, you might want AddRef it first.
Other existing POSITIONs in *this are still valid
*/
__out_opt POSITION AddTailI(__in void * pObj);
public:
/* Add all the elements in *pList to the tail of *this.
This duplicates all the nodes in *pList (i.e. duplicates
all its pointers to objects). It does not duplicate the objects.
If you are adding a list of pointers to a COM object into the list
it's a good idea to AddRef them all it when you AddTail it.
Return TRUE if it all worked, FALSE if it didn't.
If it fails some elements may have been added.
Existing POSITIONs in *this are still valid
If you actually want to MOVE the elements, use MoveToTail instead.
*/
BOOL AddTail(__in CBaseList *pList);
/* Mirror images of AddHead: */
/* Add single object to become a new first element of the list.
Return the new head position, NULL if it fails.
Existing POSITIONs in *this are still valid
*/
protected:
__out_opt POSITION AddHeadI(__in void * pObj);
public:
/* Add all the elements in *pList to the head of *this.
Same warnings apply as for AddTail.
Return TRUE if it all worked, FALSE if it didn't.
If it fails some of the objects may have been added.
If you actually want to MOVE the elements, use MoveToHead instead.
*/
BOOL AddHead(__in CBaseList *pList);
/* Add the object *pObj to *this after position p in *this.
AddAfter(NULL,x) adds x to the start - equivalent to AddHead
Return the position of the object added, NULL if it failed.
Existing POSITIONs in *this are undisturbed, including p.
*/
protected:
__out_opt POSITION AddAfterI(__in_opt POSITION p, __in void * pObj);
public:
/* Add the list *pList to *this after position p in *this
AddAfter(NULL,x) adds x to the start - equivalent to AddHead
Return TRUE if it all worked, FALSE if it didn't.
If it fails, some of the objects may be added
Existing POSITIONs in *this are undisturbed, including p.
*/
BOOL AddAfter(__in_opt POSITION p, __in CBaseList *pList);
/* Mirror images:
Add the object *pObj to this-List after position p in *this.
AddBefore(NULL,x) adds x to the end - equivalent to AddTail
Return the position of the new object, NULL if it fails
Existing POSITIONs in *this are undisturbed, including p.
*/
protected:
__out_opt POSITION AddBeforeI(__in_opt POSITION p, __in void * pObj);
public:
/* Add the list *pList to *this before position p in *this
AddAfter(NULL,x) adds x to the start - equivalent to AddHead
Return TRUE if it all worked, FALSE if it didn't.
If it fails, some of the objects may be added
Existing POSITIONs in *this are undisturbed, including p.
*/
BOOL AddBefore(__in_opt POSITION p, __in CBaseList *pList);
/* Note that AddAfter(p,x) is equivalent to AddBefore(Next(p),x)
even in cases where p is NULL or Next(p) is NULL.
Similarly for mirror images etc.
This may make it easier to argue about programs.
*/
/* The following operations do not copy any elements.
They move existing blocks of elements around by switching pointers.
They are fairly efficient for long lists as for short lists.
(Alas, the Count slows things down).
They split the list into two parts.
One part remains as the original list, the other part
is appended to the second list. There are eight possible
variations:
Split the list {after/before} a given element
keep the {head/tail} portion in the original list
append the rest to the {head/tail} of the new list.
Since After is strictly equivalent to Before Next
we are not in serious need of the Before/After variants.
That leaves only four.
If you are processing a list left to right and dumping
the bits that you have processed into another list as
you go, the Tail/Tail variant gives the most natural result.
If you are processing in reverse order, Head/Head is best.
By using NULL positions and empty lists judiciously either
of the other two can be built up in two operations.
The definition of NULL (see Next/Prev etc) means that
degenerate cases include
"move all elements to new list"
"Split a list into two lists"
"Concatenate two lists"
(and quite a few no-ops)
!!WARNING!! The type checking won't buy you much if you get list
positions muddled up - e.g. use a POSITION that's in a different
list and see what a mess you get!
*/
/* Split *this after position p in *this
Retain as *this the tail portion of the original *this
Add the head portion to the tail end of *pList
Return TRUE if it all worked, FALSE if it didn't.
e.g.
foo->MoveToTail(foo->GetHeadPosition(), bar);
moves one element from the head of foo to the tail of bar
foo->MoveToTail(NULL, bar);
is a no-op, returns NULL
foo->MoveToTail(foo->GetTailPosition, bar);
concatenates foo onto the end of bar and empties foo.
A better, except excessively long name might be
MoveElementsFromHeadThroughPositionToOtherTail
*/
BOOL MoveToTail(__in_opt POSITION pos, __in CBaseList *pList);
/* Mirror image:
Split *this before position p in *this.
Retain in *this the head portion of the original *this
Add the tail portion to the start (i.e. head) of *pList
e.g.
foo->MoveToHead(foo->GetTailPosition(), bar);
moves one element from the tail of foo to the head of bar
foo->MoveToHead(NULL, bar);
is a no-op, returns NULL
foo->MoveToHead(foo->GetHeadPosition, bar);
concatenates foo onto the start of bar and empties foo.
