When all fragments have already been downloaded on a live stream
dashdemux would busy loop as the default implementation of
has_next_fragment would return TRUE. Implement it to correctly
signal if adaptivedemux should wait for the manifest update before
trying to get new fragments.
When updating the manifest the timestamps on it might have changed a little
due to rounding and timescale conversions. If the change makes the timestamp
of the current segment to go up it makes dashdemux reposition to the previous
one causing one extra unnecessary download.
So when repositioning add an extra 10 microseconds to cover for that rounding
issues and increase the chance of falling in the same segment.
Additionally, also improve the time used when the client is already after the
last segment. Instead of using the last segment starting timestamp use the
final timestamp to make it reposition to the next one and not to the one that
has already been downloaded.
These functions of directly getting and setting segment indexes
are no longer useful as now we need 2 indexes: repeat and segment
index.
The only operations needed are advance_segment, going back to the
first one or seeking for a timestamp.
Segments are now stored with their repeat counts instead of spanding
them to multiple segments. This caused advancing to the next segment
using a single index to have to iterate over the whole list every time.
This commit addresses this by storing both the segment index as well
as the repeat index and makes advancing to next segment just an
increment of the repeat or the segment index.
Use a single segment to represent it internally to avoid using too
much memory. This has the drawback of issuing a linear search to
find the correct segment to play but this can be fixed by using
binary searches or caching the current position and just looking
for the next one.
https://bugzilla.gnome.org/show_bug.cgi?id=748369
There is a playback error when trying to play a content that
has 'application' mimeType. This commit prevents an exception from
setup text streams.
https://bugzilla.gnome.org/show_bug.cgi?id=747525
Bitrate-limit is already available in the baseclass and, even though
the bandwidth-usage name is better, hls and mss already used
bitrate-limit. This patch deprecates the bandwidth-usage and maps
it to the baseclass bitrate-limite.
By implementing get_live_seek_range.
As shown by :
gst-validate-1.0 playbin \
uri=http://dev-iplatforms.kw.bbc.co.uk/dash/news24-avc3/news24.php
This patch handles live seeking, by setting a live seek range
comprised between now - timeShiftBufferDepth and now.
The inteersting thing with this stream is that one can actually
ask fragments up to availabilityStartTime, but it seems quite clear
in the spec that content is only guaranteed to exist up to
timeShiftBufferDepth.
One can test live seeking this way :
gst-validate-1.0 playbin \
uri=http://dev-iplatforms.kw.bbc.co.uk/dash/news24-avc3/news24.php \
--set-scenario seek_back.scenario
with scenario being:
description, seek=true
seek, playback-time=position+5.0, start="position-600.0",
flags=accurate+flush
This example will play the stream, wait for five seconds, then seek back
to a position 10 minutes earlier.
https://bugzilla.gnome.org/show_bug.cgi?id=744362
Add more power to the chunk_received function (renamed to data_received)
and also to the fragment_finish function.
The data_received function must parse/decrypt the data if necessary and
also push it using the new push_buffer function that is exposed now. The
default implementation gets data from the stream adapter (all available)
and pushes it.
The fragment_finish function must also advance the fragment. The default
implementation only advances the fragment.
This allows the subsegment handling in dashdemux to continuously download
the same file from the server instead of stopping at every subsegment
boundary and starting a new request
gstdashdemux.c:1330:13: error: implicit conversion from enumeration type 'enum _GstAdaptiveDemuxFlowReturn' to different enumeration type
'GstFlowReturn' [-Werror,-Wenum-conversion]
ret = GST_ADAPTIVE_DEMUX_FLOW_SUBSEGMENT_END;
~ ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The segment start time is calculated as the offset into the current segment.
The old condition to detect the end of period (i.e. segment start time >
period start + period duration) failed when the period start was not 0 since
the segment start time does not take the period start time into account.
Fix this detection by only comparing the segment start to the period duration.
https://bugzilla.gnome.org/show_bug.cgi?id=733369
The ISOBMFF profile allows definind subsegments in a segment. At those
subsegment boundaries the client can switch from one representation to
another as they have aligned indexes.
To handle those the 'sidx' index is parsed from the stream and the
entries point to pts/offset of the samples in the stream. Knowing that
the entries are aligned in the different representation allows the client
to switch mid fragment. In this profile a single fragment is used per
representation and the subsegments are contained in this fragment.
To notify the superclass about the subsegment boundary the chunk_received
function returns a special flow return that indicates that. In this case,
the super class will check if a more suitable bitrate is available and will
change to the same subsegment in this new representation.
It also requires special handling of the position in the stream as the
fragment advancing is now done by incrementing the index of the subsegment.
