Take into account the different steps between Y and UV when calculating
the line size for vertical resampling or else we might not resample
enough pixels and leave bad lines.
Fixes https://bugzilla.gnome.org/show_bug.cgi?id=747790
Otherwise we would forward the GAP event without ever providing any caps,
which then would make decodebin expose a srcpad without any caps set. That's
confusing for applications and can lead to all kinds of interesting bugs.
Instead do the same as already is done in GstAudioDecoder, and try to invent
caps based on the sinkpad caps and the caps allowed by downstream and the
srcpad template caps.
https://bugzilla.gnome.org/show_bug.cgi?id=747190
memcmp will blindly compare the reserved fields, as well as any
padding the compiler may choose to sprinkle in GstSegment.
Fixes valgrind complaints in unit tests, as well as some found via
https://bugzilla.gnome.org/show_bug.cgi?id=738216
Based on patch from Mozzhuhin Andrey <nopscmn at gmail.com>
Add a table based matrix8 multiplication implementation. The algorithm
does not do any clipping so we need to make sure we never call this on
input that might need to be clipped. In general, this algorithm is
2 times faster than the orc optimized one and would be chosen for all
RGB -> YUV conversions and some YUV->YUV and RGB->RGB conversions.
Fixes https://bugzilla.gnome.org/show_bug.cgi?id=732186
When we are using the fast linear resampler, use the ->inc to calculate
the first and last pixel we need so that we can do vertical resampling
on the right amount of pixels.
CLAMP checks both if value is '< 0' and '> max'. Value will never be a negative
number since it in an unsigned integer. Removing that check and only checking
if it is bigger than max and setting it appropriately.
CID #1271606
Only activate the scaler fastpath for x2 up and downscale when the
scaler method is respectively nearest and linear because that is what
those fastpaths really implement.
Add support for alpha. Make it possible to copy, set and multiply the
alpha value of a frame during conversion.
Set the border alpha to 0xff by default.
Go over some of the fastpaths and add alpha handling.
Fixes https://bugzilla.gnome.org/show_bug.cgi?id=745006
Make a convenience function that combines 2 scalers to perform a 2d
scale. This removes quite a bit of overhead in method calls when doing a
typical scale and it also can reuse a piece of unused memory in the
vertical scaler.
Use the 2d scaler in video-converter and remove the other scalers and
temp memory.
Only merge scalers for selected formats.
Use nearest neighbour scaling for chroma when doing nearest neighbour
for the luma.
Also fastpath GRAY16_OE in nearest neighbour.
configure parameters correctly for packed fastpath.
Small performance tweaks for RGB and friends.
Add, but ifdef out, alternative nearest neighbour scaling, it is slower
than the current table based version.
Use memcpy instead of orc_memcpy because it is measurably faster.
Fix YUY2 and friends vertical scaling.
video-scaler.c:1331:14: error: variable 'func' is used uninitialized whenever 'if' condition is false
[-Werror,-Wsometimes-uninitialized]
} else if (bits == 16) {
^~~~~~~~~~
video-scaler.c:1348:3: note: uninitialized use occurs here
func (scale, src_lines, dest, dest_offset, width, n_elems);
^~~~
video-scaler.c:1331:10: note: remove the 'if' if its condition is always true
} else if (bits == 16) {
^~~~~~~~~~~~~~~~
video-scaler.c:1260:27: note: initialize the variable 'func' to silence this warning
GstVideoScalerVFunc func;
^
= NULL
video-converter.c:3406:12: error: implicit conversion from enumeration type 'GstVideoFormat' to different
enumeration type 'GstFormat' [-Werror,-Wenum-conversion]
format = convert->fformat[plane];
~ ^~~~~~~~~~~~~~~~~~~~~~~
video-converter.c:3413:44: error: implicit conversion from enumeration type 'GstFormat' to different enumeration
type 'GstVideoFormat' [-Werror,-Wenum-conversion]
gst_video_scaler_horizontal (h_scaler, format,
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ^~~~~~
