gstreamer/sys/nvenc/gstnvbaseenc.c

1582 lines
48 KiB
C
Raw Normal View History

/* GStreamer NVENC plugin
* Copyright (C) 2015 Centricular Ltd
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "gstnvbaseenc.h"
#include <gst/pbutils/codec-utils.h>
#include <string.h>
#if HAVE_NVENC_GST_GL
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <cuda_gl_interop.h>
#include <gst/gl/gl.h>
#endif
/* TODO:
* - reset last_flow on FLUSH_STOP (seeking)
*/
#define N_BUFFERS_PER_FRAME 1
#define SUPPORTED_GL_APIS GST_GL_API_OPENGL3
/* magic pointer value we can put in the async queue to signal shut down */
#define SHUTDOWN_COOKIE ((gpointer)GINT_TO_POINTER (1))
#define parent_class gst_nv_base_enc_parent_class
G_DEFINE_ABSTRACT_TYPE (GstNvBaseEnc, gst_nv_base_enc, GST_TYPE_VIDEO_ENCODER);
static GstStaticPadTemplate sink_factory = GST_STATIC_PAD_TEMPLATE ("sink",
GST_PAD_SINK,
GST_PAD_ALWAYS,
GST_STATIC_CAPS ("video/x-raw, " "format = (string) NV12, " // TODO: I420, YV12, Y444 support
"width = (int) [ 16, 4096 ], height = (int) [ 16, 2160 ], "
"framerate = (fraction) [0, MAX],"
"interlace-mode = { progressive, mixed, interleaved } "
#if HAVE_NVENC_GST_GL
";"
"video/x-raw(memory:GLMemory), "
"format = (string) { NV12, Y444 }, "
"width = (int) [ 16, 4096 ], height = (int) [ 16, 2160 ], "
"framerate = (fraction) [0, MAX],"
"interlace-mode = { progressive, mixed, interleaved } "
#endif
));
enum
{
PROP_0,
PROP_DEVICE_ID,
};
/* This lock is needed to prevent the situation where multiple encoders are
* initialised at the same time which appears to cause excessive CPU usage over
* some period of time. */
G_LOCK_DEFINE_STATIC (initialization_lock);
#if HAVE_NVENC_GST_GL
struct gl_input_resource
{
GstGLMemory *gl_mem[GST_VIDEO_MAX_PLANES];
struct cudaGraphicsResource *cuda_texture;
gpointer cuda_plane_pointers[GST_VIDEO_MAX_PLANES];
gpointer cuda_pointer;
gsize cuda_stride;
gsize cuda_num_bytes;
NV_ENC_REGISTER_RESOURCE nv_resource;
NV_ENC_MAP_INPUT_RESOURCE nv_mapped_resource;
};
#endif
struct frame_state
{
gint n_buffers;
gpointer in_bufs[N_BUFFERS_PER_FRAME];
gpointer out_bufs[N_BUFFERS_PER_FRAME];
};
static gboolean gst_nv_base_enc_open (GstVideoEncoder * enc);
static gboolean gst_nv_base_enc_close (GstVideoEncoder * enc);
static gboolean gst_nv_base_enc_start (GstVideoEncoder * enc);
static gboolean gst_nv_base_enc_stop (GstVideoEncoder * enc);
static void gst_nv_base_enc_set_context (GstElement * element,
GstContext * context);
static gboolean gst_nv_base_enc_sink_query (GstVideoEncoder * enc,
GstQuery * query);
static gboolean gst_nv_base_enc_set_format (GstVideoEncoder * enc,
GstVideoCodecState * state);
static GstFlowReturn gst_nv_base_enc_handle_frame (GstVideoEncoder * enc,
GstVideoCodecFrame * frame);
static void gst_nv_base_enc_free_buffers (GstNvBaseEnc * nvenc);
static GstFlowReturn gst_nv_base_enc_finish (GstVideoEncoder * enc);
static void gst_nv_base_enc_set_property (GObject * object, guint prop_id,
const GValue * value, GParamSpec * pspec);
static void gst_nv_base_enc_get_property (GObject * object, guint prop_id,
GValue * value, GParamSpec * pspec);
static void gst_nv_base_enc_finalize (GObject * obj);
static GstCaps *gst_nv_base_enc_getcaps (GstVideoEncoder * enc,
GstCaps * filter);
static void
gst_nv_base_enc_class_init (GstNvBaseEncClass * klass)
{
GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
GstElementClass *element_class = GST_ELEMENT_CLASS (klass);
GstVideoEncoderClass *videoenc_class = GST_VIDEO_ENCODER_CLASS (klass);
gobject_class->set_property = gst_nv_base_enc_set_property;
gobject_class->get_property = gst_nv_base_enc_get_property;
gobject_class->finalize = gst_nv_base_enc_finalize;
element_class->set_context = GST_DEBUG_FUNCPTR (gst_nv_base_enc_set_context);
videoenc_class->open = GST_DEBUG_FUNCPTR (gst_nv_base_enc_open);
videoenc_class->close = GST_DEBUG_FUNCPTR (gst_nv_base_enc_close);
videoenc_class->start = GST_DEBUG_FUNCPTR (gst_nv_base_enc_start);
