When postpone_free_surface is TRUE, the output buffer is not writable,
however the base decoder needs a writable buffer as output buffer,
otherwise it will make a copy of the output buffer. As the underlying
memory is always lockable, so we may set the LOCKABLE flag for this buffer
to avoid buffer copy in the base class.
The refcount of the output buffer is 1 when postpone_free_surface is
FALSE, so needn't set the LOCKABLE flag for this case.
For a skipped frame in VC1, MSDK returns the mfx surface of the reference
frame, so we have to make sure the corresponding surface for the
reference frame is not freed. In this fix, we postpone surface free because
we don't know whether a surface is referenced
Before this fix, the error is like as below:
New clock: GstSystemClock
0:00:00.181793130 23098 0x55f8a9d622d0 ERROR msdkdec
gstmsdkdec.c:622:gst_msdkdec_finish_task:<msdkvc1dec0> Couldn't find the
cached MSDK surface
Sample pipeline:
gst-launch-1.0 filesrc location=input_has_skipped_frame.wmv ! asfdemux !
vc1parse ! msdkvc1dec ! glimagesink
If the surface is not in use, we may release it even if GST_FLOW_OK is going
to be returned, which may avoid the issue of failing to get surface
available
This fixes the regression caused by commit c05acf4
Add new macro for sink/src pad template to ensure no DMABuf caps
features are exposed on Windows. Some DMABuf caps features
were not handled by the commit 9ec62418c3
DecodedOrder was deprecated in msdk-2017 version, but some customers
still use this for low-latency streaming of non-b-frame encoded streams,
which needs to output the frame at once
Both g_list_delete_link and g_list_remove remove an element and free it,
so l->next is invalid (catched by valgrind) after calling g_list_delete_link
or g_list_remove
gst_msdkdec_finish_task() may release all frames in
GstVideoDecoder object. In this case, allocate_output_buffer()
cannot get the oldest frame to allocate buffer.
So gst_msdkdec_handle_frame() should return GST_FLOW_OK for
letting gst_video_decoder_decode_frame() to send a new frame
for decoding.
Fixes#664.
Fixes#665.
Currently h264parser produces a field or a frame for
alignment=au for interlaced streams, but the flag
MFX_BITSTREAM_COMPLETE_FRAME needs a complete frame
or complementary field pair of data, this results in
broken images being output.
Some patches have been sent out to fix h264parser,
but they are pending on some unfinished work. In
order to make gstreamer-msdk decoding work properly
for interlaced streams before h264parser is fixed,
this flag will be removed temporarily and will be
added back once h264parser if fixed.
Related to:
https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/merge_requests/399https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/merge_requests/228
It is possible that the output region size (e.g. 192x144) is different
from the coded picture size (e.g. 192x256). We may adjust the alignment
parameters so that the padding is respected in GstVideoInfo and use
GstVideoInfo to calculate mfx frame width and height
This fixes the error below when decoding a stream which has different
output region size and coded picture size
0:00:00.057726900 28634 0x55df6c3220a0 ERROR msdkdec
gstmsdkdec.c:1065:gst_msdkdec_handle_frame:<msdkh265dec0>
DecodeFrameAsync failed (failed to allocate memory)
Sample pipeline:
gst-launch-1.0 filesrc location=output.h265 ! h265parse ! msdkh265dec !
glimagesink
A post_configure virtual method is added to allow
codec subclasses to adjust the initialized parameters
after MFXVideoDECODE_DecodeHeader is called from the
gstmsdkdec::gst_msdkdec_handle_frame function.
This is useful if codecs want to adjust the output
parameters based on the codec-specific decoding
options that are present in the mfxInfoMFX structure
after MFXVideoDECODE_DecodeHeader initializes them.
The workaround for https://github.com/Intel-Media-SDK/MediaSDK/issues/1139
is required for vp8 only, so move this workaround to the corresponding
postinit_decoder function
The pipeline below works with this change
gst-launch-1.0 filesrc location=SA10104.vc1 ! \
'video/x-wmv,profile=(string)advanced',width=720,height=480,framerate=14/1 ! \
msdkvc1dec ! fakesink
MFXVideoDECODE_DecodeHeader only parses the sequence layer for VC1, so
the structure is unknown for a stream with interlace flag set in the
sequence layer. If forcing the struct to progressive in this plugin,
MediaSDK will fail to decode such streams.
It is possible MFXVideoDECODE_DecodeFrameAsync returns MFX_ERR_INCOMPATIBLE_VIDEO_PARAM
and this error can't be recovered by retrying MFXVideoDECODE_DecodeFrameAsync
in some cases, so we need to limit the number of retries to avoid infinite loop.
This fixes https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/909
Returning MFX_ERR_INCOMPATIBLE_VIDEO_PARAM from
MFXVideoDECODE_DecodeFrameAsync means the allocated mfx surface is not
suitable for the current frame, we need a new mfx surface and try
MFXVideoDECODE_DecodeFrameAsync again.
When MFXVideoDECODE_DecodeFrameAsync () returns MFX_WRN_DEVICE_BUSY with
an output surface, a new input surface is required when retrying
MFXVideoDECODE_DecodeFrameAsync ().
This fixes the out-of-surface issue mentioned in
https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/890
An output surface is returned but without sync point when when
MFXVideoDECODE_DecodeFrameAsync () returns MFX_ERR_MORE_DATA, this
surface should be released too, otherwise the surface is occupied
and it is easy to exhaust all pre-allocated mfx surfaces.