It will only advance to the next fragment once all subsegments have been
downloaded.
https://bugzilla.gnome.org/show_bug.cgi?id=741248
If EOS or ERROR happens before the download loop thread has reached its
g_cond_wait() call, then the g_cond_signal doesn't have any effect and
the download loop thread stucks later.
https://bugzilla.gnome.org/show_bug.cgi?id=735663
The internal pad still keeps its EOS flag and event as it can be assigned
after the flush-start/stop pair is sent. The EOS is assigned from the streaming
thread so this is racy.
To be sure to clear it, it has to be done after setting the source to READY to
be sure that its streaming thread isn't running.
https://bugzilla.gnome.org/show_bug.cgi?id=736012
If the language is not specified in the AdaptationSet, use the ContentComponent
node to get it. We only get it if there is only a single ContentComponent as
it doesn't seem clear on what to do if there are multiple entries
https://bugzilla.gnome.org/show_bug.cgi?id=732237
When a seek with a negative rate is requested, find the target
segment where gstsegment.stop belongs in and then download from
this segment backwards until the first segment.
This allows proper reverse playback.
When flushing, this will prevent dashdemux from trying to download more
fragments or more chunks of the same fragment before stopping.
Also improves the error handling to not transform everything non-ok into
an error.
https://bugzilla.gnome.org/show_bug.cgi?id=734014
The parsing function already frees the old value (if any), avoid a double
free by not freeing it before calling the function without setting the
pointer to NULL
Coverity ID: 1212178
The _parse_url function already frees the previous pointer, avoid
freeing it before without setting to null or we have a double free.
Coverity ID: 1212181
Coverity ID: 1212180
Coverity ID: 1212179
Set up a message handling function to be able to catch errors
from the source element and signal the cond to allow the download
loop to retry the download.
Instead, use a source element linked to a ghostpad to provide
smaller buffers and more granular control for downstream
buffering elements while also reducing startup latency
Incorrect time scaling in gst_dash_demux_wait_for_fragment_to_be_available()
means that media segments are fetched before their availablity time. This
patch fixes this.
https://bugzilla.gnome.org/show_bug.cgi?id=724875
demux->last_manifest_update is not initialised at startup, with the
effect that live manifests are reloaded immediately after the download
loop begins. This patch fixes this.
https://bugzilla.gnome.org/show_bug.cgi?id=724790
Remove the dashdemux seeking function to use the one implemented
in mpdparser as it is more complete. This also makes dashdemux not
crash when seeking on streams that use segment templates.
Download and push from the same task, makes code a lot simpler
to maintain. Also pushing from separate threads avoids deadlocking
when gst_pad_push blocks due to downstream queues being full.
Use a single lock for all streams instead of having separate locks.
This makes maintenance easier and at most points we would need
a single lock before iterating on all streams data. So not much
is gained from individual locks.
Make dash playlists with multiple periods work again by waiting
to switch the periods when all streams have reached the end of
the current period. The stream_loop is responsible for advancing
the period, but the download loops will already start downloading
data for the next period as soon as possible.
Handle multiple languages by using the not-linked return to stop
the download task for that stream. It can be reactivated when
a reconfigure event is received. Stopping the unused streams is
relevant to save network bandwidth
Instead of having a single download task for all streams, this
commit makes each stream have its own download loop, allowing
parallel download of fragments.
always expose all streams instead of only exposing one of each type.
This is more aligned with gstreamer's way of working. Allows the user
to select the stream that it wants to use by linking its pad and leaving
the unused ones as unlinked.
Fixed up the error-handling code when downloading fragments.
Modifed the error-handling code to use positive logic when
testing for cancellation of the download loop.
https://bugzilla.gnome.org/show_bug.cgi?id=701404
There is an issue for live streams where download_loop will keep
downloading segments until it gets a 404 error for a segment
that has not yet been published. This is a problem because this
request for a segment that doesn't exist will propagate all the
way back to the origin server(s). This means that dashdemux causes
extra load on the origin server(s) for segments that aren't yet
available.
This patch uses availabilityStartTime, period
and the host's idea of UTC to decide if a fragment is available to
be requested from an HTTP server and filter out requests for fragments
that are not yet available.
https://bugzilla.gnome.org/show_bug.cgi?id=701404
gstdashdemux.c:1753: warning: format '%llu' expects type 'long long unsigned int', but argument 8 has type 'long unsigned int'
gstdashdemux.c:2224: warning: format '%llu' expects type 'long long unsigned int', but argument 9 has type 'guint64'
gstdashdemux.c:2224: warning: format '%llu' expects type 'long long unsigned int', but argument 10 has type 'guint64'
gstmpdparser.h:530: warning: type qualifiers ignored on function return type
gstmpdparser.c:4177: warning: type qualifiers ignored on function return type
For SegmentTemplate elements containing a startNumber attribute, the
`number' member of GstMediaSegments should be offset by the value of
startNumber; however, this is not currently the case. As a result, the
first URI(s) requested by the download loop will be wrong.
