The QTKit framework had been deprecated for long in favour of AVFundation
framework and we already have avfvideosrc that provides the same
functionality.
https://bugzilla.gnome.org/show_bug.cgi?id=782078
Avfvideosrc represents an iphone camera or, on mac, a screencapture session.
The old API allowed you to select an input device by device index only. The new
API adds the ability to select the position (front or back facing) and
device-type (wide angle, telephoto, etc.). Furthermore, you can now specify
the orientation (portrait, landscape, etc.) of the videostream.
https://bugzilla.gnome.org/show_bug.cgi?id=778333
All code interacting with Objective-C objects should now use Automated
Reference Counting rather than manual memory management or Garbage
Collection. Because ARC prohibits C-structs from containing
references to Objective-C objects, all such fields are now typed
'gpointer'. Setting and gettings Objective-C fields on such a
struct now uses explicit __bridge_* calls to tell ARC about
object lifetimes.
https://bugzilla.gnome.org/show_bug.cgi?id=777847
It was previously possible for videotexturecache to be finalized before all of
its textures. Finalizing outstanding textures in this circumstance leads
to a crash. This patch ensure resources are freed in the proper order.
https://bugzilla.gnome.org/show_bug.cgi?id=779247
The cached texture was treated as user_data passed to GstGLBaseMemory
and freed with a GDestroyNotify function. However, this data must
be treated specially: it must be destroyed in the GL thread.
https://bugzilla.gnome.org/show_bug.cgi?id=778434
Fixes:
Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: '*** +[NSString stringWithUTF8String:]: NULL cString
in the state change test.
This commit introduces IOSGLMemory which is a GLMemory that falls back to
GstAppleCoreVideoMemory for CPU access. This is a temporary solution until
IOSurface gets exposed as a public framework on iOS and so we can use
IOSurfaceMemory on both MacOS and iOS.
https://bugzilla.gnome.org/show_bug.cgi?id=769210
Add systemstream=false to caps, otherwise the decoder
may be picked for MPEG-PS files. Also parsed=true,
as video toolbox expects entire frame in
VTDecompressionSessionDecodeFrame.
https://bugzilla.gnome.org/show_bug.cgi?id=770049
Rather than assuming something. e.g. zerocopy on iOS with GLES3 requires
the use of Luminance/Luminance Alpha formats and does not work with
Red/RG textures.
The hardware decoder can become (temporarily) unavailable across
VTDecompressionSessionCreate/Destroy calls. During negotiation if the currently
configured caps are still accepted by downstream we keep using them so we don't
have to destroy and recreate the decoding session.
This indirectly fixes https://bugzilla.gnome.org/show_bug.cgi?id=767429, by
making vtdec stick to GLMemory.
The URI must already be escaped by the caller, we don't support passing around
invalid (unescaped) URIs via the GstURIHandler interface.
Also it will escape too much of the URI in this case, e.g.
ipod-library://item/item.m4a?id=3143338395173862951
becomes
ipod-library://item/item.m4a%3Fid%3D3143338395173862951
https://bugzilla.gnome.org/show_bug.cgi?id=767492
Move calling gst_vtdec_push_frames_if_needed from ::set_format to ::negotiate so
that we always drain even when renegotiation is triggered by downstream.
vtdec specifies sysmem; GLMemory as template caps. When negotiating, we used to
call gst_pad_peer_query_caps (..., filter) with our template caps as filter. The
query does gst_caps_intersect (filter, peercaps) internally which gives
precedence to the order of the filter caps. While we want to output sysmem by
default, when negotiating with glimagesink which returns GLMemory; sysmem; we
do want to do GL, so we now query using a NULL filter and intersect the result
with our template caps giving precedence to downstream's caps.
tl;dr: make sure we end up negotiating GLMemory with glimagesink
Similar to vtdec_hw, this commit adds a vtenc_h264_hw element that fails
caps negotiation unless a hardware encoder could actually be acquired.
This is useful in situations where a fallback to a software encoder
other than the vtenc_h264 software encoder is desired (e.g. to x264enc).
https://bugzilla.gnome.org/show_bug.cgi?id=767104
When renegotiating mid stream - for example with variable bitrate
streams - and therefore destroying and recreating VTSessions, the
hw decoder might become temporarily unavailable.
To deal with this and avoid erroring out on bitrate changes,
vtdec_hw now falls back to using the software decoder if the hw
one was available at some point but isn't anymore. At
renegotiation/bitrate change time, it will still retry to open
the hardware one.