*/
BOOL MoveToHead(__in_opt POSITION pos, __in CBaseList *pList);
/* Reverse the order of the [pointers to] objects in *this
*/
void Reverse();
/* set cursor to the position of each element of list in turn */
#define TRAVERSELIST(list, cursor) \
for ( cursor = (list).GetHeadPosition() \
; cursor!=NULL \
; cursor = (list).Next(cursor) \
)
/* set cursor to the position of each element of list in turn
in reverse order
*/
#define REVERSETRAVERSELIST(list, cursor) \
for ( cursor = (list).GetTailPosition() \
; cursor!=NULL \
; cursor = (list).Prev(cursor) \
)
}; // end of class declaration
template<class OBJECT> class CGenericList : public CBaseList
{
public:
CGenericList(__in_opt LPCTSTR pName,
INT iItems,
BOOL bLock = TRUE,
BOOL bAlert = FALSE) :
CBaseList(pName, iItems) {
UNREFERENCED_PARAMETER(bAlert);
UNREFERENCED_PARAMETER(bLock);
};
CGenericList(__in_opt LPCTSTR pName) :
CBaseList(pName) {
};
__out_opt POSITION GetHeadPosition() const { return (POSITION)m_pFirst; }
__out_opt POSITION GetTailPosition() const { return (POSITION)m_pLast; }
int GetCount() const { return m_Count; }
__out OBJECT *GetNext(__inout POSITION& rp) const { return (OBJECT *) GetNextI(rp); }
__out_opt OBJECT *Get(__in_opt POSITION p) const { return (OBJECT *) GetI(p); }
__out OBJECT *GetValid(__in POSITION p) const { return (OBJECT *) GetValidI(p); }
__out_opt OBJECT *GetHead() const { return Get(GetHeadPosition()); }
__out_opt OBJECT *RemoveHead() { return (OBJECT *) RemoveHeadI(); }
__out_opt OBJECT *RemoveTail() { return (OBJECT *) RemoveTailI(); }
__out_opt OBJECT *Remove(__in_opt POSITION p) { return (OBJECT *) RemoveI(p); }
__out_opt POSITION AddBefore(__in_opt POSITION p, __in OBJECT * pObj) { return AddBeforeI(p, pObj); }
__out_opt POSITION AddAfter(__in_opt POSITION p, __in OBJECT * pObj) { return AddAfterI(p, pObj); }
__out_opt POSITION AddHead(__in OBJECT * pObj) { return AddHeadI(pObj); }
__out_opt POSITION AddTail(__in OBJECT * pObj) { return AddTailI(pObj); }
BOOL AddTail(__in CGenericList<OBJECT> *pList)
{ return CBaseList::AddTail((CBaseList *) pList); }
BOOL AddHead(__in CGenericList<OBJECT> *pList)
{ return CBaseList::AddHead((CBaseList *) pList); }
BOOL AddAfter(__in_opt POSITION p, __in CGenericList<OBJECT> *pList)
{ return CBaseList::AddAfter(p, (CBaseList *) pList); };
BOOL AddBefore(__in_opt POSITION p, __in CGenericList<OBJECT> *pList)
{ return CBaseList::AddBefore(p, (CBaseList *) pList); };
__out_opt POSITION Find( __in OBJECT * pObj) const { return FindI(pObj); }
}; // end of class declaration
/* These define the standard list types */
typedef CGenericList<CBaseObject> CBaseObjectList;
typedef CGenericList<IUnknown> CBaseInterfaceList;
#endif /* __WXLIST__ */

View file

@ -0,0 +1,769 @@
//------------------------------------------------------------------------------
// File: WXUtil.cpp
//
// Desc: DirectShow base classes - implements helper classes for building
// multimedia filters.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#define STRSAFE_NO_DEPRECATE
#include <strsafe.h>
// --- CAMEvent -----------------------
CAMEvent::CAMEvent(BOOL fManualReset, __inout_opt HRESULT *phr)
{
m_hEvent = CreateEvent(NULL, fManualReset, FALSE, NULL);
if (NULL == m_hEvent) {
if (NULL != phr && SUCCEEDED(*phr)) {
*phr = E_OUTOFMEMORY;
}
}
}
CAMEvent::CAMEvent(__inout_opt HRESULT *phr)
{
m_hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
if (NULL == m_hEvent) {
if (NULL != phr && SUCCEEDED(*phr)) {
*phr = E_OUTOFMEMORY;
}
}
}
CAMEvent::~CAMEvent()
{
if (m_hEvent) {
EXECUTE_ASSERT(CloseHandle(m_hEvent));
}
}
// --- CAMMsgEvent -----------------------
// One routine. The rest is handled in CAMEvent
CAMMsgEvent::CAMMsgEvent(__inout_opt HRESULT *phr) : CAMEvent(FALSE, phr)
{
}
BOOL CAMMsgEvent::WaitMsg(DWORD dwTimeout)
{
// wait for the event to be signalled, or for the
// timeout (in MS) to expire. allow SENT messages
// to be processed while we wait
DWORD dwWait;
DWORD dwStartTime;
// set the waiting period.
DWORD dwWaitTime = dwTimeout;
// the timeout will eventually run down as we iterate
// processing messages. grab the start time so that
// we can calculate elapsed times.
if (dwWaitTime != INFINITE) {
dwStartTime = timeGetTime();
}
do {
dwWait = MsgWaitForMultipleObjects(1,&m_hEvent,FALSE, dwWaitTime, QS_SENDMESSAGE);
if (dwWait == WAIT_OBJECT_0 + 1) {
MSG Message;
PeekMessage(&Message,NULL,0,0,PM_NOREMOVE);
// If we have an explicit length of time to wait calculate
// the next wake up point - which might be now.
// If dwTimeout is INFINITE, it stays INFINITE
if (dwWaitTime != INFINITE) {
DWORD dwElapsed = timeGetTime()-dwStartTime;
dwWaitTime =
(dwElapsed >= dwTimeout)
? 0 // wake up with WAIT_TIMEOUT
: dwTimeout-dwElapsed;
}
}
} while (dwWait == WAIT_OBJECT_0 + 1);
// return TRUE if we woke on the event handle,
// FALSE if we timed out.
return (dwWait == WAIT_OBJECT_0);
}
// --- CAMThread ----------------------
CAMThread::CAMThread(__inout_opt HRESULT *phr)
: m_EventSend(TRUE, phr), // must be manual-reset for CheckRequest()
m_EventComplete(FALSE, phr)
{
m_hThread = NULL;
}
CAMThread::~CAMThread() {
Close();
}
// when the thread starts, it calls this function. We unwrap the 'this'
//pointer and call ThreadProc.