videoenc_class->stop = GST_DEBUG_FUNCPTR (gst_nv_base_enc_stop);
videoenc_class->set_format = GST_DEBUG_FUNCPTR (gst_nv_base_enc_set_format);
videoenc_class->getcaps = GST_DEBUG_FUNCPTR (gst_nv_base_enc_getcaps);
videoenc_class->handle_frame =
GST_DEBUG_FUNCPTR (gst_nv_base_enc_handle_frame);
videoenc_class->finish = GST_DEBUG_FUNCPTR (gst_nv_base_enc_finish);
videoenc_class->sink_query = GST_DEBUG_FUNCPTR (gst_nv_base_enc_sink_query);
gst_element_class_add_pad_template (element_class,
gst_static_pad_template_get (&sink_factory));
g_object_class_install_property (gobject_class, PROP_DEVICE_ID,
g_param_spec_uint ("cuda-device-id",
"Cuda Device ID",
"Set the GPU device to use for operations",
0, G_MAXUINT, 0, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS));
}
static gboolean
_get_supported_input_formats (GstNvBaseEnc * nvenc)
{
GstNvBaseEncClass *nvenc_class = GST_NV_BASE_ENC_GET_CLASS (nvenc);
guint64 format_mask = 0;
uint32_t i, num = 0;
NV_ENC_BUFFER_FORMAT formats[64];
GValue list = G_VALUE_INIT;
GValue val = G_VALUE_INIT;
NvEncGetInputFormats (nvenc->encoder, nvenc_class->codec_id, formats,
G_N_ELEMENTS (formats), &num);
for (i = 0; i < num; ++i) {
GST_INFO_OBJECT (nvenc, "input format: 0x%08x", formats[i]);
/* Apparently we can just ignore the tiled formats and can feed
* it the respective untiled planar format instead ?! */
switch (formats[i]) {
case NV_ENC_BUFFER_FORMAT_NV12_PL:
case NV_ENC_BUFFER_FORMAT_NV12_TILED16x16:
case NV_ENC_BUFFER_FORMAT_NV12_TILED64x16:
format_mask |= (1 << GST_VIDEO_FORMAT_NV12);
break;
case NV_ENC_BUFFER_FORMAT_YV12_PL:
case NV_ENC_BUFFER_FORMAT_YV12_TILED16x16:
case NV_ENC_BUFFER_FORMAT_YV12_TILED64x16:
format_mask |= (1 << GST_VIDEO_FORMAT_YV12);
break;
case NV_ENC_BUFFER_FORMAT_IYUV_PL:
case NV_ENC_BUFFER_FORMAT_IYUV_TILED16x16:
case NV_ENC_BUFFER_FORMAT_IYUV_TILED64x16:
format_mask |= (1 << GST_VIDEO_FORMAT_I420);
break;
case NV_ENC_BUFFER_FORMAT_YUV444_PL:
case NV_ENC_BUFFER_FORMAT_YUV444_TILED16x16:
case NV_ENC_BUFFER_FORMAT_YUV444_TILED64x16:{
NV_ENC_CAPS_PARAM caps_param = { 0, };
int yuv444_supported = 0;
caps_param.version = NV_ENC_CAPS_PARAM_VER;
caps_param.capsToQuery = NV_ENC_CAPS_SUPPORT_YUV444_ENCODE;
if (NvEncGetEncodeCaps (nvenc->encoder, nvenc_class->codec_id,
&caps_param, &yuv444_supported) != NV_ENC_SUCCESS)
yuv444_supported = 0;
if (yuv444_supported)
format_mask |= (1 << GST_VIDEO_FORMAT_Y444);
break;
}
default:
GST_FIXME ("unmapped input format: 0x%08x", formats[i]);
break;
}
}
if (format_mask == 0)
return FALSE;
/* process a second time so we can add formats in the order we want */
g_value_init (&list, GST_TYPE_LIST);
g_value_init (&val, G_TYPE_STRING);
if ((format_mask & (1 << GST_VIDEO_FORMAT_NV12))) {
g_value_set_static_string (&val, "NV12");
gst_value_list_append_value (&list, &val);
}
if ((format_mask & (1 << GST_VIDEO_FORMAT_YV12))) {
g_value_set_static_string (&val, "YV12");
gst_value_list_append_value (&list, &val);
}
if ((format_mask & (1 << GST_VIDEO_FORMAT_I420))) {
g_value_set_static_string (&val, "I420");
gst_value_list_append_value (&list, &val);
}
if ((format_mask & (1 << GST_VIDEO_FORMAT_Y444))) {
g_value_set_static_string (&val, "Y444");
gst_value_list_append_value (&list, &val);
}
g_value_unset (&val);
GST_OBJECT_LOCK (nvenc);
g_free (nvenc->input_formats);
nvenc->input_formats = g_memdup (&list, sizeof (GValue));
GST_OBJECT_UNLOCK (nvenc);
return TRUE;
}
static gboolean
gst_nv_base_enc_open (GstVideoEncoder * enc)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
nvenc->cuda_ctx = gst_nvenc_create_cuda_context (nvenc->cuda_device_id);
if (nvenc->cuda_ctx == NULL) {
GST_ELEMENT_ERROR (enc, LIBRARY, INIT, (NULL),
("Failed to create CUDA context, perhaps CUDA is not supported."));
return FALSE;
}
{
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS params = { 0, };
NVENCSTATUS nv_ret;
params.version = NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS_VER;
params.apiVersion = NVENCAPI_VERSION;
params.device = nvenc->cuda_ctx;
