Optimize LE<->BE conversion by adding a dedicated fast path instead of
using the generic converter. Implement transform_ip function in order to do the
endian swap in place.
This saves buffer allocation for the intermediate format, can be done in place
and also performs the conversion in one step instead of unpack-convert-pack.
For all bit widths the naive algorithm is implemented, which provides the best
performance when compiled with -O3. ORC was considered but eventually removed
as it requires a dedicated function for in-place conversion (due to the
"restrict" parameters).
A more complex algorithm for the 24-bit conversion with unrolled loop and
32-bit processing is implemented in the #if 0 section. It performs better if
compiled with -O2. With -O3 however the naive algorithm performs better.
https://bugzilla.gnome.org/show_bug.cgi?id=773073
It is not needed to store a pointer to every single chain element to free it.
Instead walk the channel list backwards and free the chain elements one by one.
Rename GstAudioConverter->chain_pack to chain_end.
https://bugzilla.gnome.org/show_bug.cgi?id=773073
Remove some unused variables from the inner product functions.
Make filter coefficients by interpolating if required.
Rename some fields.
Try hard to not recalculate filters when just chaging the rate.
Add more proprties to audioresample.
Remove the consumed/produced output fields from the resampler and
converter. Let the caler specify the right number of input/output
samples so we can be more optimal.
Use just one function to update the converter configuration.
Simplify some things internally.
Make it possible to use writable input as temp space in audioconvert.
If we don't have writable memory, make sure to make a copy of the input
samples into a temporary (writable) buffer, even if we are dealing with
a native intermediate format that we don't need to call the unpack
function for.
Fixes https://bugzilla.gnome.org/show_bug.cgi?id=761655
When the input and output formats are the same and in a possible
intermediate format, avoid unpack and pack.
Never do passthrough channel mixing.
Only do dithering and noise shaping in S32 format
Process as many samples as we can from the input and return the number
of processed samples from the chain. This simplifies some code.
Fix the IN_WRITABLE handling, don't overwrite the flags.
Pass flags in _converter_new() so that we can configure ourselves
differently depending on some options.
SOURCE_WRITABLE -> IN_WRITABLE because the array is called 'in'
Simplify the API, we don't need the consumed and produced output
arguments. The caller needs to use the _get_in_frames/get_out_frames API
to check how much input is needed and how much output will be produced.
We did not take the sample size into account. Rearrange the tests to have more
conversion test and an extra test case for passthrough operations.
Fixes#759890
Rename samples to num_samples, since we also have samples in chain, but that is
the data pointer. Always use gzize for num_samples. Make the log output a bit
more homogenous.
Rework the main processing loop. We now create an audio processing
chain from small core functions. This is very similar to how the
video-converter core works and allows us to statically calculate an
optimal allocation strategy for all possible combinations of operations.
Make sure we support non-interleaved data everywhere.
Add functions to calculate in and out frames and latency.
Commit ff6d1a2a25 changed sample's type from
gint to gsize (and renamed it to in_samples). gsize is an unsigned long,
which means it can never be a negative value and the check making sure that
in_samples is >= 0 is never going to be false. Removing it.
CID 1338689