DWORD WINAPI
CAMThread::InitialThreadProc(__inout LPVOID pv)
{
HRESULT hrCoInit = CAMThread::CoInitializeHelper();
if(FAILED(hrCoInit)) {
DbgLog((LOG_ERROR, 1, TEXT("CoInitializeEx failed.")));
}
CAMThread * pThread = (CAMThread *) pv;
HRESULT hr = pThread->ThreadProc();
if(SUCCEEDED(hrCoInit)) {
CoUninitialize();
}
return hr;
}
BOOL
CAMThread::Create()
{
DWORD threadid;
CAutoLock lock(&m_AccessLock);
if (ThreadExists()) {
return FALSE;
}
m_hThread = CreateThread(
NULL,
0,
CAMThread::InitialThreadProc,
this,
0,
&threadid);
if (!m_hThread) {
return FALSE;
}
return TRUE;
}
DWORD
CAMThread::CallWorker(DWORD dwParam)
{
// lock access to the worker thread for scope of this object
CAutoLock lock(&m_AccessLock);
if (!ThreadExists()) {
return (DWORD) E_FAIL;
}
// set the parameter
m_dwParam = dwParam;
// signal the worker thread
m_EventSend.Set();
// wait for the completion to be signalled
m_EventComplete.Wait();
// done - this is the thread's return value
return m_dwReturnVal;
}
// Wait for a request from the client
DWORD
CAMThread::GetRequest()
{
m_EventSend.Wait();
return m_dwParam;
}
// is there a request?
BOOL
CAMThread::CheckRequest(__out_opt DWORD * pParam)
{
if (!m_EventSend.Check()) {
return FALSE;
} else {
if (pParam) {
*pParam = m_dwParam;
}
return TRUE;
}
}
// reply to the request
void
CAMThread::Reply(DWORD dw)
{
m_dwReturnVal = dw;
// The request is now complete so CheckRequest should fail from
// now on
//
// This event should be reset BEFORE we signal the client or
// the client may Set it before we reset it and we'll then
// reset it (!)
m_EventSend.Reset();
// Tell the client we're finished
m_EventComplete.Set();
}
HRESULT CAMThread::CoInitializeHelper()
{
// call CoInitializeEx and tell OLE not to create a window (this
// thread probably won't dispatch messages and will hang on
// broadcast msgs o/w).
//
// If CoInitEx is not available, threads that don't call CoCreate
// aren't affected. Threads that do will have to handle the
// failure. Perhaps we should fall back to CoInitialize and risk
// hanging?
//
// older versions of ole32.dll don't have CoInitializeEx
HRESULT hr = E_FAIL;
HINSTANCE hOle = GetModuleHandle(TEXT("ole32.dll"));
if(hOle)
{
typedef HRESULT (STDAPICALLTYPE *PCoInitializeEx)(
LPVOID pvReserved, DWORD dwCoInit);
PCoInitializeEx pCoInitializeEx =
(PCoInitializeEx)(GetProcAddress(hOle, "CoInitializeEx"));
if(pCoInitializeEx)
{
hr = (*pCoInitializeEx)(0, COINIT_DISABLE_OLE1DDE );
}
}
else
{
// caller must load ole32.dll
DbgBreak("couldn't locate ole32.dll");
}
return hr;
}
// destructor for CMsgThread - cleans up any messages left in the
// queue when the thread exited
CMsgThread::~CMsgThread()
{
if (m_hThread != NULL) {
WaitForSingleObject(m_hThread, INFINITE);
EXECUTE_ASSERT(CloseHandle(m_hThread));
}
POSITION pos = m_ThreadQueue.GetHeadPosition();
while (pos) {
CMsg * pMsg = m_ThreadQueue.GetNext(pos);
delete pMsg;
}
m_ThreadQueue.RemoveAll();
if (m_hSem != NULL) {
EXECUTE_ASSERT(CloseHandle(m_hSem));
}
}
BOOL
CMsgThread::CreateThread(
)
{
m_hSem = CreateSemaphore(NULL, 0, 0x7FFFFFFF, NULL);
if (m_hSem == NULL) {
return FALSE;
}
m_hThread = ::CreateThread(NULL, 0, DefaultThreadProc,
(LPVOID)this, 0, &m_ThreadId);
return m_hThread != NULL;
}
// This is the threads message pump. Here we get and dispatch messages to
// clients thread proc until the client refuses to process a message.
// The client returns a non-zero value to stop the message pump, this
// value becomes the threads exit code.
DWORD WINAPI
CMsgThread::DefaultThreadProc(
__inout LPVOID lpParam
)
{
CMsgThread *lpThis = (CMsgThread *)lpParam;
CMsg msg;
LRESULT lResult;
// !!!
CoInitialize(NULL);
// allow a derived class to handle thread startup
lpThis->OnThreadInit();
do {
lpThis->GetThreadMsg(&msg);
lResult = lpThis->ThreadMessageProc(msg.uMsg,msg.dwFlags,
msg.lpParam, msg.pEvent);
} while (lResult == 0L);
// !!!
CoUninitialize();
return (DWORD)lResult;
}
// Block until the next message is placed on the list m_ThreadQueue.