params.deviceType = NV_ENC_DEVICE_TYPE_CUDA;
nv_ret = NvEncOpenEncodeSessionEx (&params, &nvenc->encoder);
if (nv_ret != NV_ENC_SUCCESS) {
GST_ERROR ("Failed to create NVENC encoder session, ret=%d", nv_ret);
if (gst_nvenc_destroy_cuda_context (nvenc->cuda_ctx))
nvenc->cuda_ctx = NULL;
return FALSE;
}
GST_INFO ("created NVENC encoder %p", nvenc->encoder);
}
/* query supported input formats */
if (!_get_supported_input_formats (nvenc)) {
GST_WARNING_OBJECT (nvenc, "No supported input formats");
gst_nv_base_enc_close (enc);
return FALSE;
}
return TRUE;
}
static void
gst_nv_base_enc_set_context (GstElement * element, GstContext * context)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (element);
#if HAVE_NVENC_GST_GL
gst_gl_handle_set_context (element, context,
(GstGLDisplay **) & nvenc->display,
(GstGLContext **) & nvenc->other_context);
if (nvenc->display)
gst_gl_display_filter_gl_api (GST_GL_DISPLAY (nvenc->display),
SUPPORTED_GL_APIS);
#endif
GST_ELEMENT_CLASS (parent_class)->set_context (element, context);
}
static gboolean
gst_nv_base_enc_sink_query (GstVideoEncoder * enc, GstQuery * query)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
switch (GST_QUERY_TYPE (query)) {
#if HAVE_NVENC_GST_GL
case GST_QUERY_CONTEXT:{
gboolean ret;
ret = gst_gl_handle_context_query ((GstElement *) nvenc, query,
(GstGLDisplay **) & nvenc->display,
(GstGLContext **) & nvenc->other_context);
if (nvenc->display)
gst_gl_display_filter_gl_api (GST_GL_DISPLAY (nvenc->display),
SUPPORTED_GL_APIS);
if (ret)
return ret;
break;
}
#endif
default:
break;
}
return GST_VIDEO_ENCODER_CLASS (parent_class)->sink_query (enc, query);
}
static gboolean
gst_nv_base_enc_start (GstVideoEncoder * enc)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
nvenc->bitstream_pool = g_async_queue_new ();
nvenc->bitstream_queue = g_async_queue_new ();
nvenc->in_bufs_pool = g_async_queue_new ();
nvenc->last_flow = GST_FLOW_OK;
#if HAVE_NVENC_GST_GL
{
gst_gl_ensure_element_data (GST_ELEMENT (nvenc),
(GstGLDisplay **) & nvenc->display,
(GstGLContext **) & nvenc->other_context);
if (nvenc->display)
gst_gl_display_filter_gl_api (GST_GL_DISPLAY (nvenc->display),
SUPPORTED_GL_APIS);
}
#endif
return TRUE;
}
static gboolean
gst_nv_base_enc_stop (GstVideoEncoder * enc)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
gst_nv_base_enc_free_buffers (nvenc);
if (nvenc->bitstream_pool) {
g_async_queue_unref (nvenc->bitstream_pool);
nvenc->bitstream_pool = NULL;
}
if (nvenc->bitstream_queue) {
g_async_queue_unref (nvenc->bitstream_queue);
nvenc->bitstream_queue = NULL;
}
if (nvenc->in_bufs_pool) {
g_async_queue_unref (nvenc->in_bufs_pool);
nvenc->in_bufs_pool = NULL;
}
if (nvenc->display) {
gst_object_unref (nvenc->display);
nvenc->display = NULL;
}
if (nvenc->other_context) {
gst_object_unref (nvenc->other_context);
nvenc->other_context = NULL;
}
return TRUE;
}
static GValue *
_get_interlace_modes (GstNvBaseEnc * nvenc)
{
GstNvBaseEncClass *nvenc_class = GST_NV_BASE_ENC_GET_CLASS (nvenc);
NV_ENC_CAPS_PARAM caps_param = { 0, };
GValue *list = g_new0 (GValue, 1);
GValue val = G_VALUE_INIT;
g_value_init (list, GST_TYPE_LIST);
g_value_init (&val, G_TYPE_STRING);
g_value_set_static_string (&val, "progressive");
gst_value_list_append_value (list, &val);
caps_param.version = NV_ENC_CAPS_PARAM_VER;
caps_param.capsToQuery = NV_ENC_CAPS_SUPPORT_FIELD_ENCODING;
if (NvEncGetEncodeCaps (nvenc->encoder, nvenc_class->codec_id,
&caps_param, &nvenc->interlace_modes) != NV_ENC_SUCCESS)
nvenc->interlace_modes = 0;
if (nvenc->interlace_modes >= 1) {
g_value_set_static_string (&val, "interleaved");
gst_value_list_append_value (list, &val);
g_value_set_static_string (&val, "mixed");
gst_value_list_append_value (list, &val);
}
/* TODO: figure out what nvenc frame based interlacing means in gst terms */
return list;
}
static GstCaps *
gst_nv_base_enc_getcaps (GstVideoEncoder * enc, GstCaps * filter)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
GstCaps *supported_incaps = NULL;
