Set channels and channel-layout on the right structure; that is, the
structure we are going to append to the caps we are building, and not
the structure we are using as a template for all the structures. Fixes
first structure of the returned caps not having any channel info set
on it.
A list of things in caps is something where one is picked in the
course of negotiation. An array is always something that only makes
sense as a whole in that order.
It's not clear why the pad object lock is taken here. But
gst_pad_{has,get}_current_caps() will try to take the lock
as well and deadlock, since it's not recursive.
We need to tell the base class that we're dropping buffers,
so it drops the input timestamps corresponding to these.
Otherwise, the first actual audio buffers we output will be
stamped with those - GST_CLOCK_TIMESTAMP_NONE. That mismatch
between input buffer count and output buffer count will stay
while playing. With enough headers and long enough buffer
durations, the sink will have played enough before receiving
the first valid timestamp (usually 0), and will trigger an
audible discontinuity.
flacdec converts the src timestamp to a sample number, uses that internally, then reconverts the sample number to a timestamp for the output buffer. Unfortunately, sample numbers can't be represented in an integer number of nanoseconds, and the conversion process was truncating rather than rounding, resulting in sample numbers and output timestamps that were often off by a full sample.
This corrects the time->sample convesion
The libFLAC API is callback based, and we must only call it to
output data when we know we have enough input data. For this
reason, a single processing step is done when receiving a buffer.
However, if there were metadata buffers still pending, a step
intended for the first audio frame might end up writing that
leftover metadata. Since a single step is done per buffer, this
will cause every buffer to be written one step late.
This would add some latency (a bufferfull's worth), possibly
lose a buffer when seeking or the like, and also cause timestamp
and offset to be applied to the wrong buffer, as updates to
the "current" segment last_stop (from incoming buffer timestamp)
will be applied to an output buffer originating from the previous
incoming buffer.
This fixes the issue by ensuring that, upon receiving the first
audio frame, processing is done till all metadata is processed,
so the next "single step" done will be for the audio frame. After
this, we should keep to 1 input buffer -> 1 output buffer and so
avoid getting out of sync.
https://bugzilla.gnome.org/show_bug.cgi?id=650960