// copies the message to the message pointed to by *pmsg
void
CMsgThread::GetThreadMsg(__out CMsg *msg)
{
CMsg * pmsg = NULL;
// keep trying until a message appears
while (TRUE) {
{
CAutoLock lck(&m_Lock);
pmsg = m_ThreadQueue.RemoveHead();
if (pmsg == NULL) {
m_lWaiting++;
} else {
break;
}
}
// the semaphore will be signalled when it is non-empty
WaitForSingleObject(m_hSem, INFINITE);
}
// copy fields to caller's CMsg
*msg = *pmsg;
// this CMsg was allocated by the 'new' in PutThreadMsg
delete pmsg;
}
// Helper function - convert int to WSTR
void WINAPI IntToWstr(int i, __out_ecount(12) LPWSTR wstr)
{
#ifdef UNICODE
if (FAILED(StringCchPrintf(wstr, 12, L"%d", i))) {
wstr[0] = 0;
}
#else
TCHAR temp[12];
if (FAILED(StringCchPrintf(temp, NUMELMS(temp), "%d", i))) {
wstr[0] = 0;
} else {
MultiByteToWideChar(CP_ACP, 0, temp, -1, wstr, 12);
}
#endif
} // IntToWstr
#define MEMORY_ALIGNMENT 4
#define MEMORY_ALIGNMENT_LOG2 2
#define MEMORY_ALIGNMENT_MASK MEMORY_ALIGNMENT - 1
void * __stdcall memmoveInternal(void * dst, const void * src, size_t count)
{
void * ret = dst;
#ifdef _X86_
if (dst <= src || (char *)dst >= ((char *)src + count)) {
/*
* Non-Overlapping Buffers
* copy from lower addresses to higher addresses
*/
_asm {
mov esi,src
mov edi,dst
mov ecx,count
cld
mov edx,ecx
and edx,MEMORY_ALIGNMENT_MASK
shr ecx,MEMORY_ALIGNMENT_LOG2
rep movsd
or ecx,edx
jz memmove_done
rep movsb
memmove_done:
}
}
else {
/*
* Overlapping Buffers
* copy from higher addresses to lower addresses
*/
_asm {
mov esi,src
mov edi,dst
mov ecx,count
std
add esi,ecx
add edi,ecx
dec esi
dec edi
rep movsb
cld
}
}
#else
MoveMemory(dst, src, count);
#endif
return ret;
}
HRESULT AMSafeMemMoveOffset(
__in_bcount(dst_size) void * dst,
__in size_t dst_size,
__in DWORD cb_dst_offset,
__in_bcount(src_size) const void * src,
__in size_t src_size,
__in DWORD cb_src_offset,
__in size_t count)
{
// prevent read overruns
if( count + cb_src_offset < count || // prevent integer overflow
count + cb_src_offset > src_size) // prevent read overrun
{
return E_INVALIDARG;
}
// prevent write overruns
if( count + cb_dst_offset < count || // prevent integer overflow
count + cb_dst_offset > dst_size) // prevent write overrun
{
return E_INVALIDARG;
}
memmoveInternal( (BYTE *)dst+cb_dst_offset, (BYTE *)src+cb_src_offset, count);
return S_OK;
}
#ifdef DEBUG
/******************************Public*Routine******************************\
* Debug CCritSec helpers
*
* We provide debug versions of the Constructor, destructor, Lock and Unlock
* routines. The debug code tracks who owns each critical section by
* maintaining a depth count.
*
* History:
*
\**************************************************************************/
CCritSec::CCritSec()
{
InitializeCriticalSection(&m_CritSec);
m_currentOwner = m_lockCount = 0;
m_fTrace = FALSE;
}
CCritSec::~CCritSec()
{
DeleteCriticalSection(&m_CritSec);
}
void CCritSec::Lock()
{
UINT tracelevel=3;
DWORD us = GetCurrentThreadId();
DWORD currentOwner = m_currentOwner;
if (currentOwner && (currentOwner != us)) {
// already owned, but not by us
if (m_fTrace) {
DbgLog((LOG_LOCKING, 2, TEXT("Thread %d about to wait for lock %x owned by %d"),
GetCurrentThreadId(), &m_CritSec, currentOwner));
tracelevel=2;
// if we saw the message about waiting for the critical
// section we ensure we see the message when we get the
// critical section
}
}
EnterCriticalSection(&m_CritSec);
if (0 == m_lockCount++) {
// we now own it for the first time. Set owner information
m_currentOwner = us;
if (m_fTrace) {
DbgLog((LOG_LOCKING, tracelevel, TEXT("Thread %d now owns lock %x"), m_currentOwner, &m_CritSec));
}
}
}
void CCritSec::Unlock() {
if (0 == --m_lockCount) {
// about to be unowned
if (m_fTrace) {
DbgLog((LOG_LOCKING, 3, TEXT("Thread %d releasing lock %x"), m_currentOwner, &m_CritSec));
}
m_currentOwner = 0;
}
LeaveCriticalSection(&m_CritSec);
}
void WINAPI DbgLockTrace(CCritSec * pcCrit, BOOL fTrace)
{
pcCrit->m_fTrace = fTrace;
}
BOOL WINAPI CritCheckIn(CCritSec * pcCrit)
{
return (GetCurrentThreadId() == pcCrit->m_currentOwner);
}
BOOL WINAPI CritCheckIn(const CCritSec * pcCrit)
{
return (GetCurrentThreadId() == pcCrit->m_currentOwner);
}
BOOL WINAPI CritCheckOut(CCritSec * pcCrit)
{
return (GetCurrentThreadId() != pcCrit->m_currentOwner);
}
BOOL WINAPI CritCheckOut(const CCritSec * pcCrit)
{
return (GetCurrentThreadId() != pcCrit->m_currentOwner);
}
#endif
STDAPI WriteBSTR(__deref_out BSTR *pstrDest, LPCWSTR szSrc)
{
*pstrDest = SysAllocString( szSrc );
if( !(*pstrDest) ) return E_OUTOFMEMORY;
return NOERROR;
}
STDAPI FreeBSTR(__deref_in BSTR* pstr)
{
if( (PVOID)*pstr == NULL ) return S_FALSE;
SysFreeString( *pstr );
return NOERROR;
}
// Return a wide string - allocating memory for it
// Returns:
// S_OK - no error
// E_POINTER - ppszReturn == NULL
// E_OUTOFMEMORY - can't allocate memory for returned string
STDAPI AMGetWideString(LPCWSTR psz, __deref_out LPWSTR *ppszReturn)
{
CheckPointer(ppszReturn, E_POINTER);
ValidateReadWritePtr(ppszReturn, sizeof(LPWSTR));
*ppszReturn = NULL;
size_t nameLen;
HRESULT hr = StringCbLengthW(psz, 100000, &nameLen);
if (FAILED(hr)) {
return hr;
}
*ppszReturn = (LPWSTR)CoTaskMemAlloc(nameLen + sizeof(WCHAR));
if (*ppszReturn == NULL) {
return E_OUTOFMEMORY;
}
CopyMemory(*ppszReturn, psz, nameLen + sizeof(WCHAR));
return NOERROR;
}
// Waits for the HANDLE hObject. While waiting messages sent
// to windows on our thread by SendMessage will be processed.
// Using this function to do waits and mutual exclusion
// avoids some deadlocks in objects with windows.