GstCaps *template_caps, *caps;
GST_OBJECT_LOCK (nvenc);
if (nvenc->input_formats != NULL) {
GValue *val;
template_caps = gst_pad_get_pad_template_caps (enc->sinkpad);
supported_incaps = gst_caps_copy (template_caps);
gst_caps_set_value (supported_incaps, "format", nvenc->input_formats);
val = _get_interlace_modes (nvenc);
gst_caps_set_value (supported_incaps, "interlace-mode", val);
g_free (val);
GST_LOG_OBJECT (enc, "codec input caps %" GST_PTR_FORMAT, supported_incaps);
GST_LOG_OBJECT (enc, " template caps %" GST_PTR_FORMAT, template_caps);
caps = gst_caps_intersect (template_caps, supported_incaps);
gst_caps_unref (template_caps);
gst_caps_unref (supported_incaps);
supported_incaps = caps;
GST_LOG_OBJECT (enc, " supported caps %" GST_PTR_FORMAT, supported_incaps);
}
GST_OBJECT_UNLOCK (nvenc);
caps = gst_video_encoder_proxy_getcaps (enc, supported_incaps, filter);
if (supported_incaps)
gst_caps_unref (supported_incaps);
GST_DEBUG_OBJECT (nvenc, " returning caps %" GST_PTR_FORMAT, caps);
return caps;
}
static gboolean
gst_nv_base_enc_close (GstVideoEncoder * enc)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
if (nvenc->encoder) {
if (NvEncDestroyEncoder (nvenc->encoder) != NV_ENC_SUCCESS)
return FALSE;
nvenc->encoder = NULL;
}
if (nvenc->cuda_ctx) {
if (!gst_nvenc_destroy_cuda_context (nvenc->cuda_ctx))
return FALSE;
nvenc->cuda_ctx = NULL;
}
GST_OBJECT_LOCK (nvenc);
g_free (nvenc->input_formats);
nvenc->input_formats = NULL;
GST_OBJECT_UNLOCK (nvenc);
if (nvenc->input_state) {
gst_video_codec_state_unref (nvenc->input_state);
nvenc->input_state = NULL;
}
if (nvenc->bitstream_pool != NULL) {
g_assert (g_async_queue_length (nvenc->bitstream_pool) == 0);
g_async_queue_unref (nvenc->bitstream_pool);
nvenc->bitstream_pool = NULL;
}
return TRUE;
}
static void
gst_nv_base_enc_init (GstNvBaseEnc * nvenc)
{
GstVideoEncoder *encoder = GST_VIDEO_ENCODER (nvenc);
GST_VIDEO_ENCODER_STREAM_LOCK (encoder);
GST_VIDEO_ENCODER_STREAM_UNLOCK (encoder);
}
static void
gst_nv_base_enc_finalize (GObject * obj)
{
G_OBJECT_CLASS (gst_nv_base_enc_parent_class)->finalize (obj);
}
static GstVideoCodecFrame *
_find_frame_with_output_buffer (GstNvBaseEnc * nvenc, NV_ENC_OUTPUT_PTR out_buf)
{
GList *l = gst_video_encoder_get_frames (GST_VIDEO_ENCODER (nvenc));
gint i;
for (; l; l = l->next) {
GstVideoCodecFrame *frame = (GstVideoCodecFrame *) l->data;
struct frame_state *state = frame->user_data;
for (i = 0; i < N_BUFFERS_PER_FRAME; i++) {
if (!state->out_bufs[i])
break;
if (state->out_bufs[i] == out_buf)
return frame;
}
}
return NULL;
}
static gpointer
gst_nv_base_enc_bitstream_thread (gpointer user_data)
{
GstVideoEncoder *enc = user_data;
GstNvBaseEnc *nvenc = user_data;
/* overview of operation:
* 1. retreive the next buffer submitted to the bitstream pool
* 2. wait for that buffer to be ready from nvenc (LockBitsream)
* 3. retreive the GstVideoCodecFrame associated with that buffer
* 4. for each buffer in the frame
* 4.1 (step 2): wait for that buffer to be ready from nvenc (LockBitsream)
* 4.2 create an output GstBuffer from the nvenc buffers
* 4.3 unlock the nvenc bitstream buffers UnlockBitsream
* 5. finish_frame()
* 6. cleanup
*/
do {
GstBuffer *buffers[N_BUFFERS_PER_FRAME];
struct frame_state *state = NULL;
GstVideoCodecFrame *frame = NULL;
NVENCSTATUS nv_ret;
GstFlowReturn flow = GST_FLOW_OK;
gint i;
{
NV_ENC_LOCK_BITSTREAM lock_bs = { 0, };
NV_ENC_OUTPUT_PTR out_buf;
for (i = 0; i < N_BUFFERS_PER_FRAME; i++) {
/* get and lock bitstream buffers */
GstVideoCodecFrame *tmp_frame;
if (state && i >= state->n_buffers)
break;
GST_LOG_OBJECT (enc, "wait for bitstream buffer..");
/* assumes buffers are submitted in order */
out_buf = g_async_queue_pop (nvenc->bitstream_queue);
if ((gpointer) out_buf == SHUTDOWN_COOKIE)
break;
GST_LOG_OBJECT (nvenc, "waiting for output buffer %p to be ready",
out_buf);
lock_bs.version = NV_ENC_LOCK_BITSTREAM_VER;
lock_bs.outputBitstream = out_buf;
lock_bs.doNotWait = 0;