video-converter.c:3471:12: error: implicit conversion from enumeration type 'GstVideoFormat' to different
enumeration type 'GstFormat' [-Werror,-Wenum-conversion]
format = convert->fformat[plane];
~ ^~~~~~~~~~~~~~~~~~~~~~~
video-converter.c:3487:42: error: implicit conversion from enumeration type 'GstFormat' to different enumeration
type 'GstVideoFormat' [-Werror,-Wenum-conversion]
gst_video_scaler_vertical (v_scaler, format, lines, d + out_x, i,
~~~~~~~~~~~~~~~~~~~~~~~~~ ^~~~~~
video-converter.c:3551:12: error: implicit conversion from enumeration type 'GstVideoFormat' to different
enumeration type 'GstFormat' [-Werror,-Wenum-conversion]
format = convert->fformat[plane];
~ ^~~~~~~~~~~~~~~~~~~~~~~
video-converter.c:3569:46: error: implicit conversion from enumeration type 'GstFormat' to different enumeration
type 'GstVideoFormat' [-Werror,-Wenum-conversion]
gst_video_scaler_horizontal (h_scaler, format,
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ^~~~~~
video-converter.c:3577:42: error: implicit conversion from enumeration type 'GstFormat' to different enumeration
type 'GstVideoFormat' [-Werror,-Wenum-conversion]
gst_video_scaler_vertical (v_scaler, format, lines, d + out_x, i,
~~~~~~~~~~~~~~~~~~~~~~~~~ ^~~~~~
In function gst_video_scaler_vertical() the bits variable is always
set to either 8 or 16 in every possible format. No need to initialize it.
If the format isn't valid it goes to no_func, so there is no need to
handle the case of bits not being 8 or 16.
CID #1268401
Add fastpaths for all planar conversion and scaling.
Improve gray and alpha handling.
Add option to specify the chroma resampler method and set to linear as
default.
video-converter.c:3645:24: error: implicit conversion from enumeration type
'GstFormat' to different enumeration type 'GstVideoFormat'
[-Werror,-Wenum-conversion]
convert->fformat = fformat;
~ ^~~~~~~
video-converter.c:3667:24: error: implicit conversion from enumeration type
'GstFormat' to different enumeration type 'GstVideoFormat'
[-Werror,-Wenum-conversion]
convert->fformat = fformat;
~ ^~~~~~~
video-converter.c:3963:50: error: implicit conversion from enumeration type
'const GstVideoFormat' to different enumeration type 'GstFormat'
[-Werror,-Wenum-conversion]
if (!setup_scale (convert, transforms[i].fformat))
~~~~~~~~~~~ ~~~~~~~~~~~~~~^~~~~~~
In gst_video_resampler_init () if method is GST_VIDEO_RESAMPLER_METHOD_NEAREST
then params.envelope is not initialized but still used later in line 382.
Make sure this variable is initiliazed to avoid undefined behaviour.
CID #1256568
video-converter.c:3073:48: error: implicit conversion from enumeration type 'GstFormat' to different enumeration type 'GstVideoFormat'
[-Werror,-Wenum-conversion]
gst_video_scaler_horizontal (h_scaler, format,
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ^~~~~~
video-converter.c:3081:44: error: implicit conversion from enumeration type 'GstFormat' to different enumeration type 'GstVideoFormat'
[-Werror,-Wenum-conversion]
gst_video_scaler_vertical (v_scaler, format, lines, d, i, out_w);
~~~~~~~~~~~~~~~~~~~~~~~~~ ^~~~~~
video-converter.c:3137:24: error: implicit conversion from enumeration type 'const GstVideoFormat' to different enumeration type 'GstFormat'
[-Werror,-Wenum-conversion]
convert->fformat = GST_VIDEO_INFO_FORMAT (in_info);
~ ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../../../gst-libs/gst/video/video-info.h:125:43: note: expanded from macro 'GST_VIDEO_INFO_FORMAT'
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../../../gst-libs/gst/video/video-format.h:361:59: note: expanded from macro 'GST_VIDEO_FORMAT_INFO_FORMAT'
~~~~~~~~^~~~~~
video-converter.c:3157:24: error: implicit conversion from enumeration type 'GstVideoFormat' to different enumeration type 'GstFormat'
[-Werror,-Wenum-conversion]
convert->fformat = GST_VIDEO_FORMAT_GRAY8;
Add fast path scaling for YUY2 and other packed YUV formats. Add a new
method to merge the scalers of the Y and UV components into one scaler.