This commit ensures that segment numbers will be offset by startNumber
when one is present in a SegmentTemplate element.
https://bugzilla.gnome.org/show_bug.cgi?id=705661
When using a SegmentTemplate element, the timestamps of the buffers
output by dashdemux are incorrect, causing problems downstream.
The reason is that GstMediaSegment start times are calculated (in
gst_mpdparser_get_chunk_by_index) by multiplying segment index by
segment duration and then scaling the result according the `timebase'
attribute from the MPD. However, the segment duration is already a
GstClockTime (i.e., it has already been scaled according to the timebase
from the MPD and converted to a nanosecond value), so multiplying it by
the segment index will give the correct timestamp without the need for
any further scaling.
https://bugzilla.gnome.org/show_bug.cgi?id=705679
This prevents deadlocks on startup on files that have only a very
large buffer for a stream and the queue is filled and will lock on
the eos event that is pushed after the buffer. As no buffers have yet
been pushed to other streams, the pipeline locks on preroll
During a live stream it is possible for dashdemux to lag behind on a
slow connection or to rush ahead of the connection os too fast.
For the first case it is necessary to jump some segments ahead to be able to
continue playback as old segments are usually deleted from the server.
For the later, dashdemux should wait a little before attempting another
download do give time to the server to produce a new segment
When using a template based segment list, do not try to
contruct a finite segment list for the limits of the available periods.
We might not know when the period ends (for live streams) and we can
always create the segment on demand when requested by dashdemux,
avoiding use of some memory and cpu when re-creating this list.
Replaces the 2 likely larger lists with more appropriate structures
to improve performance.
Replaces S nodes GList for a GQueue, this reduces latency to startup
because of traversing the list just append an element.
Replaces the processed media segments GList for a GPtrArray as it is
constantly acessed by index during playback.
Duration from segment being unknown is a issue from the MPD and not
a programming issue, so the assert isn't useful here. Instead check
and return an error code so the caller can fallback to alternatives
When dashdemux selects its first fragment, it always selects the
first fragment listed in the manifest. For on-demand content,
this is the correct behaviour. However for live content, this
behaviour is undesirable because the first fragment listed in the
manifest might be some considerable time behind "now".
The commit uses the host's idea of UTC and tries to find the
oldest fragment that contains samples for this time of day.
https://bugzilla.gnome.org/show_bug.cgi?id=701509
According to the MPEG-DASH spec, certain elements (i.e.
SegmentBase, SegmentTemplate, and SegmentList) should inherit
attributes from the same elements in the containing AdaptationSet
or Period.
Updated the SegmentBase, SegmentTemplate, and SegmentList parsers
to properly inherit attributes from the corresponding elements in
AdaptationSet and/or Period.
https://bugzilla.gnome.org/show_bug.cgi?id=702677
Convert all xml attribute/content parsing functions to return a
boolean value indicating whether or not the attribute/content was
present. We need this finer-grained control in order to properly
implement the inheritance policies described in the spec
Also fixed several memory leak conditions when handling errors in
the xml attribute/content parsing functions.
https://bugzilla.gnome.org/show_bug.cgi?id=702677
Ensure that g_free/xmlFree is used correctly based on how the
memory was allocated.
When deallocating GLists, there were many places that were using
g_list_foreach and g_list_free. Converted these occurrences to
call g_list_free_full.
Add NULL checks to all xmlFree calls since the documentation does
not guarantee that passing NULL is safe
In places where we are strdup'ing memory allocated by libxml2,
changed those calls to use xmlMemStrdup().
There were several places where we were missing g_slice_free when
deallocating a top-level node structure.
https://bugzilla.gnome.org/show_bug.cgi?id=702837
It was not properly divided by GST_SECONDS. Also fix issue with
max-buffering-time being multiplied by GST_SECONDS every time the
property is retrieved.
https://bugzilla.gnome.org/show_bug.cgi?id=700487
We only want to adjust the timestamps so that they start from 0 for live
streams. Non-live streams already start from 0 and after a seek we actually want
to timestamp to be the position we seek to.
Non-live streams should timestamp buffers with a running-time starting from
0. Since we already push a 0 -> -1 segment, bring the timestamps to 0
by subtracting the initial timestamp.
The xmlCleanupParser function seems to cleanup all statically
allocated libxml variables, making it unusable. We can't guarantee
that dashdemux won't need it anymore, so better not call it.