/* FIXME: this would need to be updated for other slice modes */
lock_bs.sliceOffsets = NULL;
nv_ret = NvEncLockBitstream (nvenc->encoder, &lock_bs);
if (nv_ret != NV_ENC_SUCCESS) {
/* FIXME: what to do here? */
GST_ELEMENT_ERROR (nvenc, STREAM, ENCODE, (NULL),
("Failed to lock bitstream buffer %p, ret %d",
lock_bs.outputBitstream, nv_ret));
out_buf = SHUTDOWN_COOKIE;
break;
}
GST_LOG_OBJECT (nvenc, "picture type %d", lock_bs.pictureType);
tmp_frame = _find_frame_with_output_buffer (nvenc, out_buf);
g_assert (tmp_frame != NULL);
if (frame)
g_assert (frame == tmp_frame);
frame = tmp_frame;
state = frame->user_data;
g_assert (state->out_bufs[i] == out_buf);
/* copy into output buffer */
buffers[i] =
gst_buffer_new_allocate (NULL, lock_bs.bitstreamSizeInBytes, NULL);
gst_buffer_fill (buffers[i], 0, lock_bs.bitstreamBufferPtr,
lock_bs.bitstreamSizeInBytes);
if (lock_bs.pictureType == NV_ENC_PIC_TYPE_IDR) {
GST_DEBUG_OBJECT (nvenc, "This is a keyframe");
GST_VIDEO_CODEC_FRAME_SET_SYNC_POINT (frame);
}
/* TODO: use lock_bs.outputTimeStamp and lock_bs.outputDuration */
/* TODO: check pts/dts is handled properly if there are B-frames */
nv_ret = NvEncUnlockBitstream (nvenc->encoder, state->out_bufs[i]);
if (nv_ret != NV_ENC_SUCCESS) {
/* FIXME: what to do here? */
GST_ELEMENT_ERROR (nvenc, STREAM, ENCODE, (NULL),
("Failed to unlock bitstream buffer %p, ret %d",
lock_bs.outputBitstream, nv_ret));
state->out_bufs[i] = SHUTDOWN_COOKIE;
break;
}
GST_LOG_OBJECT (nvenc, "returning bitstream buffer %p to pool",
state->out_bufs[i]);
g_async_queue_push (nvenc->bitstream_pool, state->out_bufs[i]);
}
if (out_buf == SHUTDOWN_COOKIE)
break;
}
{
GstBuffer *output_buffer = gst_buffer_new ();
for (i = 0; i < state->n_buffers; i++)
output_buffer = gst_buffer_append (output_buffer, buffers[i]);
frame->output_buffer = output_buffer;
}
for (i = 0; i < state->n_buffers; i++) {
void *in_buf = state->in_bufs[i];
g_assert (in_buf != NULL);
#if HAVE_NVENC_GST_GL
if (nvenc->gl_input) {
struct gl_input_resource *in_gl_resource = in_buf;
nv_ret =
NvEncUnmapInputResource (nvenc->encoder,
in_gl_resource->nv_mapped_resource.mappedResource);
if (nv_ret != NV_ENC_SUCCESS) {
GST_ERROR_OBJECT (nvenc, "Failed to unmap input resource %p, ret %d",
in_gl_resource, nv_ret);
break;
}
memset (&in_gl_resource->nv_mapped_resource, 0,
sizeof (in_gl_resource->nv_mapped_resource));
}
#endif
g_async_queue_push (nvenc->in_bufs_pool, in_buf);
}
flow = gst_video_encoder_finish_frame (enc, frame);
frame = NULL;
if (flow != GST_FLOW_OK) {
GST_INFO_OBJECT (enc, "got flow %s", gst_flow_get_name (flow));
g_atomic_int_set (&nvenc->last_flow, flow);
break;
}
}
while (TRUE);
GST_INFO_OBJECT (nvenc, "exiting thread");
return NULL;
}
static gboolean
gst_nv_base_enc_start_bitstream_thread (GstNvBaseEnc * nvenc)
{
gchar *name = g_strdup_printf ("%s-read-bits", GST_OBJECT_NAME (nvenc));
g_assert (nvenc->bitstream_thread == NULL);
g_assert (g_async_queue_length (nvenc->bitstream_queue) == 0);
nvenc->bitstream_thread =
g_thread_try_new (name, gst_nv_base_enc_bitstream_thread, nvenc, NULL);
g_free (name);
if (nvenc->bitstream_thread == NULL)
return FALSE;
GST_INFO_OBJECT (nvenc, "started thread to read bitstream");
return TRUE;
}
static gboolean
gst_nv_base_enc_stop_bitstream_thread (GstNvBaseEnc * nvenc)
{
gpointer out_buf;
if (nvenc->bitstream_thread == NULL)
return TRUE;
/* FIXME */
GST_FIXME_OBJECT (nvenc, "stop bitstream reading thread properly");
g_async_queue_lock (nvenc->bitstream_queue);
g_async_queue_lock (nvenc->bitstream_pool);
while ((out_buf = g_async_queue_try_pop_unlocked (nvenc->bitstream_queue))) {
GST_INFO_OBJECT (nvenc, "stole bitstream buffer %p from queue", out_buf);
g_async_queue_push_unlocked (nvenc->bitstream_pool, out_buf);
}
g_async_queue_push_unlocked (nvenc->bitstream_queue, SHUTDOWN_COOKIE);
g_async_queue_unlock (nvenc->bitstream_pool);
g_async_queue_unlock (nvenc->bitstream_queue);
/* temporary unlock, so other thread can find and push frame */