// Return codes are the same as for WaitForSingleObject
DWORD WINAPI WaitDispatchingMessages(
HANDLE hObject,
DWORD dwWait,
HWND hwnd,
UINT uMsg,
HANDLE hEvent)
{
BOOL bPeeked = FALSE;
DWORD dwResult;
DWORD dwStart;
DWORD dwThreadPriority;
static UINT uMsgId = 0;
HANDLE hObjects[2] = { hObject, hEvent };
if (dwWait != INFINITE && dwWait != 0) {
dwStart = GetTickCount();
}
for (; ; ) {
DWORD nCount = NULL != hEvent ? 2 : 1;
// Minimize the chance of actually dispatching any messages
// by seeing if we can lock immediately.
dwResult = WaitForMultipleObjects(nCount, hObjects, FALSE, 0);
if (dwResult < WAIT_OBJECT_0 + nCount) {
break;
}
DWORD dwTimeOut = dwWait;
if (dwTimeOut > 10) {
dwTimeOut = 10;
}
dwResult = MsgWaitForMultipleObjects(
nCount,
hObjects,
FALSE,
dwTimeOut,
hwnd == NULL ? QS_SENDMESSAGE :
QS_SENDMESSAGE + QS_POSTMESSAGE);
if (dwResult == WAIT_OBJECT_0 + nCount ||
dwResult == WAIT_TIMEOUT && dwTimeOut != dwWait) {
MSG msg;
if (hwnd != NULL) {
while (PeekMessage(&msg, hwnd, uMsg, uMsg, PM_REMOVE)) {
DispatchMessage(&msg);
}
}
// Do this anyway - the previous peek doesn't flush out the
// messages
PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE);
if (dwWait != INFINITE && dwWait != 0) {
DWORD dwNow = GetTickCount();
// Working with differences handles wrap-around
DWORD dwDiff = dwNow - dwStart;
if (dwDiff > dwWait) {
dwWait = 0;
} else {
dwWait -= dwDiff;
}
dwStart = dwNow;
}
if (!bPeeked) {
// Raise our priority to prevent our message queue
// building up
dwThreadPriority = GetThreadPriority(GetCurrentThread());
if (dwThreadPriority < THREAD_PRIORITY_HIGHEST) {
SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST);
}
bPeeked = TRUE;
}
} else {
break;
}
}
if (bPeeked) {
SetThreadPriority(GetCurrentThread(), dwThreadPriority);
if (HIWORD(GetQueueStatus(QS_POSTMESSAGE)) & QS_POSTMESSAGE) {
if (uMsgId == 0) {
uMsgId = RegisterWindowMessage(TEXT("AMUnblock"));
}
if (uMsgId != 0) {
MSG msg;
// Remove old ones
while (PeekMessage(&msg, (HWND)-1, uMsgId, uMsgId, PM_REMOVE)) {
}
}
PostThreadMessage(GetCurrentThreadId(), uMsgId, 0, 0);
}
}
return dwResult;
}
HRESULT AmGetLastErrorToHResult()
{
DWORD dwLastError = GetLastError();
if(dwLastError != 0)
{
return HRESULT_FROM_WIN32(dwLastError);
}
else
{
return E_FAIL;
}
}
IUnknown* QzAtlComPtrAssign(__deref_inout_opt IUnknown** pp, __in_opt IUnknown* lp)
{
if (lp != NULL)
lp->AddRef();
if (*pp)
(*pp)->Release();
*pp = lp;
return lp;
}
/******************************************************************************
CompatibleTimeSetEvent
CompatibleTimeSetEvent() sets the TIME_KILL_SYNCHRONOUS flag before calling
timeSetEvent() if the current operating system supports it. TIME_KILL_SYNCHRONOUS
is supported on Windows XP and later operating systems.
Parameters:
- The same parameters as timeSetEvent(). See timeSetEvent()'s documentation in
the Platform SDK for more information.
Return Value:
- The same return value as timeSetEvent(). See timeSetEvent()'s documentation in
the Platform SDK for more information.
******************************************************************************/
MMRESULT CompatibleTimeSetEvent( UINT uDelay, UINT uResolution, __in LPTIMECALLBACK lpTimeProc, DWORD_PTR dwUser, UINT fuEvent )
{
#if WINVER >= 0x0501
{
static bool fCheckedVersion = false;
static bool fTimeKillSynchronousFlagAvailable = false;
if( !fCheckedVersion ) {
fTimeKillSynchronousFlagAvailable = TimeKillSynchronousFlagAvailable();
fCheckedVersion = true;
}
if( fTimeKillSynchronousFlagAvailable ) {
fuEvent = fuEvent | TIME_KILL_SYNCHRONOUS;
}
}
#endif // WINVER >= 0x0501
return timeSetEvent( uDelay, uResolution, lpTimeProc, dwUser, fuEvent );
}
bool TimeKillSynchronousFlagAvailable( void )
{
OSVERSIONINFO osverinfo;
osverinfo.dwOSVersionInfoSize = sizeof(osverinfo);
if( GetVersionEx( &osverinfo ) ) {
// Windows XP's major version is 5 and its' minor version is 1.
// timeSetEvent() started supporting the TIME_KILL_SYNCHRONOUS flag
// in Windows XP.
if( (osverinfo.dwMajorVersion > 5) ||
( (osverinfo.dwMajorVersion == 5) && (osverinfo.dwMinorVersion >= 1) ) ) {
return true;
}
}
return false;
}

View file

@ -0,0 +1,532 @@
//------------------------------------------------------------------------------
// File: WXUtil.h
//
// Desc: DirectShow base classes - defines helper classes and functions for
// building multimedia filters.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#ifndef __WXUTIL__
#define __WXUTIL__
// eliminate spurious "statement has no effect" warnings.
#pragma warning(disable: 4705)
// wrapper for whatever critical section we have
class CCritSec {
// make copy constructor and assignment operator inaccessible
CCritSec(const CCritSec &refCritSec);
CCritSec &operator=(const CCritSec &refCritSec);
CRITICAL_SECTION m_CritSec;
#ifdef DEBUG
public:
DWORD m_currentOwner;
DWORD m_lockCount;
BOOL m_fTrace; // Trace this one
public:
CCritSec();
~CCritSec();
void Lock();
void Unlock();
#else
public:
CCritSec() {
InitializeCriticalSection(&m_CritSec);
};
~CCritSec() {
DeleteCriticalSection(&m_CritSec);
};
void Lock() {
EnterCriticalSection(&m_CritSec);
};
void Unlock() {
LeaveCriticalSection(&m_CritSec);
};
#endif
};
//
// To make deadlocks easier to track it is useful to insert in the
// code an assertion that says whether we own a critical section or
// not. We make the routines that do the checking globals to avoid
// having different numbers of member functions in the debug and
// retail class implementations of CCritSec. In addition we provide
// a routine that allows usage of specific critical sections to be
// traced. This is NOT on by default - there are far too many.
