This is part of a much larger goal to always keep the frames we schedule to
decklink be always increasing. This also allows us to avoid using both the
sync and async frame display functions which aren't recomended to be used
together.
If the output timestatmsp is not always increasing decklink seems to hold
onto the latest frame and may cause a flash in the output if the played
sequence has a framerate less than the video output.
Scenario is play for N seconds, pause, flushing seek to some other position,
play again. Each of the play sequences would normally start at 0 with
the decklink time. As a result, the latest frame from the previous sequence
is kept alive waiting for it's timestamp to pass before either dropping
(if a subsequent frame in the new sequence overrides it) or displayed
causing the out of place frame to be displayed.
This is also supported by the debug logs from the decklink video sink
element where a ScheduledFrameCompleted() callback would not occur for
the frame until the above had happened.
It was timing related as to whether the frame was displayed based
on the decklink refresh cycle (which seems to be 16ms here),
when the frame was scheduled by the sink and the difference between
the 'time since vblank' of the two play requests (and thus start times
of scheduled playback).
https://bugzilla.gnome.org/show_bug.cgi?id=797130
Otherwise decklink seems to hold onto the latest frame and may cause a
flash in the output if the played sequence has a framerate less than the
video output.
Scenario is play for N seconds, pause, flushing seek to some other position,
play again. Each of the play sequences would normally start at 0 with
the decklink time. As a result, the latest frame from the previous sequence
is kept alive waiting for it's timestamp to pass before either dropping
(if a subsequent frame in the new sequence overrides it) or displayed
causing the out of place frame to be displayed.
This is also supported by the debug logs from the decklink video sink
element where a ScheduledFrameCompleted() callback would not occur for
the frame until the above had happened.
It was timing related as to whether the frame was displayed based
on the decklink refresh cycle (which seems to be 16ms here),
when the frame was scheduled by the sink and the difference between
the 'time since vblank' of the two play requests (and thus start times
of scheduled playback).
If the "output-cc" property is set to TRUE and there is CC present
in the VBI Ancillary Data, they will be extracted and set on the
outgoing buffer as GstVideoCaptionMeta.
Only CDP packets are supported.
https://bugzilla.gnome.org/show_bug.cgi?id=773863
There is no log of gst_decklink_com_thread () which initializes COM.
The initialization part is not valid with #ifdef MSC_VER.
Windows binaries are built with gcc.
As with other codes, it was avoidable by setting it to G_OS_WIN32
instead of MSC_VER.
https://bugzilla.gnome.org/show_bug.cgi?id=794652
There is no fixed limitation for the number of devices on the
decklink API side according to BlackMagic. Many PC motherboards
are able support 6 decklink cards each with up to 8 inputs so
a limit of 16 might well be too low.
https://bugzilla.gnome.org/show_bug.cgi?id=777239
Sometimes we might get an audio packet without a corresponding video
frame. In these cases, the stream and hardware reference timestamps
would be missing, because they're called on the video frame. Instead of
potentially breaking stuff downstream that might depend on these, we now
extrapolate them.
https://bugzilla.gnome.org/show_bug.cgi?id=792042
When we receive a video or audio buffer, we calculate the next stream
time based on the current stream time + buffer duration. If the next
buffer's stream time is after that, we issue a warning.
This happens because the stream time incoming from Decklink should be
really constant and without gaps. If there is a gap, it means that
something went wrong, e.g. the internal buffer pool is empty (too many
buffers queued up downstream).
https://bugzilla.gnome.org/show_bug.cgi?id=781776
Sometimes we might get an audio packet without a corresponding video
frame. In these cases, the stream and hardware reference timestamps
would be missing, because they're called on the video frame. Instead of
potentially breaking stuff downstream that might depend on these, we now
extrapolate them.
https://bugzilla.gnome.org/show_bug.cgi?id=792042
Not only if the video sink is set to PLAYING so far. Also give more
useful debug output about why we don't start, and don't start if already
started.
Also refactor the function to early-return instead of having a huge
if-else block over the whole function.
https://bugzilla.gnome.org/show_bug.cgi?id=790114
The Decklink and GstAudioBaseSink APIs don't fit very well together,
which causes various problems due to inaccuracies in the clock
calculations and the actual ringbuffer and GStreamer's copy getting of
sync.