GST_VIDEO_ENCODER_STREAM_UNLOCK (nvenc);
g_thread_join (nvenc->bitstream_thread);
GST_VIDEO_ENCODER_STREAM_LOCK (nvenc);
nvenc->bitstream_thread = NULL;
return TRUE;
}
static void
gst_nv_base_enc_reset_queues (GstNvBaseEnc * nvenc, gboolean refill)
{
gpointer ptr;
gint i;
GST_INFO_OBJECT (nvenc, "clearing queues");
while ((ptr = g_async_queue_try_pop (nvenc->bitstream_queue))) {
/* do nothing */
}
while ((ptr = g_async_queue_try_pop (nvenc->bitstream_pool))) {
/* do nothing */
}
while ((ptr = g_async_queue_try_pop (nvenc->in_bufs_pool))) {
/* do nothing */
}
if (refill) {
GST_INFO_OBJECT (nvenc, "refilling buffer pools");
for (i = 0; i < nvenc->n_bufs; ++i) {
g_async_queue_push (nvenc->bitstream_pool, nvenc->input_bufs[i]);
g_async_queue_push (nvenc->in_bufs_pool, nvenc->output_bufs[i]);
}
}
}
static void
gst_nv_base_enc_free_buffers (GstNvBaseEnc * nvenc)
{
NVENCSTATUS nv_ret;
guint i;
if (nvenc->encoder == NULL)
return;
gst_nv_base_enc_reset_queues (nvenc, FALSE);
for (i = 0; i < nvenc->n_bufs; ++i) {
NV_ENC_OUTPUT_PTR out_buf = nvenc->output_bufs[i];
#if HAVE_NVENC_GST_GL
if (nvenc->gl_input) {
struct gl_input_resource *in_gl_resource = nvenc->input_bufs[i];
cuCtxPushCurrent (nvenc->cuda_ctx);
nv_ret =
NvEncUnregisterResource (nvenc->encoder,
in_gl_resource->nv_resource.registeredResource);
if (nv_ret != NV_ENC_SUCCESS)
GST_ERROR_OBJECT (nvenc, "Failed to unregister resource %p, ret %d",
in_gl_resource, nv_ret);
g_free (in_gl_resource);
cuCtxPopCurrent (NULL);
} else
#endif
{
NV_ENC_INPUT_PTR in_buf = (NV_ENC_INPUT_PTR) nvenc->input_bufs[i];
GST_DEBUG_OBJECT (nvenc, "Destroying input buffer %p", in_buf);
nv_ret = NvEncDestroyInputBuffer (nvenc->encoder, in_buf);
if (nv_ret != NV_ENC_SUCCESS) {
GST_ERROR_OBJECT (nvenc, "Failed to destroy input buffer %p, ret %d",
in_buf, nv_ret);
}
}
GST_DEBUG_OBJECT (nvenc, "Destroying output bitstream buffer %p", out_buf);
nv_ret = NvEncDestroyBitstreamBuffer (nvenc->encoder, out_buf);
if (nv_ret != NV_ENC_SUCCESS) {
GST_ERROR_OBJECT (nvenc, "Failed to destroy output buffer %p, ret %d",
out_buf, nv_ret);
}
}
nvenc->n_bufs = 0;
g_free (nvenc->output_bufs);
nvenc->output_bufs = NULL;
g_free (nvenc->input_bufs);
nvenc->input_bufs = NULL;
}
static inline guint
_get_plane_width (GstVideoInfo * info, guint plane)
{
if (GST_VIDEO_INFO_IS_YUV (info))
/* For now component width and plane width are the same and the
* plane-component mapping matches
*/
return GST_VIDEO_INFO_COMP_WIDTH (info, plane);
else /* RGB, GRAY */
return GST_VIDEO_INFO_WIDTH (info);
}
static inline guint
_get_plane_height (GstVideoInfo * info, guint plane)
{
if (GST_VIDEO_INFO_IS_YUV (info))
/* For now component width and plane width are the same and the
* plane-component mapping matches
*/
return GST_VIDEO_INFO_COMP_HEIGHT (info, plane);
else /* RGB, GRAY */
return GST_VIDEO_INFO_HEIGHT (info);
}
static inline gsize
_get_frame_data_height (GstVideoInfo * info)
{
gsize ret = 0;
gint i;
for (i = 0; i < GST_VIDEO_INFO_N_PLANES (info); i++) {
ret += _get_plane_height (info, i);
}
return ret;
}
void
gst_nv_base_enc_set_max_encode_size (GstNvBaseEnc * nvenc, guint max_width,
guint max_height)
{
nvenc->max_encode_width = max_width;
nvenc->max_encode_height = max_height;
}
void
gst_nv_base_enc_get_max_encode_size (GstNvBaseEnc * nvenc, guint * max_width,
guint * max_height)
{
*max_width = nvenc->max_encode_width;
*max_height = nvenc->max_encode_height;
}
static gboolean
gst_nv_base_enc_set_format (GstVideoEncoder * enc, GstVideoCodecState * state)
{
GstNvBaseEncClass *nvenc_class = GST_NV_BASE_ENC_GET_CLASS (enc);
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
GstVideoInfo *info = &state->info;
GstVideoCodecState *old_state = nvenc->input_state;
NVENCSTATUS nv_ret;
g_assert (nvenc_class->initialize_encoder);
G_LOCK (initialization_lock);
if (!nvenc_class->initialize_encoder (nvenc, old_state, state)) {
GST_ERROR_OBJECT (enc, "Subclass failed to reconfigure encoder");
G_UNLOCK (initialization_lock);