//
#ifdef DEBUG
BOOL WINAPI CritCheckIn(CCritSec * pcCrit);
BOOL WINAPI CritCheckIn(const CCritSec * pcCrit);
BOOL WINAPI CritCheckOut(CCritSec * pcCrit);
BOOL WINAPI CritCheckOut(const CCritSec * pcCrit);
void WINAPI DbgLockTrace(CCritSec * pcCrit, BOOL fTrace);
#else
#define CritCheckIn(x) TRUE
#define CritCheckOut(x) TRUE
#define DbgLockTrace(pc, fT)
#endif
// locks a critical section, and unlocks it automatically
// when the lock goes out of scope
class CAutoLock {
// make copy constructor and assignment operator inaccessible
CAutoLock(const CAutoLock &refAutoLock);
CAutoLock &operator=(const CAutoLock &refAutoLock);
protected:
CCritSec * m_pLock;
public:
CAutoLock(CCritSec * plock)
{
m_pLock = plock;
m_pLock->Lock();
};
~CAutoLock() {
m_pLock->Unlock();
};
};
// wrapper for event objects
class CAMEvent
{
// make copy constructor and assignment operator inaccessible
CAMEvent(const CAMEvent &refEvent);
CAMEvent &operator=(const CAMEvent &refEvent);
protected:
HANDLE m_hEvent;
public:
CAMEvent(BOOL fManualReset = FALSE, __inout_opt HRESULT *phr = NULL);
CAMEvent(__inout_opt HRESULT *phr);
~CAMEvent();
// Cast to HANDLE - we don't support this as an lvalue
operator HANDLE () const { return m_hEvent; };
void Set() {EXECUTE_ASSERT(SetEvent(m_hEvent));};
BOOL Wait(DWORD dwTimeout = INFINITE) {
return (WaitForSingleObject(m_hEvent, dwTimeout) == WAIT_OBJECT_0);
};
void Reset() { ResetEvent(m_hEvent); };
BOOL Check() { return Wait(0); };
};
// wrapper for event objects that do message processing
// This adds ONE method to the CAMEvent object to allow sent
// messages to be processed while waiting
class CAMMsgEvent : public CAMEvent
{
public:
CAMMsgEvent(__inout_opt HRESULT *phr = NULL);
// Allow SEND messages to be processed while waiting
BOOL WaitMsg(DWORD dwTimeout = INFINITE);
};
// old name supported for the time being
#define CTimeoutEvent CAMEvent
// support for a worker thread
#ifdef AM_NOVTABLE
// simple thread class supports creation of worker thread, synchronization
// and communication. Can be derived to simplify parameter passing
class AM_NOVTABLE CAMThread {
// make copy constructor and assignment operator inaccessible
CAMThread(const CAMThread &refThread);
CAMThread &operator=(const CAMThread &refThread);
CAMEvent m_EventSend;
CAMEvent m_EventComplete;
DWORD m_dwParam;
DWORD m_dwReturnVal;
protected:
HANDLE m_hThread;
// thread will run this function on startup
// must be supplied by derived class
virtual DWORD ThreadProc() = 0;
public:
CAMThread(__inout_opt HRESULT *phr = NULL);
virtual ~CAMThread();
CCritSec m_AccessLock; // locks access by client threads
CCritSec m_WorkerLock; // locks access to shared objects
// thread initially runs this. param is actually 'this'. function
// just gets this and calls ThreadProc
static DWORD WINAPI InitialThreadProc(__inout LPVOID pv);
// start thread running - error if already running
BOOL Create();
// signal the thread, and block for a response
//
DWORD CallWorker(DWORD);
// accessor thread calls this when done with thread (having told thread
// to exit)
void Close() {
// Disable warning: Conversion from LONG to PVOID of greater size
#pragma warning(push)
#pragma warning(disable: 4312)
HANDLE hThread = (HANDLE)InterlockedExchangePointer(&m_hThread, 0);
#pragma warning(pop)
if (hThread) {
WaitForSingleObject(hThread, INFINITE);
CloseHandle(hThread);
}
};
// ThreadExists
// Return TRUE if the thread exists. FALSE otherwise
BOOL ThreadExists(void) const
{
if (m_hThread == 0) {
return FALSE;
} else {
return TRUE;
}
}
// wait for the next request
DWORD GetRequest();
// is there a request?
BOOL CheckRequest(__out_opt DWORD * pParam);
// reply to the request
void Reply(DWORD);
// If you want to do WaitForMultipleObjects you'll need to include
// this handle in your wait list or you won't be responsive
HANDLE GetRequestHandle() const { return m_EventSend; };
// Find out what the request was
DWORD GetRequestParam() const { return m_dwParam; };
// call CoInitializeEx (COINIT_DISABLE_OLE1DDE) if
// available. S_FALSE means it's not available.
static HRESULT CoInitializeHelper();
};
#endif // AM_NOVTABLE
// CQueue
//
// Implements a simple Queue ADT. The queue contains a finite number of
// objects, access to which is controlled by a semaphore. The semaphore
// is created with an initial count (N). Each time an object is added
// a call to WaitForSingleObject is made on the semaphore's handle. When
// this function returns a slot has been reserved in the queue for the new
// object. If no slots are available the function blocks until one becomes
// available. Each time an object is removed from the queue ReleaseSemaphore
// is called on the semaphore's handle, thus freeing a slot in the queue.
// If no objects are present in the queue the function blocks until an
// object has been added.