Problems are audio drop-outs and A/V sync getting wrong after
pausing/seeking.
https://bugzilla.gnome.org/show_bug.cgi?id=790114
The "fields" flag is ignored because currently GStreamer doesn't support
having only top or only bottom fields inside a frame. The "drop frame"
flag is ignored because some occurrences have been spotted where it
wasn't set while it should have been. In practice, when we have 29.97 or
59.94 FPS, it's always drop-frame.
https://bugzilla.gnome.org/show_bug.cgi?id=790112
When we receive a video or audio buffer, we calculate the next stream
time based on the current stream time + buffer duration. If the next
buffer's stream time is after that, we issue a warning.
This happens because the stream time incoming from Decklink should be
really constant and without gaps. If there is a gap, it means that
something went wrong, e.g. the internal buffer pool is empty (too many
buffers queued up downstream).
https://bugzilla.gnome.org/show_bug.cgi?id=781776
If we drop many frames at once, printing one message per video frame and
one per audio packet would cause a lot of disk IO. Just print a total at
the end.
https://bugzilla.gnome.org/show_bug.cgi?id=788780
The buffer itself is 128 bytes into the allocated memory area, to be
able to store the size and other metadata before it. Freeing the buffer
directly will make malloc moderately unhappy.
HRESULT is unsigned long on Windows, but the Decklink headers define
it to 'int' on Linux. Confusingly, the defines that talk about the
possible return values for it use long constants. The easy fix would
be to change the linux/LinuxCOM.h header, but that's copied from the
decklink SDK.
Change the logging to always upcast to unsigned long while printing
HRESULT for consistency across platforms.
gstdecklinkvideosrc.cpp:425:7: warning: format '%x' expects argument of type 'unsigned int', but argument 8 has type 'HRESULT {aka long int}' [-Wformat]
[and so on]
gstdecklinkaudiosink.cpp:155:19: error: conflicting type attributes specified for 'virtual HRESULT GStreamerAudioOutputCallback::QueryInterface(const IID&, void**)'
In file included from /var/lib/jenkins/workspace/cerbero-cross-mingw32/workdir/mingw/w32/bin/../lib/gcc/i686-w64-mingw32/4.7.3/../../../../i686-w64-mingw32/include/objbase.h:153:0,
from /var/lib/jenkins/workspace/cerbero-cross-mingw32/workdir/mingw/w32/bin/../lib/gcc/i686-w64-mingw32/4.7.3/../../../../i686-w64-mingw32/include/ole2.h:16,
from /var/lib/jenkins/workspace/cerbero-cross-mingw32/workdir/mingw/w32/bin/../lib/gcc/i686-w64-mingw32/4.7.3/../../../../i686-w64-mingw32/include/windows.h:94,
from /var/lib/jenkins/workspace/cerbero-cross-mingw32/workdir/mingw/w32/bin/../lib/gcc/i686-w64-mingw32/4.7.3/../../../../i686-w64-mingw32/include/rpc.h:16,
from win/DeckLinkAPI.h:27,
from gstdecklink.h:35,
from gstdecklinkaudiosink.h:27,
from gstdecklinkaudiosink.cpp:25:
/var/lib/jenkins/workspace/cerbero-cross-mingw32/workdir/mingw/w32/bin/../lib/gcc/i686-w64-mingw32/4.7.3/../../../../i686-w64-mingw32/include/unknwn.h:67:25: error: overriding 'virtual HRESULT IUnknown::QueryInterface(const IID&, void**)'
(and many more)
https://ci.gstreamer.net/job/cerbero-cross-mingw32/6407/console
The default memory allocator of the decklink library allocates
a fixed pool of buffers, and the number of buffers is unknown.
This makes it impossible do useful queuing downstream. The new
memory allocator can create an unlimited number of buffers,
giving all queuing features one would expect from a live source.
https://bugzilla.gnome.org/show_bug.cgi?id=782556
This is basically a frame counter provided by the driver and it's
advancing at the speed of the HDMI/SDI input. Having this available on
each buffer allows to know what constant-framerate-based timestamp each
frame is corresponding to and can be used e.g. to write out files
accordingly without having the local pipeline clock timestamps used.
https://bugzilla.gnome.org/show_bug.cgi?id=779213
The audio packet times can be completely unrelated to the video stream
time, depending on the card. While this looks like a bug in the driver,
just always using the video stream time (which is correct) works as a
workaround for now.
This reverts commit 845832263b.
The commit broke cross-mingw CI:
https://ci.gstreamer.net/job/GStreamer-master/8659/console
It seems that cross-mingw on Autotools and native-mingw on Meson
disagree about the size of HRESULT. Revert for now till I can
investigate the Meson side of things some more.
MinGW does not provide comsupp.lib, so there's no implementation of
_com_util::ConvertBSTRToString. Use a fallback implementation that
uses wcstombs() instead.