return FALSE;
}
G_UNLOCK (initialization_lock);
if (!nvenc->max_encode_width && !nvenc->max_encode_height) {
gst_nv_base_enc_set_max_encode_size (nvenc, GST_VIDEO_INFO_WIDTH (info),
GST_VIDEO_INFO_HEIGHT (info));
}
if (!old_state) {
nvenc->input_info = *info;
nvenc->gl_input = FALSE;
}
if (nvenc->input_state)
gst_video_codec_state_unref (nvenc->input_state);
nvenc->input_state = gst_video_codec_state_ref (state);
GST_INFO_OBJECT (nvenc, "configured encoder");
/* now allocate some buffers only on first configuration */
if (!old_state) {
#if HAVE_NVENC_GST_GL
GstCapsFeatures *features;
#endif
guint num_macroblocks, i;
guint input_width, input_height;
input_width = GST_VIDEO_INFO_WIDTH (info);
input_height = GST_VIDEO_INFO_HEIGHT (info);
num_macroblocks = (GST_ROUND_UP_16 (input_width) >> 4)
* (GST_ROUND_UP_16 (input_height) >> 4);
nvenc->n_bufs = (num_macroblocks >= 8160) ? 32 : 48;
/* input buffers */
nvenc->input_bufs = g_new0 (gpointer, nvenc->n_bufs);
#if HAVE_NVENC_GST_GL
features = gst_caps_get_features (state->caps, 0);
if (gst_caps_features_contains (features,
GST_CAPS_FEATURE_MEMORY_GL_MEMORY)) {
guint pixel_depth = 0;
nvenc->gl_input = TRUE;
for (i = 0; i < GST_VIDEO_INFO_N_COMPONENTS (info); i++) {
pixel_depth += GST_VIDEO_INFO_COMP_DEPTH (info, i);
}
cuCtxPushCurrent (nvenc->cuda_ctx);
for (i = 0; i < nvenc->n_bufs; ++i) {
struct gl_input_resource *in_gl_resource =
g_new0 (struct gl_input_resource, 1);
CUresult cu_ret;
memset (&in_gl_resource->nv_resource, 0,
sizeof (in_gl_resource->nv_resource));
memset (&in_gl_resource->nv_mapped_resource, 0,
sizeof (in_gl_resource->nv_mapped_resource));
/* scratch buffer for non-contigious planer into a contigious buffer */
cu_ret =
cuMemAllocPitch ((CUdeviceptr *) & in_gl_resource->cuda_pointer,
&in_gl_resource->cuda_stride, input_width,
_get_frame_data_height (info), 16);
if (cu_ret != CUDA_SUCCESS) {
const gchar *err;
cuGetErrorString (cu_ret, &err);
GST_ERROR_OBJECT (nvenc, "failed to alocate cuda scratch buffer "
"ret %d error :%s", cu_ret, err);
g_assert_not_reached ();
}
in_gl_resource->nv_resource.version = NV_ENC_REGISTER_RESOURCE_VER;
in_gl_resource->nv_resource.resourceType =
NV_ENC_INPUT_RESOURCE_TYPE_CUDADEVICEPTR;
in_gl_resource->nv_resource.width = input_width;
in_gl_resource->nv_resource.height = input_height;
in_gl_resource->nv_resource.pitch = in_gl_resource->cuda_stride;
in_gl_resource->nv_resource.bufferFormat =
gst_nvenc_get_nv_buffer_format (GST_VIDEO_INFO_FORMAT (info));
in_gl_resource->nv_resource.resourceToRegister =
in_gl_resource->cuda_pointer;
nv_ret =
NvEncRegisterResource (nvenc->encoder,
&in_gl_resource->nv_resource);
if (nv_ret != NV_ENC_SUCCESS)
GST_ERROR_OBJECT (nvenc, "Failed to register resource %p, ret %d",
in_gl_resource, nv_ret);
nvenc->input_bufs[i] = in_gl_resource;
g_async_queue_push (nvenc->in_bufs_pool, nvenc->input_bufs[i]);
}
cuCtxPopCurrent (NULL);
} else
#endif
{
for (i = 0; i < nvenc->n_bufs; ++i) {
NV_ENC_CREATE_INPUT_BUFFER cin_buf = { 0, };
cin_buf.version = NV_ENC_CREATE_INPUT_BUFFER_VER;
cin_buf.width = GST_ROUND_UP_32 (input_width);
cin_buf.height = GST_ROUND_UP_32 (input_height);
cin_buf.memoryHeap = NV_ENC_MEMORY_HEAP_SYSMEM_CACHED;
cin_buf.bufferFmt =
gst_nvenc_get_nv_buffer_format (GST_VIDEO_INFO_FORMAT (info));
nv_ret = NvEncCreateInputBuffer (nvenc->encoder, &cin_buf);
if (nv_ret != NV_ENC_SUCCESS) {
GST_WARNING_OBJECT (enc, "Failed to allocate input buffer: %d",
nv_ret);
/* FIXME: clean up */
return FALSE;
}
nvenc->input_bufs[i] = cin_buf.inputBuffer;
GST_INFO_OBJECT (nvenc, "allocated input buffer %2d: %p", i,
nvenc->input_bufs[i]);
g_async_queue_push (nvenc->in_bufs_pool, nvenc->input_bufs[i]);
}
}
/* output buffers */
nvenc->output_bufs = g_new0 (NV_ENC_OUTPUT_PTR, nvenc->n_bufs);
for (i = 0; i < nvenc->n_bufs; ++i) {
NV_ENC_CREATE_BITSTREAM_BUFFER cout_buf = { 0, };
cout_buf.version = NV_ENC_CREATE_BITSTREAM_BUFFER_VER;
/* 1 MB should be large enough to hold most output frames.