Manifest updates should be done periodically for live streams,
this patch makes the demuxer create a new manifest client for
the new version and transfers the stream position to the new
one, discarding the old one afterwards.
A small struct that keeps a short history of fragment download bitrates
to have an average measure of N last fragments instead of using only
the last downloaded bitrate
Do not use a global bitrate as the sizes of the fragments matter
when calculating the download rate as the connection setup time is
also being taken into the download duration, a smaller fragment
will have a lower bitrate than a larger one.
This avoids switching the bitrates for streams frequently because
of bitrate mismatches
Instead of downloading 1 fragment per stream per download loop,
select the stream with the earlier timestamp and get a fragment
only for that one.
The old algorithm would lead to problems when the fragment durations
were too different for streams.
dashdemux shouldn't emit the buffering message as that can pause
the pipeline. It has no proper knowledge of the downstream buffering
status so it can pause the pipeline when it isn't necessary. It should
have an internal buffer for downloading the streams ahead of playback,
but that shouldn't make it able to stop the pipeline for buffering.
A particular case in which this is bad is when a pad switch happens
(changing bitrates for example), the new pads dashdemux creates
will get linked to demuxers and new queues will be created,
these queues are initially empty and dashdemux will quickly
drain its buffers by pushing them to those queues. So it
would have no more buffers internally and would emit a
buffering message with a low ratio, causing the pipeline
to pause when it wouldn't be necessary.
Put EOS on the streams queues after the last fragment from the
last period for each stream. This way we keep it serialized
with the buffers and it will work when streams have different
ending times
The smallest queue should be used to prevent blocking the download
thread when a stream has too much data buffered, leaving the other
streams starving from fragments
Each stream has its own durations and timestamps, the fragment number
is different for each stream when seeking, so the seek has to be done
for all streams, rather than on a single stream and propagated to
others
GstDataQueue has proper locking and provides functions to limit the
size of the queue. Also has blocking calls that are useful to
our multithread scenario in Dash.
Store the buffers separately for each stream, this is clearer than
having a queue with a list of buffers. It also allows easier selection
of buffers to push in later refactors
Fragments should be pushed ASAP as downstream should be responsible for
doing the syncrhonization and proper buffering.
This has the great side effect of fixing most of the seeking A/V sync issues.
- the MPD file is updated in the download loop (only if we have a "dynamic" MPD and minimumUpdatePeriod is valid);
- properly LOCK/UNLOCK the GstMpdClient;
This fixes conflicts with the HLS plugin, which is also named
fragmented.
When building its registry, gstreamer was picking one or the other
between hls and dashdemux.
This fixes build that has been broken by commit
fb9aeac6552021b176a4c4bd07265e02a0b70e0f.
gst_mpd_client_get_target_duration has been removed, and
gst_mpd_client_get_next_fragment_duration should be used instead.
This was necessary to support variable-duration Fragments.
in the new API:
- gst_mpd_client_get_current_position returns the timestamp of the NEXT fragment to download;
- gst_mpd_client_get_next_fragment_duration returns the duration of the next fragment to download;
- gst_mpd_client_get_media_presentation_duration returns the mediaPresentationDuration from the MPD file;
also there is a new internal parser function:
- gst_mpd_client_get_segment_duration extracts the constant segment duration from the MPD file
(only used when there is no SegmentTimeline syntax element in the current representation)
In gst_mpd_client_get_next_fragment, we set the timestamp/duration of the fragment just downloaded
copying the values from the corresponding GstMediaSegment.
TODO: rework SEEKING to support seeking across different Periods.
- Periods are played in sequence, from PeriodStart to PeriodEnd
- seamless switching from one Period to the next one works fine;
- the 'new-segment' generation is broken, so if we need to switch pads for a new Period there is a crash;
- build a list of the available Periods with their start and duration time
- add the list of GstStreamPeriod in the GstMpdClient data struct
- remove cur_period from GstMpdClient and introduce an API to get the current GstStreamPeriod
- several API clean-ups
build the list of segments to be played using the SegmentTimeline syntax, if present
bugfixes:
- for dynamic MPD files, when mediaPresentationDuration is not present use minimumUpdatePeriod instead
- do not add a spurious '$' when building an URL from a template like "$Bandwidth$/init.mp4v"
- introduce gst_mpd_client_add_media_segment() to avoid code duplication
other fixes:
- fixed a buffering bug: now we stop buffering when we reach the end of manifest
- now gst_mpd_client_get_target_duration() always returns a valid duration
(in case of single-segment streams, we return either Period duration or mediaPresentation duration)
TODO: support SegmentTimeline