Add support for interlaced streams with GStreamer 1.0 too. Basically,
this enables vaapipostproc, though it is not auto-plugged yet. We also
make sure to reply to CAPS queries, and happily handle CAPS events.
Make gst_vaapi_decoder_get_codec_state() return the original codec state,
i.e. make the GstVaapiDecoder object own the return state so that callers
that want an extra reference to it would just gst_video_codec_state_ref()
it before usage. This aligns the behaviour with what we had before with
gst_vaapi_decoder_get_caps().
This is an ABI incompatible change, library major version was bumped from
previous release (0.5.2).
Mark the following functions are internal, i.e. private to the vaapi plug-in:
- gst_vaapi_video_buffer_pool_get_type()
- gst_vaapi_video_converter_glx_get_type()
- gst_vaapi_video_converter_glx_new()
Implement GstSurfaceMeta API for GStreamer 1.0.x. Even though this is
an unstable/deprecated API, this makes it possible to support Clutter
sink with minimal changes. Tested against clutter-gst 1.9.92.
When render-mode is "overlay", then it is not really useful to peek into
the GstBaseSink::last_buffer, since we have our own video_buffer already
recorded and maintained into GstVaapiSink.
Fix memory leak of GstSample objects in GstVideoOverlayInterface::expose().
This also fixes extra unreferencing of the underlying GstBuffer in the common
path afterwards (for both 0.10 or 1.0).
Fix the name of the plug-in element reported to gst-inspect-1.0. i.e. we
need an explicit definition for GStreamer >= 1.0 because the GST_PLUGIN_DEFINE
incorrectly uses #name for creating the plug-in name, instead of using macro
expansion (and let further expansion of macros) through e.g. G_STRINGIFY().
Fix make dist to allow build for either GStreamer 0.10 or 1.0. i.e. make
sure to include all source files in either case while generating source
tarballs.
Implement GstVideoMeta::{,un}map() to support raw YUV buffer upload when
the last component is unmapped. Downloads are not supported yet. The aim
was to first support SW decoding + HW accelerated rendering (vaapisink).
e.g. for Wayland.
Handle GST_QUERY_CAPS, which is the GStreamer 1.0 mechanism to retrieve
the set of allowed caps, i.e. it works similar to GstPad::get_caps().
This fixes fallback to SW decoding if no HW decoder is available.
Introduce a new configure option --with-gstreamer-api that determines
the desired GStreamer API to use. By default, GStreamer 1.0 is selected.
Also integrate more compatibility glue into gstcompat.h and plugins.
Use new GstVaapiVideoBufferPool to maintain video buffers. Implement
GstBaseSink::propose_allocation() to expose that pool to upstream
elements; and also implement GstVideoDecoder::decide_allocation() to
actually use that pool (from downstream), if any, or create one.
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
Add initial support for GstVaapiVideoMemory backed buffer pool. The memory
object currently holds a reference to GstVaapiVideoMeta.
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
Make it possible to copy GstVaapiVideoMeta objects, unless they contain VA
objects created from GstVaapiVideoPool. This is mostly useful to clone a
GstVaapiVideoMeta object containing a VA surface proxy so that to alter its
rendering flags.
Fix GstVaapiVideoMeta to allow VA objects to be destroyed when they are
reset to NULL. i.e. make gst_vaapi_video_meta_set_{image,surface}() and
gst_vaapi_video_meta_set_surface_proxy() actually clear VA objects when
argument is NULL.
Port vaapidecode and vaapisink plugins to GStreamer API >= 1.0. This
is rather minimalistic so that to test the basic functionality.
Disable vaapiupload, vaapidownload and vaapipostproc plugins. The latter
needs polishing wrt. to GStreamer 1.x functionality and the former are
totally phased out in favor of GstVaapiVideoMemory map/unmap facilities,
which are yet to be implemented.
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
Improve check for raw YUV format modes by avoiding checks against strings
("video/x-raw-yuv") for each new GstBuffer allocation. In the usual case,
GstBaseSink::set_caps() is called first and if VA surface format mode is
used, then GstBaseSink::buffer_alloc() is not called. If the latter is
called before set_caps(), then we just make a full check. This one is
pretty rare though, e.g. it usually happens once for custom pipelines.
Fix gst_vaapi_apply_composition() to not fail if no overlay composition
was found. i.e. return success (TRUE). This was harmless though extra
debug messages are not nice.
This is a regression introduced by commit 95b8659.