Example pipeline (input_vp8.webm contains lots of frame with show_frame
set to 0):
gst-launch-1.0 filesrc location=input_vp8.webm ! matroskademux !
msdkvp8dec ! msdkvpp ! fakesink
0:00:05.995959693 19866 0x563f30f14590 ERROR default
gstmsdkvideomemory.c:77:gst_msdk_video_allocator_get_surface: failed to
get surface available
ERROR: from element
/GstPipeline:pipeline0/GstMatroskaDemux:matroskademux0: Internal data
stream error.
The input buffer is released in gst_msdkdec_finish_task () when decoding
some special clips however this buffer is still in use, so ref the input
buffer before gst_msdkdec_finish_task () and unref it at the end of
gst_msdkdec_handle_frame ().
Fixes https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/862
The picture structure in the output parameters from
MFXVideoDECODE_Query is set to MFX_PICSTRUCT_UNKNOWN for some codecs, so
the structure of the corresponding mfx surfaces created for decoding are
unknown. The pipeline will be broken when these surfaces are used as the
input for msdkvpp.
Example pipeline:
gst-launch-1.0 filesrc location=input_vp8.webm ! matroskademux !
msdkvp8dec ! msdkvpp ! fakesink
Error message:
0:00:00.031568911 14259 0x55b79dc684a0 ERROR msdkvpp
gstmsdkvpp.c:728:gst_msdkvpp_transform:<msdkvpp0> MSDK Failed to do VPP
ERROR: from element
/GstPipeline:pipeline0/GstMatroskaDemux:matroskademux0: Internal data
stream error.
This is a workaround for the above issue
Previously alloc_info is initialized when both thiz->initialized
and thiz->allocation_caps are true, but only thiz->initialized is
checked when alloc_info is used.
Use async_depth for latency calcuation instead of
the length of Tasks array which could be NULL since we
don't do the msdk decoder init in set_format().
According to MediaSDK specification,
Width must be a multiple of 16 and Height must be a multiple
of 16 for progressive frame sequence and a multiple of 32 otherwise.
This patch sets a 16 bit alignment for width and 32 bit alignment
for height as default.
https://bugzilla.gnome.org/show_bug.cgi?id=796566
In cases where we do hard resest, the current code destroys the frame
which has new resolution bit early and this causes buffer_unmap
warnings. Keep an extra ref to the frame internally to avoid this.
The gst-msdk decoders only support packetized formats for
all codecs except VC1. For VC1, it supports codec_data for advanced
profiles and this codec_data wan't submitting to MSDK's DecodeHeader APIs.
Make sure the subclass deocders correctly configured so that
the codec_data buffers are in place in the internal adapter for
MediaSDK's DecoderHeader usage.
Currently we use the gst_video_decoder_get_oldest_frame()
to get the old pending frame to output. But this is not correct
if pts re-ordering required. This patch uses a custom made
get_old_frame() which accounts the PTS too similar to the
v4l2decoder.
https://bugzilla.gnome.org/show_bug.cgi?id=796699
The patch adds a serios of changes to support dynamic resolution
change and efficient utilization of resources.
Major changes:
-- Use MSDK's apis to retrieve the headers instead of only relying
on upsteram notification. For eg: avc decoder requires SEI header
information for dpb count calculation which we don't get from caps.
-- For all codecs other than VP9, we force the reset of decoder
if resoultion changes to fit with gstreamer flow. VP9 enfource
the hard reset only if the new resolution is bigger.
-- delay the src caps setting till msdk api's invokation in
handle_frame to avoid caching multiple configuration values
-- ensure pool negotiation is based on decoder's allocation_caps.
--dynamic resoluttion change use an explicit allocation_query
to reclaim the buffers before closing the decoder (thanks to v4l2dec)
--In case if we don't get upstream notification of res change (for eg,
this can can happen for vp9 frames with ivfheader where ivfparse
is not able to notify the dynamic changes), we handle the the case
based on MFX_ERR_INCOMPATIBLE_VIDEO_PARAM which is the return value
of MFXVideoDECODE_DecodeFrameAsync
-- calculate the minimum surfaces to be preallocated based on
msdk suggestion, downstream requirement, async depth and scratch surface
count for smooth display.
https://bugzilla.gnome.org/show_bug.cgi?id=796566
The new property "output-order" can be set to either "display" order
which is the default where frames will be outputting in display order,
or "decoded-order" which will be outputting the frames in decoded order.
The "decoded order" output is generally useful for debugging. But there
are few
customers who use it for low-latency streaming. For eg if the customer
already knows that the stream doesn't have b-frames (which means no
algorithm requires for display order calculation), then they can use
"decoded-order"
output to skip some of the DPB logic to avoid the frame accumulation at
start-up.
The root cause of the above issue is a bit of unclarity in h264 spec +
lazy implementation of many H264 encoders; This is well handled in
gstreamer-vaapi using "low-latency" property:
https://bugzilla.gnome.org/show_bug.cgi?id=762509https://bugzilla.gnome.org/show_bug.cgi?id=795783
For packetized input, inform the msdk that the buffer has
a complete frame or complementary field pairs. For decoding,
this means that the decoder can proceed with this buffer without
waiting for the start of the next frame, which effectively reduces
decoding latency.
https://bugzilla.gnome.org/show_bug.cgi?id=795783