Add faster horizontal 2tap scaler.
See https://bugzilla.gnome.org/show_bug.cgi?id=741987
Add support for scaling of images with pstride == 1. This can be used
to scale individual planes later.
Rework some of the scaling code to take the pstride as a parameter.
CLAMP checks both if value is '< 0' and '> max'. Value will never be a negative
number since it is an unsigned integer. Removing that check and only checking if
it is bigger than max and setting it appropriately.
CID 1256559
CLAMP checks both if n_taps is '< 0' and '> max_taps'. n_taps will never be a
negative number because it is an unsigned integer. Removing that check and only
making sure it isn't set bigger than max.
CID 1256558
Add an option to disable chroma resampling.
Improve the matrix option values so that you can choose to use the input
or output matrix or disable conversion.
Video buffer pool will update video alignment to respect stride alignment
requirement. But haven't updated it to video alignment in configure.
Which will cause user get wrong video alignment.
Fixes https://bugzilla.gnome.org/show_bug.cgi?id=741501
This makes sure that the element is in the same state before start() is called
the very first time and every future call after the element was used already.
Also it ensure that we always have a clean state before start(), cleaned the
same way in every case.
The stop() vfunc might mess with some of our fields we have just
reset, which could cause memory leaks or invalid state taken over
to later.
Also the stop() vfunc, or anything called until it from another thread,
might want to be able to use the fields that were just resetted and
become confused because of that.
In the decoder we already had a workaround for things like this happening,
this workaround is not needed anymore.
Allows subclasses to do custom caps query replies.
Also exposes the standard caps query handler so subclasses can just
extend on top of it instead of reimplementing the caps query proxying.
https://bugzilla.gnome.org/show_bug.cgi?id=741263
With the new caps query results the caps returned might have extra fields
that are not required by the decoder (framerate for image decoders) and it
causes a regression making, for example, jpegdec reject caps that don't
have framerates.
The accept-caps implementation will do 2 checks:
1) Do subset check with the template caps, making sure all the required
fields that are present on the template are present on the received caps.
2) Do a intersection check with the result of a caps query, making sure
that downstream can accept the fields in the received caps.
https://bugzilla.gnome.org/show_bug.cgi?id=741263
Refactor the encoder's caps query proxying function to a common place
and use it in the videodecoder to proxy downstream restrictions.
The new function is private to the gstvideo lib.
https://bugzilla.gnome.org/show_bug.cgi?id=741263
Update the new buffer size after alignment in the pool configuration
before calling the parent set_config. This ensures that the parent knows
about the buffer size that we will allocate and makes the size check
work in the release_buffer method.
Fixes https://bugzilla.gnome.org/show_bug.cgi?id=741420
This reverts commit 406f32a946.
The problem was apparently that my video-orc.h was not updated and did not
include the prototype for that function. Only a "make clean" caused it to
be regenerated.
Avoid using a constant.
Avoid doing saturated adds, results are not supposed to overflow here.
Rework the C backup function a little in preparation for custom backup
functions in ORC.
See https://bugzilla.gnome.org/show_bug.cgi?id=741015
It will cause the frame to be initialized with inconsistent values that then
later can cause crashes or any other kind of interesting and hard to debug
bugs.
In cases where we just call orc directly this is somewhat
superfluous, but let's do it anyway for consistency. In
other cases the compiler can hopefully use this to optimise
memory access a little.
when using variable taps and when we are limiting the number of taps,
recalculate the lanczos parameters to match the clamped value.
Set the max number of taps to 128
Make a small object to hold a pool of allocated temp lines.
Keep track of how many temp lines each conversion stage needs and use
this to allocate just enough temp lines from the temp lines object. from
the temp lines object.
When dealing with mixed interlaced, setup a scaler and chroma-resampler
for both interlaced and progressive frames and switch between them
depending on the interlace mode of the input frame.