In 6ae24948 the pipeline buffer destroy were removing assuming it
wasn't required. Nonetheless, debugging the code it looks like a
buffer leak in iHD driver since the ID of the buffer kept increasing.
The difference now is that first the filter buffers are destroy first
and later the pipeline buffer.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2023>
Just like the decoder, the vapostproc also needs to copy the output
buffer to raw buffer if downstream elements only supports raw caps
and does not support the video meta.
The pipeline like:
gst-launch-1.0 filesrc location=xxxx ! h264parse ! vah264dec ! \
vapostproc ! capsfilter caps=video/x-raw,width=55,height=128 ! \
filesink location=xxx
needs this logic to dump the data correctly.
fixes: #1523
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2026>
Both wasapi2 and wasapi plugins use WASAPI API. So "device.api=wasapi"
would make sense for the wasapi2 plugin as well. But people would be
confused by the identical "device.api=wasapi" property if intended
plugin is wasapi, not wasapi2. This change will make them distinguishable
by using "device.api" device property.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2024>
One problem that va dmabuf allocator had is when preparing a buffer from
dmabuf memories in the allocator pool, specially when a buffer is composed by
several memories. This memories have to be by certain number and in certain
order.
This patch stores the number of memories and their address in order when a
dmabuf-based buffer is created and when preparing a buffer, it is reconstructed
with this info.
Finally, instead of pushing the memories as soon as they are unrefed, they are
hold until GstVaBufferSurface's ref_mems_count reaches zero (all the memories
related with that buffer/surface are unrefed). Until that happen, all the
memories are pushed back into the queue, locked, assuring that all the memories
related with a single buffer (with the same surface) remain contiguous, so the
buffer reconstruction is assured.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2013>
Instead of removing memories from buffers at reset_buffer()/release_buffer() the
bufferpool operation is kept as originally designed, still the allocator pool is
used too. Thus, this patch restores the buffer size configuration while removing
release_buffer(), reset_buffer() and acquire_buffer() vmethods overloads.
Then, when the bufferpool base class decides to discard a buffer, the VA
surface-based memory is returned to the allocator pool when its last reference
is freed, and later reused if a new buffer is allocated again.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2013>
Add a new element d3d11deinterlace to support deinterlacing.
Similar to d3d11videosink and d3d11compositor, this element is
a wrapper bin of set of child elements including helpful
conversion elements (upload/download and color convert)
to make this element configurable between non-d3d11 elements.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2016>
Since our decoder DPB texture pool cannot be grown once it's
configured, we should pre-allocate sufficient number of textures
for zero-copy playback (but not too many).
The "min buffers" allocation query parameter can be a hint for
the number of required textures in addition to DPB size.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2017>
There were two problems with frame copy:
1. The input video info are from the format color, not form the allocated VA
surface, it's needed to update the sink video info according with the
allocator's data.
2. The parameters of `gst_video_frame_copy()` were backwards.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2007>
transform_size() basetransform vmethod is used when there's no output buffer
pool and allocates a system memory buffer. With VA this cannot be allowed, since
it needs VASurfaces to process.
Thus transform_size() is not required, but to play safe let's return FALSE.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2007>
Unlike other stateless decoder implementations (e.g., VA),
our DPB pool cannot be grown since we are using
texture array (pre-allocated, fixed-size d3d11 texture pool).
So, if there's no more available texture to use,
there's no way other than copying it to downstream's
d3d11 buffer pool. Otherwise deadlock will happen.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2003>
This adds a non-thread safe refcount to the GstV4l2Request. This will
allow holding on more then one request in order to implement render
delay. This is made non-thread safe for speed as we know this will all
happen on the same streaming thread.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1881>
Starting from this patch, all queue and dequeue operation happening
on V4L2 is now abstracted with the request. Buffers are dequeued
automatically when pending requests are marked done and only 1 in-flight
request is now used.
Along with fixing issues with request not being reused with slice
decoders, this change reduces the memory footprint by allocating only
two bitstream buffers.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1881>
* Don't warn for live object, since ID3D11Debug itself seems to be
holding refcount of ID3D11Device at the moment we called
ID3D11Debug::ReportLiveDeviceObjects(). It would report live object
always
* Device might not be able to support some formats (e.g., P010)
especially in case of WARP device. We don't need to warn about that.
* gst_d3d11_device_new() can be used for device enumeration. Don't warn
even if we cannot create D3D11 device with given adapter index therefore.
* Don't warn for HLSL compiler warning. It's just noise and
should not be critical thing at all
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1986>
Add a way to support drawing on application's texture instead of
usual window handle.
To make use of this new feature, application should follow below step.
1) Enable this feature by using "draw-on-shared-texture" property
2) Watch "begin-draw" signal
3) On "begin-draw" signal handler, application can request drawing
by using "draw" signal action. Note that "draw" signal action
should be happen before "begin-draw" signal handler is returned
NOTE 1) For texture sharing, creating a texture with
D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX flag is strongly recommend
if possible because we cannot ensure sync a texture
which was created with D3D11_RESOURCE_MISC_SHARED
and it would cause glitch with ID3D11VideoProcessor use case.
NOTE 2) Direct9Ex doesn't support texture sharing which was
created with D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX. In other words,
D3D11_RESOURCE_MISC_SHARED is the only option for Direct3D11/Direct9Ex interop.
NOTE 3) Because of missing synchronization around ID3D11VideoProcessor,
If shared texture was created with D3D11_RESOURCE_MISC_SHARED,
d3d11videosink might use fallback texture to convert DXVA texture
to normal Direct3D texture. Then converted texture will be
copied to user-provided shared texture.
* Why not use generic appsink approach?
In order for application to be able to store video data
which was produced by GStreamer in application's own texture,
there would be two possible approaches,
one is copying our texture into application's own texture,
and the other is drawing on application's own texture directly.
The former (appsink way) cannot be a zero-copy by nature.
In order to support zero-copy processing, we need to draw on
application's own texture directly.
For example, assume that application wants RGBA texture.
Then we can imagine following case.
"d3d11h264dec ! d3d11convert ! video/x-raw(memory:D3D11Memory),format=RGBA ! appsink"
^
|_ allocate new Direct3D texture for RGBA format
In above case, d3d11convert will allocate new texture(s) for RGBA format
and then application will copy again the our RGBA texutre into
application's own texture. One texture allocation plus per frame GPU copy will hanppen
in that case therefore.
Moreover, in order for application to be able to access
our texture, we need to allocate texture with additional flags for
application's Direct3D11 device to be able to read texture data.
That would be another implementation burden on our side
But with this MR, we can configure pipeline in this way
"d3d11h264dec ! d3d11videosink".
In that way, we can save at least one texture allocation and
per frame texutre copy since d3d11videosink will convert incoming texture
into application's texture format directly without copy.
* What if we expose texture without conversion and application does
conversion by itself?
As mentioned above, for application to be able to access our texture
from application's Direct3D11 device, we need to allocate texture
in a special form. But in some case, that might not be possible.
Also, if a texture belongs to decoder DPB, exposing such texture
to application is unsafe and usual Direct3D11 shader cannot handle
such texture. To convert format, ID3D11VideoProcessor API needs to
be used but that would be a implementation burden for application.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1873>