#define DEFAULT_QUEUESIZE 2
template <class T> class CQueue {
private:
HANDLE hSemPut; // Semaphore controlling queue "putting"
HANDLE hSemGet; // Semaphore controlling queue "getting"
CRITICAL_SECTION CritSect; // Thread seriallization
int nMax; // Max objects allowed in queue
int iNextPut; // Array index of next "PutMsg"
int iNextGet; // Array index of next "GetMsg"
T *QueueObjects; // Array of objects (ptr's to void)
void Initialize(int n) {
iNextPut = iNextGet = 0;
nMax = n;
InitializeCriticalSection(&CritSect);
hSemPut = CreateSemaphore(NULL, n, n, NULL);
hSemGet = CreateSemaphore(NULL, 0, n, NULL);
QueueObjects = new T[n];
}
public:
CQueue(int n) {
Initialize(n);
}
CQueue() {
Initialize(DEFAULT_QUEUESIZE);
}
~CQueue() {
delete [] QueueObjects;
DeleteCriticalSection(&CritSect);
CloseHandle(hSemPut);
CloseHandle(hSemGet);
}
T GetQueueObject() {
int iSlot;
T Object;
LONG lPrevious;
// Wait for someone to put something on our queue, returns straight
// away is there is already an object on the queue.
//
WaitForSingleObject(hSemGet, INFINITE);
EnterCriticalSection(&CritSect);
iSlot = iNextGet++ % nMax;
Object = QueueObjects[iSlot];
LeaveCriticalSection(&CritSect);
// Release anyone waiting to put an object onto our queue as there
// is now space available in the queue.
//
ReleaseSemaphore(hSemPut, 1L, &lPrevious);
return Object;
}
void PutQueueObject(T Object) {
int iSlot;
LONG lPrevious;
// Wait for someone to get something from our queue, returns straight
// away is there is already an empty slot on the queue.
//
WaitForSingleObject(hSemPut, INFINITE);
EnterCriticalSection(&CritSect);
iSlot = iNextPut++ % nMax;
QueueObjects[iSlot] = Object;
LeaveCriticalSection(&CritSect);
// Release anyone waiting to remove an object from our queue as there
// is now an object available to be removed.
//
ReleaseSemaphore(hSemGet, 1L, &lPrevious);
}
};
// Ensures that memory is not read past the length source buffer
// and that memory is not written past the length of the dst buffer
// dst - buffer to copy to
// dst_size - total size of destination buffer
// cb_dst_offset - offset, first byte copied to dst+cb_dst_offset
// src - buffer to copy from
// src_size - total size of source buffer
// cb_src_offset - offset, first byte copied from src+cb_src_offset
// count - number of bytes to copy
//
// Returns:
// S_OK - no error
// E_INVALIDARG - values passed would lead to overrun
HRESULT AMSafeMemMoveOffset(
__in_bcount(dst_size) void * dst,
__in size_t dst_size,
__in DWORD cb_dst_offset,
__in_bcount(src_size) const void * src,
__in size_t src_size,
__in DWORD cb_src_offset,
__in size_t count);
extern "C"
void * __stdcall memmoveInternal(void *, const void *, size_t);
inline void * __cdecl memchrInternal(const void *buf, int chr, size_t cnt)
{
#ifdef _X86_
void *pRet = NULL;
_asm {
cld // make sure we get the direction right
mov ecx, cnt // num of bytes to scan
mov edi, buf // pointer byte stream
mov eax, chr // byte to scan for
repne scasb // look for the byte in the byte stream
jnz exit_memchr // Z flag set if byte found
dec edi // scasb always increments edi even when it
// finds the required byte
mov pRet, edi
exit_memchr:
}
return pRet;
#else
while ( cnt && (*(unsigned char *)buf != (unsigned char)chr) ) {
buf = (unsigned char *)buf + 1;
cnt--;
}
return(cnt ? (void *)buf : NULL);
#endif
}
void WINAPI IntToWstr(int i, __out_ecount(12) LPWSTR wstr);
#define WstrToInt(sz) _wtoi(sz)
#define atoiW(sz) _wtoi(sz)
#define atoiA(sz) atoi(sz)
// These are available to help managing bitmap VIDEOINFOHEADER media structures
extern const DWORD bits555[3];
extern const DWORD bits565[3];
extern const DWORD bits888[3];
// These help convert between VIDEOINFOHEADER and BITMAPINFO structures
STDAPI_(const GUID) GetTrueColorType(const BITMAPINFOHEADER *pbmiHeader);
STDAPI_(const GUID) GetBitmapSubtype(const BITMAPINFOHEADER *pbmiHeader);
STDAPI_(WORD) GetBitCount(const GUID *pSubtype);
// strmbase.lib implements this for compatibility with people who
// managed to link to this directly. we don't want to advertise it.
//
// STDAPI_(/* T */ CHAR *) GetSubtypeName(const GUID *pSubtype);
STDAPI_(CHAR *) GetSubtypeNameA(const GUID *pSubtype);
STDAPI_(WCHAR *) GetSubtypeNameW(const GUID *pSubtype);
#ifdef UNICODE
#define GetSubtypeName GetSubtypeNameW
#else
#define GetSubtypeName GetSubtypeNameA
#endif
STDAPI_(LONG) GetBitmapFormatSize(const BITMAPINFOHEADER *pHeader);
STDAPI_(DWORD) GetBitmapSize(const BITMAPINFOHEADER *pHeader);
#ifdef __AMVIDEO__
STDAPI_(BOOL) ContainsPalette(const VIDEOINFOHEADER *pVideoInfo);
STDAPI_(const RGBQUAD *) GetBitmapPalette(const VIDEOINFOHEADER *pVideoInfo);
#endif // __AMVIDEO__
// Compares two interfaces and returns TRUE if they are on the same object
BOOL WINAPI IsEqualObject(IUnknown *pFirst, IUnknown *pSecond);
// This is for comparing pins
#define EqualPins(pPin1, pPin2) IsEqualObject(pPin1, pPin2)
// Arithmetic helper functions
// Compute (a * b + rnd) / c
LONGLONG WINAPI llMulDiv(LONGLONG a, LONGLONG b, LONGLONG c, LONGLONG rnd);
LONGLONG WINAPI Int64x32Div32(LONGLONG a, LONG b, LONG c, LONG rnd);
// Avoids us dyna-linking to SysAllocString to copy BSTR strings
STDAPI WriteBSTR(__deref_out BSTR * pstrDest, LPCWSTR szSrc);
STDAPI FreeBSTR(__deref_in BSTR* pstr);
// Return a wide string - allocating memory for it
// Returns:
// S_OK - no error
// E_POINTER - ppszReturn == NULL
// E_OUTOFMEMORY - can't allocate memory for returned string
STDAPI AMGetWideString(LPCWSTR pszString, __deref_out LPWSTR *ppszReturn);
// Special wait for objects owning windows
DWORD WINAPI WaitDispatchingMessages(
HANDLE hObject,
DWORD dwWait,
HWND hwnd = NULL,
UINT uMsg = 0,
HANDLE hEvent = NULL);
// HRESULT_FROM_WIN32 converts ERROR_SUCCESS to a success code, but in
// our use of HRESULT_FROM_WIN32, it typically means a function failed
// to call SetLastError(), and we still want a failure code.
