It was possible to generate a SDP that had an RTX payload type
that matched one of the media payload types when providing caps via
codec_preferences without any sink pads.
Fixes
m=video 9 UDP/TLS/RTP/SAVPF 96
...
a=rtpmap:96 VP8/90000
a=rtcp-fb:96 nack pli
a=fmtp:96 apt=96
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2046>
default min port == 0, max port == 65535 -- if min port == 0, uses existing random port selection (range ignored)
add 'gathering_started' flag to avoid changing ports after gathering has started
validity checks: min port <= max port enforced, error thrown otherwise
include tests to ensure port range is being utilized (by @hhardy)
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/119>
Note that newly added formats (YUY2, UYVY, and VYUY) are not supported
render target view formats. So such formats can be only input of d3d11convert
or d3d11videosink. Another note is that YUY2 format is a very common
format for hardware en/decoders on Windows.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1581>
Adding vp9parse element to parse various stream information such as
resolution, profile, and so on. If upstream does not provide resolution and/or
profile, this would be useful for decodebin pipeline for autoplugging
suitable decoder element depending on template caps of each decoder element.
In addition, vp9parse element supports unpacking superframe into
single frame for decoders. The vp9 superframe is a frame which consists
of multiple frames (or superframe with one frame is allowed) followed by superframe
index block. Then unpacked each frame will be considered as normal frame
by decoder. The decision for unpacking will be done by downstream element's
"alignment" caps field, which can be "super-frame" or "frame".
If downstream specifies the "alignment" as "frame",
then vp9parse element will split an incoming superframe into single frames
and the superframe index (located at the end of the superframe) data
will be discarded by vp9parse element.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1041>
Call gst_aggregator_selected_samples() after identifying the
caption buffers that will be added as a meta on the next video
buffer.
Implement GstAggregator.peek_next_sample.
Add an example that demonstrates usage of the new API in
combination with the existing buffer-consumed signal.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1390>
A pipeline like this:
closedcaption/x-cea-708,format=cdp,framerate=30000/1001 ! ccconverter ! closedcaption/x-cea-708,format=cc_data
would produce a critical/assert:
GStreamer-CRITICAL **: 14:21:11.509: gst_util_fraction_multiply: assertion 'a_d != 0' failed
because there would be no framerate field on ccconverter's output.
Fixed by always fixating a framerate if the input has a framerate.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1393>
Instead of storing the raw cc_data, store the 2 cea608 fields individually
as well as the ccp data.
Simply copying the input cc_data to the output cc_data violates a number of
requirements in the cea708 specification. The most prominent being, that
cea608 triples must be placed at the beginning of each cdp.
We also need to comply with the framerate-dpendent limits for both the
cea608 and the ccp data which may involve splitting or merging some
cea608 data but not ccp data or vice versa.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1116>
This will stop stripping four bytes start code. This was fixed and broken
again as it was causing the a timestamp shift. We now call
gst_base_parse_set_ts_at_offset() with the offset of the first NAL to ensure
that fixing a moderatly broken input stream won't affect the timestamps. We
also fixes the unit test, removing a comment about the stripping behaviour not
being correct.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1251>
TSN streams are expected to send packets to the network in a well
defined "pace", which is arbitrarily defined for each stream. This pace
is defined by the "measurement interval" property of a stream.
When the AVTP CVF payloader element - avtpcvfpay - fragments a video
frame that is too big to be sent to the network, it currently defines
that all fragments should be transmitted at the same time (via DTS
property of GstBuffers generated, as sink will use those to time the
transmission of the AVTPDU). This doesn't comply with stream definition,
which also has a limit on how many packets can be sent on a given
measurement interval.
This patch solves that by spreading in time the DTS of the GstBuffers
containing the AVTPDUs. Two new properties, "measurement-interval" and
"max-interval-frames", added to avptcvfpay element so that it knows
stream measurement interval and how many AVTPDUs it can send on any of
them. More details on the method used to proper spread DTS/PTS according
to measurement interval can be found in a code commentary inside this patch.
Tests also added for the new property and behaviour.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1004>