Update plugin elements with the new GstVaapiVideoMeta API.
This also fixes support for subpictures/overlay because GstVideoDecoder
generates a sub-buffer from the GstVaapiVideoBuffer. So, that sub-buffer
is marked as read-only. However, when comes in the textoverlay element
for example, it checks whether the input buffer is writable. Since that
buffer read-only, then a new GstBuffer is created. Since gst_buffer_copy()
does not preserve the parent field, the generated buffer in textoverlay
is not exploitable because we lost all VA specific information.
Now, with GstVaapiVideoMeta information attached to a standard GstBuffer,
all information are preserved through gst_buffer_copy() since the latter
does copy metadata (qdata in this case).
Fix calculation of the time-out value for cases where no VA surface is
available for decoding. In this case, we need to wait until downstream
sink consumed at least one surface. The time-out was miscalculated as
it was always set to <current-time> + one second, which is not suitable
for streams with larger gaps.
Don't call gst_video_decoder_drop_frame() if gst_video_decoder_finish_frame()
was already called before and it returned an error. In that case, we were
releasing the frame again, thus leading to a "double-free" condition.
Maintain decoded surfaces as GstVideoCodecFrame objects instead of
GstVaapiSurfaceProxy objects. The latter will tend to be reduced to
the strict minimum: a context and a surface.
Make sure to push all decoded frames downstream as soon as possible.
This makes sure we don't need to wait for a new frame to be ready to
be decoded before receiving new decoded frames.
This also separates the decode process and the output process. The latter
could be moved to a specific GstTask later on.
Directly use the GstVideoCodecState associated with the VA decoder
instead of parsing caps again.
Signed-off-by: Sreerenj Balachandran <sreerenj.balachandran@intel.com>
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
Make vaapidecode derive from the standard GstVideoDecoder base element
class. This simplifies the code to the strict minimum for the decoder
element and makes it easier to port to GStreamer 1.x API.
Signed-off-by: Sreerenj Balachandran <sreerenj.balachandran@intel.com>
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
GstVaapiSurfaceProxy does not use any particular functionality from
GObject. Actually, it only needs a basic object type with reference
counting.
This is an API and ABI change.
The use of heap allocated GMutex/GCond is deprecated. Instead place them
inside the structure they are locking.
These changes switch to use g_mutex_init/g_cond_init rather than the heap
allocation functions.
Because we cannot test for a NULL pointer for the GMutex/GCond we must
initialise inside the GObject _init function and clear inside the _finalize
which is guaranteed to only be called once and after the object is no longer
in use.
Don't care of the return value for gst_vaapi_decoder_put_buffer()
during destruction of the element. Don't print out (uninitialised)
error code when allocation of video buffer failed.
Reset, i.e. destroy then create, the decoder in _setcaps() handler only
if the underlying codec type actually changed. This makes it possible
to be more tolerant with certain MPEG-2 streams that get parsed to
form caps that are compatible with the previous state but minor changes
to "codec-data".
Add new gst_vaapi_codec_from_caps() helper to determine codec type from
the specified caps. Don't globally expose this function since this is
really trivial and only used in the vaapidecode element.
Previously, vaapidecode would wait up to one second until a free surface
is available, or it aborts decoding. Now, vaapidecode waits until the
last decoded surface was to be presented, plus one second. Besides, end
times are now expressed relative to the monotonic clock.
When playback stops the GstVaapiDecode object is reset into a clean
state. However, surfaces may still be referenced by library users and
unreferencing them after the reset triggers an access to an unset mutex.
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
If vaapisink is in the GStreamer pipeline, then we shall allocate a
unique GstVaapiDisplay and propagate it upstream. i.e. subsequent
queries from vaapidecode shall get a valid answer from vaapisink.
This flag is obsolete. It was meant to explicitly enable/disable VA/GLX API
support, or fallback to TFP+FBO if this API is not found. Now, we check for
the VA/GLX API by default if --enable-glx is set. If this API is not found,
we now default to use TFP+FBO.
Note: TFP+FBO, i.e. using vaPutSurface() is now also a deprecated usage and
will be removed in the future. If GLX rendering is requested, then the VA/GLX
API shall be used as it covers most usages. e.g. AMD driver can't render to
an X pixmap yet.
GStreamer codecparsers-based decoders are the only supported decoders now.
Though, FFmpeg decoders are still available in gstreamer-vaapi 0.3.x series.
Bump GStreamer required version to 0.10.14, needed for
gst_element_class_set_details_simple().
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
Fix typo whereby plain VADisplay type was used instead of the GstVaapiDisplay
wrapper.
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
Try to gracefully abort when the HW does not support the requested
profile. There is no fallback unless profiles are correctly parsed
and matched through caps beforehand.
Rationale: playbin2 links all elements at run-time. Once vaapidecode
is created and a NEWSEGMENT event arrives, downstream element may not
be ready yet. So, delay this event until next element is chained in,
otherwise basesink could output "Received buffer without a new-segment.
Assuming timestamps start from 0".
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
Propagate "interlaced" caps downstream and set "tff" buffer flag
appropriately to output buffers for interlaced pictures.
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
Otherwise, the decoder would always create its own X display instead
of probing it from the downstream element, which is not reliable.
e.g. DISPLAY is not :0 or when running on Wayland.
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
With the new video/x-surface abstraction, we can't rely on having a VA
specific sink downstream. Also, there was no particular reason to do that.
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
This new interface allows for upstream and downstream display sharing
that works in both static and dynamic pipelines.
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>