Don't return static caps that don't mean anything for the underlying codecs
that are actually supported for decoding. i.e. always allocate a VA display
and retrieve the exact set of HW decoders available. That VA display may be
re-used later on during negotiation through GstVideoContext "prepare-context".
This fixes fallback to SW decoding if no HW decoder is available.
Make gst_vaapi_reply_to_query() first check whether the query argument
is actually a video-context query, i.e. with type GST_QUERY_TYPE_CUSTOM.
Then, make sure vaapisink propagates the query to the parent class if
it is not a video-context query.
Add new gst_vaapi_video_buffer_new() helper function that allocates a video
buffer from a GstVaapiVideoMeta. Also remove obsolete and useless function
gst_vaapi_video_buffer_get_meta().
Move GstVaapiVideoMeta from core libgstvaapi decoding library to the
actual plugin elements. That's only useful there. Also inline reference
counting code from GstVaapiMiniObject.
Make sure libgstvaapi core decoding library doesn't include un-needed
dependencies. So, move out GstVaapiVideoConverterGLX to plugins instead.
Besides, even if the vaapisink element is not used, we are bound to have
a correctly populated GstSurfaceBuffer from vaapidecode.
Also clean-up the file along the way.
If the raw YUV buffer was created from vaapisink, through the buffer_alloc()
hook, then it will have a valid GstVaapiVideoMeta object attached to it.
However, we previously assumed in that case that it was a "native" VA buffer,
thus not calling into GstVaapiUploader::process().
Use gst_element_class_set_static_metadata() from GStreamer 1.0, which
basically is the same as gst_element_class_set_details_simple() in
GStreamer 0.10 context.
Move GstImplementsInterface and GstVideoContext support functions up
so that to keep a clear separation between the plugin element and its
interface hooks.
Use GstVideoInfo and gst_video_info_from_caps() helper wherever possible.
Also use the newly added gst_vaapi_image_format_from_structure() helper
in GstVaapiUploader::ensure_allowed_caps().
gst_vaapi_video_buffer_new_from_buffer() needs to reference the source
buffer video meta since it would be unreference'd from the get_buffer()
helper function. For other cases, we still use (steal) the newly created
video meta.
Fix ensure_image() to only zero-initialize the first line of each plane.
Properly initializing each plane to their full vertical resolution would
require to actually compute it based on the image format.
In particular, for NV12 images, the UV plane has half vertical resolution
vs. the Y plane. So using the full image height to initialize the UV plane
will obviously lead to a buffer overflow. Likewise for other YUV format.
Since ensure_image() is only a helper function to initialize something,
and not necessarily the whole thing, it is fine to initializ the first
line only. Besides, the target surface is not rendered either.
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
Decode-only frames may not have a valid surface proxy. So, simply discard
them gracefully, i.e. don't create meta data information. GstVideoDecoder
base class will properly handle this case and won't try to push any buffer
to downstream elements.
Implement GstVideoDecoder::reset() as a destruction of the VA decoder
and the creation of a new VA decoder.
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
Split GstVideoDecoder::handle_frame() implementation into two functions:
(i) one for decoding the provided GstVideoCodecFrame and (ii) another one
for purging all decoded frames and submit them downstream.
Update plugin elements with the new GstVaapiVideoMeta API.
This also fixes support for subpictures/overlay because GstVideoDecoder
generates a sub-buffer from the GstVaapiVideoBuffer. So, that sub-buffer
is marked as read-only. However, when comes in the textoverlay element
for example, it checks whether the input buffer is writable. Since that
buffer read-only, then a new GstBuffer is created. Since gst_buffer_copy()
does not preserve the parent field, the generated buffer in textoverlay
is not exploitable because we lost all VA specific information.
Now, with GstVaapiVideoMeta information attached to a standard GstBuffer,
all information are preserved through gst_buffer_copy() since the latter
does copy metadata (qdata in this case).
Fix calculation of the time-out value for cases where no VA surface is
available for decoding. In this case, we need to wait until downstream
sink consumed at least one surface. The time-out was miscalculated as
it was always set to <current-time> + one second, which is not suitable
for streams with larger gaps.
Don't call gst_video_decoder_drop_frame() if gst_video_decoder_finish_frame()
was already called before and it returned an error. In that case, we were
releasing the frame again, thus leading to a "double-free" condition.
Maintain decoded surfaces as GstVideoCodecFrame objects instead of
GstVaapiSurfaceProxy objects. The latter will tend to be reduced to
the strict minimum: a context and a surface.