//
#define AmHresultFromWin32(x) (MAKE_HRESULT(SEVERITY_ERROR, FACILITY_WIN32, x))
// call GetLastError and return an HRESULT value that will fail the
// SUCCEEDED() macro.
HRESULT AmGetLastErrorToHResult(void);
// duplicate of ATL's CComPtr to avoid linker conflicts.
IUnknown* QzAtlComPtrAssign(__deref_inout_opt IUnknown** pp, __in_opt IUnknown* lp);
template <class T>
class QzCComPtr
{
public:
typedef T _PtrClass;
QzCComPtr() {p=NULL;}
QzCComPtr(T* lp)
{
if ((p = lp) != NULL)
p->AddRef();
}
QzCComPtr(const QzCComPtr<T>& lp)
{
if ((p = lp.p) != NULL)
p->AddRef();
}
~QzCComPtr() {if (p) p->Release();}
void Release() {if (p) p->Release(); p=NULL;}
operator T*() {return (T*)p;}
T& operator*() {ASSERT(p!=NULL); return *p; }
//The assert on operator& usually indicates a bug. If this is really
//what is needed, however, take the address of the p member explicitly.
T** operator&() { ASSERT(p==NULL); return &p; }
T* operator->() { ASSERT(p!=NULL); return p; }
T* operator=(T* lp){return (T*)QzAtlComPtrAssign((IUnknown**)&p, lp);}
T* operator=(const QzCComPtr<T>& lp)
{
return (T*)QzAtlComPtrAssign((IUnknown**)&p, lp.p);
}
#if _MSC_VER>1020
bool operator!(){return (p == NULL);}
#else
BOOL operator!(){return (p == NULL) ? TRUE : FALSE;}
#endif
T* p;
};
MMRESULT CompatibleTimeSetEvent( UINT uDelay, UINT uResolution, __in LPTIMECALLBACK lpTimeProc, DWORD_PTR dwUser, UINT fuEvent );
bool TimeKillSynchronousFlagAvailable( void );
// Helper to replace lstrcpmi
__inline int lstrcmpiLocaleIndependentW(LPCWSTR lpsz1, LPCWSTR lpsz2)
{
return CompareStringW(LOCALE_INVARIANT, NORM_IGNORECASE, lpsz1, -1, lpsz2, -1) - CSTR_EQUAL;
}
__inline int lstrcmpiLocaleIndependentA(LPCSTR lpsz1, LPCSTR lpsz2)
{
return CompareStringA(LOCALE_INVARIANT, NORM_IGNORECASE, lpsz1, -1, lpsz2, -1) - CSTR_EQUAL;
}
#endif /* __WXUTIL__ */

View file

@ -0,0 +1,72 @@
strmbase_sources = [
'amextra.cpp',
'amfilter.cpp',
'amvideo.cpp',
'arithutil.cpp',
'combase.cpp',
'cprop.cpp',
'ctlutil.cpp',
'ddmm.cpp',
'dllentry.cpp',
'dllsetup.cpp',
'mtype.cpp',
'outputq.cpp',
'perflog.cpp',
'pstream.cpp',
'pullpin.cpp',
'refclock.cpp',
'renbase.cpp',
'schedule.cpp',
'seekpt.cpp',
'source.cpp',
'strmctl.cpp',
'sysclock.cpp',
'transfrm.cpp',
'transip.cpp',
'videoctl.cpp',
'vtrans.cpp',
'winctrl.cpp',
'winutil.cpp',
'wxdebug.cpp',
'wxlist.cpp',
'wxutil.cpp'
]
strmbase_cpp_args = ['-D_MBCS']
strmbase_cpp_args += cxx.get_supported_arguments([
'/wd4189', # 'identifier' : local variable is initialized but not referenced
'/wd4456', # declaration of 'identifier' hides previous local declaration
'/wd4701', # potentially uninitialized local variable 'name' used
'/wd4703', # potentially uninitialized local pointer variable 'name' used
'/wd4706', # assignment within conditional expression
'/wd4996' # code uses a function, class member, variable, or typedef that's marked deprecated
])
strmbase_subdir = 'baseclasses'
strmbase_includes = include_directories(strmbase_subdir)
strmiids_dep = cxx.find_library('strmiids', required: get_option('directshow'))
if not strmiids_dep.found()
message('strmiids not found, not building directshow strmbase')
strmbase_dep = disabler()
subdir_done()
endif
strmbase_cpp_sources = []
foreach file : strmbase_sources
strmbase_cpp_sources += strmbase_subdir + '/' + file
endforeach
strmbase_lib = static_library(
'strmbase',
strmbase_cpp_sources,
cpp_args: strmbase_cpp_args,
dependencies: strmiids_dep,
include_directories: strmbase_includes,
override_options: ['cpp_std=none'])
strmbase_dep = declare_dependency(
link_with: strmbase_lib,
compile_args: strmbase_cpp_args,
dependencies: strmiids_dep,
include_directories: strmbase_includes)

View file

@ -6,9 +6,7 @@ subdir('d3d11')
subdir('d3dvideosink')
subdir('decklink')
subdir('directsound')
#subdir('dshowdecwrapper')
#subdir('dshowsrcwrapper')
#subdir('dshowvideosink')
subdir('directshow')
subdir('dvb')
subdir('fbdev')
subdir('ipcpipeline')