On MinGW we also truncate the name to 100 chars which should be fine.
This is basically a frame counter provided by the driver and it's
advancing at the speed of the HDMI/SDI input. Having this available on
each buffer allows to know what constant-framerate-based timestamp each
frame is corresponding to and can be used e.g. to write out files
accordingly without having the local pipeline clock timestamps used.
https://bugzilla.gnome.org/show_bug.cgi?id=779213
"meson encountered an error in file
sys/decklink/meson.build, line 33, column 2:
Invalid use of addition: must be str, not list"
Also remove nonsensical linker flags on windows.
https://bugzilla.gnome.org/show_bug.cgi?id=781156
This seems to happen sometimes on some hardware, and is not really
critical as long as the scheduling of the normal frames works fine.
Only post a warning message for this case.
and error out here already otherwise. We currently don't support
reconfiguration here and it can't happen really either unless the auto
mode is selected.
15:18:47 gstdecklinkaudiosrc.cpp:745:45: error: cannot initialize a parameter of type 'int64_t *' (aka 'long long *') with an rvalue of type 'gint64 *' (aka 'long *')
15:18:47 (BMDDeckLinkMaximumAudioChannels, &self->channels_found);
15:18:47 ^~~~~~~~~~~~~~~~~~~~~
15:18:47 ./linux/DeckLinkAPI.h:970:87: note: passing argument to parameter 'value' here
15:18:47 virtual HRESULT GetInt (/* in */ BMDDeckLinkAttributeID cfgID, /* out */ int64_t *value) = 0;
15:18:47 ^
gstdecklink.cpp:821:11: warning: variable 'dtc' is used uninitialized whenever 'if' condition is false [-Wsometimes-uninitialized]
if (m_input->videosrc) {
^~~~~~~~~~~~~~~~~
gstdecklink.cpp:837:41: note: uninitialized use occurs here
stream_time, stream_duration, dtc, no_signal);
^~~
gstdecklink.cpp:821:7: note: remove the 'if' if its condition is always true
if (m_input->videosrc) {
^~~~~~~~~~~~~~~~~~~~~~~
gstdecklink.cpp:810:29: note: initialize the variable 'dtc' to silence this warning
IDeckLinkTimecode *dtc;
^
= NULL
gstdecklink.cpp: In member function ‘virtual HRESULT GStreamerDecklinkInputCallback::VideoInputFrameArrived(IDeckLinkVideoInputFrame*, IDeckLinkAudioInputPacket*)’:
gstdecklink.cpp:766:34: error: ‘base_time’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
capture_time -= base_time;
^
First of all, all the HD and UHD modes should be top-field-first, as
also returned by the Decklink mode iterator API.
Then we should include the caps field "field-order" in the caps of the
source (not the sink due to negotiation problems with optional fields).
And finally we should set the TFF flag on interlaced buffers that are
top-field-first.
On some hardware the first few frames are bogus and not very useful.
Their timestamps are off, they have no timecodes, or there are spurious
black frames / no-signal frames. After a few frames this stabilizes
though.
https://bugzilla.gnome.org/show_bug.cgi?id=774850
Based on this we calculate the actual capture time, which should get us
rid of any capturing jitter by averaging it out.
Also add a output-stream-time property which forces the elements to
output the stream time directly instead of doing any conversion to the
pipeline clock. Use with care.
https://bugzilla.gnome.org/show_bug.cgi?id=774850
The hardware timestamps have no relation to when frames were produced,
only when frames arrived somewhere in the hardware. Especially there is
no guarantee that audio and video will have the same hardware timestamps
although they belong together, and even more important: the rate with
which the hardware timestamps increase is completely unrelated to the
rate with which the frames are captured!
As such we can as well use the pipeline clock directly and stop doing
complicated calculations. Also as a side effect this allows now running
without any pipeline clock, by directly making use of the stream times
as reported by the driver.
https://bugzilla.gnome.org/show_bug.cgi?id=774850
When a frame is found to not have an associated input source (cable
unplugged, wrong mode selected), an element warning will be issued. When
the next frame in the stream is found to have an input source selected
(e.g. cable replugged), an element info will be issued.
https://bugzilla.gnome.org/show_bug.cgi?id=774629
Unfortunately this does not go through the normal state change
machinery, so we don't get notified about this in change_state().
However we need to stop scheduled playback, so that once PLAYING is
reached again we can start scheduled playback with the correct time.
Without this, flushing seeks in PLAYING will not work correctly:
decklinkvideosink will wait before showing the new frames for the amount
of time the pipeline was in PLAYING before.