Otherwise we constantly create/close event file descriptors,
every time we call g_socket_condition_timed_wait() or
g_socket_send_message(s)(), i.e. a lot. Which is not
particularly good for performance.
Can't create GCancellable in ::start() here because it's used
in client_new() which may be called via the add-client action
signal which may be called before the element is up and running.
Otherwise we constantly create/close event file descriptors,
every single time we call g_socket_condition_timed_wait() or
g_socket_receive_message(), i.e. twice per packet received!
This was not particularly good for performance.
Also only create GCancellable on start-up.
qtdemux creates a samples array and gets the timestamps for buffers by
accumulating their durations. When doing reverse playback of fragments,
accumulating samples will lead to wrong timestamps as the timestamps
should go decreasing from fragment to fragment and the accumulation
will produce wrong results.
In this case, when receiving a discont for fragmented reverse playback,
the previous samples information should be flushed before new data
is processed.
This new mode ensures that files will never exceed a certain duration
based on incoming buffer PTS (and duration if present)
Note:
* You need timestamped buffers (duh). If some of the incoming buffers don't
have PTS, then it will just accept them in the current file
This property can be used in combination with next-file=max-size
(and perhaps a future next-file=max-duration) to make sure that
each file part starts cleanly with a key frame and the appropriate headers.
In order for this property to work correctly, upstream elements should make
sure than any headers that need to be written in a standalone file are:
1) in the streamheader caps field
2) and/or in the stream as one or more buffers marked with GST_BUFFER_FLAG_HEADER
that are just before the keyframe buffer
This is useful for MPEG-TS/MPEG-PS file segmenting in
combination with mpegtsmux or mpegpsmux.
Original patch by: Tim-Philipp Müller <tim@centricular.com>
From the API documentation: "Note that it is generally not
a good idea to reuse an existing cancellable for more
operations after it has been cancelled once, as this
function might tempt you to do. The recommended practice
is to drop the reference to a cancellable after cancelling
it, and let it die with the outstanding async operations.
You should create a fresh cancellable for further async
operations."
https://bugzilla.gnome.org/show_bug.cgi?id=739132
It might just be a late retransmission or spurious packet from elsewhere, but
resetting everything would mean that we will cause a noticeable hickup. Let's
get some confidence first that the sequence numbers changed for whatever
reason.
https://bugzilla.gnome.org/show_bug.cgi?id=747922
The framerate very often is just an indication of the ideal framerate, not the
actual framerate of the stream. By just using the framerate, we confuse the
rate control algorithm algorithm as multiple frames will map to the same PTS
or have durations of 0.
https://bugzilla.gnome.org/show_bug.cgi?id=749122
The gst-launch script for example launch line to test qtdemux is
missing a queue before the decodebins, otherwise the gst-launch-1.0
command won't work.
https://bugzilla.gnome.org/show_bug.cgi?id=749054
This reverts commit d22ec49632.
Application code might expect that it only gets external sources on those
signals, and get confused by this. If anything we would need to add new
signals.
Without this it seems impossible for an application to easily get notified
about the internal ssrcs that are created, e.g. sender sources, and also
to know when they are active and produce RTCP packets.
https://bugzilla.gnome.org/show_bug.cgi?id=746747
handle_frame() is supposed to consume @frame, so if we don't call
gst_video_decoder_drop_frame() or gst_video_decoder_finish_frame() we have to
release it manually.
https://bugzilla.gnome.org/show_bug.cgi?id=748909