* NVENC will automatically increase this if it's not enough. */
cout_buf.size = 1024 * 1024;
cout_buf.memoryHeap = NV_ENC_MEMORY_HEAP_SYSMEM_CACHED;
G_LOCK (initialization_lock);
nv_ret = NvEncCreateBitstreamBuffer (nvenc->encoder, &cout_buf);
G_UNLOCK (initialization_lock);
if (nv_ret != NV_ENC_SUCCESS) {
GST_WARNING_OBJECT (enc, "Failed to allocate input buffer: %d", nv_ret);
/* FIXME: clean up */
return FALSE;
}
nvenc->output_bufs[i] = cout_buf.bitstreamBuffer;
GST_INFO_OBJECT (nvenc, "allocated output buffer %2d: %p", i,
nvenc->output_bufs[i]);
g_async_queue_push (nvenc->bitstream_pool, nvenc->output_bufs[i]);
}
#if 0
/* Get SPS/PPS */
{
NV_ENC_SEQUENCE_PARAM_PAYLOAD seq_param = { 0 };
uint32_t seq_size = 0;
seq_param.version = NV_ENC_SEQUENCE_PARAM_PAYLOAD_VER;
seq_param.spsppsBuffer = g_alloca (1024);
seq_param.inBufferSize = 1024;
seq_param.outSPSPPSPayloadSize = &seq_size;
nv_ret = NvEncGetSequenceParams (nvenc->encoder, &seq_param);
if (nv_ret != NV_ENC_SUCCESS) {
GST_WARNING_OBJECT (enc, "Failed to retrieve SPS/PPS: %d", nv_ret);
return FALSE;
}
/* FIXME: use SPS/PPS */
GST_MEMDUMP_OBJECT (enc, "SPS/PPS", seq_param.spsppsBuffer, seq_size);
}
#endif
}
g_assert (nvenc_class->set_src_caps);
if (!nvenc_class->set_src_caps (nvenc, state)) {
GST_ERROR_OBJECT (nvenc, "Subclass failed to set output caps");
/* FIXME: clean up */
return FALSE;
}
return TRUE;
}
static inline guint
_plane_get_n_components (GstVideoInfo * info, guint plane)
{
switch (GST_VIDEO_INFO_FORMAT (info)) {
case GST_VIDEO_FORMAT_RGBx:
case GST_VIDEO_FORMAT_BGRx:
case GST_VIDEO_FORMAT_xRGB:
case GST_VIDEO_FORMAT_xBGR:
case GST_VIDEO_FORMAT_RGBA:
case GST_VIDEO_FORMAT_BGRA:
case GST_VIDEO_FORMAT_ARGB:
case GST_VIDEO_FORMAT_ABGR:
case GST_VIDEO_FORMAT_AYUV:
return 4;
case GST_VIDEO_FORMAT_RGB:
case GST_VIDEO_FORMAT_BGR:
case GST_VIDEO_FORMAT_RGB16:
case GST_VIDEO_FORMAT_BGR16:
return 3;
case GST_VIDEO_FORMAT_GRAY16_BE:
case GST_VIDEO_FORMAT_GRAY16_LE:
case GST_VIDEO_FORMAT_YUY2:
case GST_VIDEO_FORMAT_UYVY:
return 2;
case GST_VIDEO_FORMAT_NV12:
case GST_VIDEO_FORMAT_NV21:
return plane == 0 ? 1 : 2;
case GST_VIDEO_FORMAT_GRAY8:
case GST_VIDEO_FORMAT_Y444:
case GST_VIDEO_FORMAT_Y42B:
case GST_VIDEO_FORMAT_Y41B:
case GST_VIDEO_FORMAT_I420:
case GST_VIDEO_FORMAT_YV12:
return 1;
default:
g_assert_not_reached ();
return 1;
}
}
#if HAVE_NVENC_GST_GL
struct map_gl_input
{
GstNvBaseEnc *nvenc;
GstVideoCodecFrame *frame;
GstVideoInfo *info;
struct gl_input_resource *in_gl_resource;
};
static void
_map_gl_input_buffer (GstGLContext * context, struct map_gl_input *data)
{
cudaError_t cuda_ret;
guint8 *data_pointer;
guint i;
cuCtxPushCurrent (data->nvenc->cuda_ctx);
data_pointer = data->in_gl_resource->cuda_pointer;
for (i = 0; i < GST_VIDEO_INFO_N_PLANES (data->info); i++) {
guint plane_n_components;
GstGLBaseBuffer *gl_buf_obj;
GstGLMemory *gl_mem;
guint src_stride, dest_stride;
gl_mem =
(GstGLMemory *) gst_buffer_peek_memory (data->frame->input_buffer, i);
g_assert (gst_is_gl_memory ((GstMemory *) gl_mem));
data->in_gl_resource->gl_mem[i] = gl_mem;
plane_n_components = _plane_get_n_components (data->info, i);
gl_buf_obj = (GstGLBaseBuffer *) gl_mem;
/* get the texture into the PBO */
gst_gl_memory_upload_transfer (gl_mem);
gst_gl_memory_download_transfer (gl_mem);
GST_LOG_OBJECT (data->nvenc, "attempting to copy texture %u into cuda",
gl_mem->tex_id);
cuda_ret =
cudaGraphicsGLRegisterBuffer (&data->in_gl_resource->cuda_texture,
gl_buf_obj->id, cudaGraphicsRegisterFlagsReadOnly);
if (cuda_ret != cudaSuccess) {
GST_ERROR_OBJECT (data->nvenc, "failed to register GL texture %u to cuda "
"ret :%d", gl_mem->tex_id, cuda_ret);
g_assert_not_reached ();
}
cuda_ret =
cudaGraphicsMapResources (1, &data->in_gl_resource->cuda_texture, 0);
if (cuda_ret != cudaSuccess) {
GST_ERROR_OBJECT (data->nvenc, "failed to map GL texture %u into cuda "
"ret :%d", gl_mem->tex_id, cuda_ret);
g_assert_not_reached ();
}
cuda_ret =
cudaGraphicsResourceGetMappedPointer (&data->in_gl_resource->
cuda_plane_pointers[i], &data->in_gl_resource->cuda_num_bytes,
data->in_gl_resource->cuda_texture);
if (cuda_ret != cudaSuccess) {
GST_ERROR_OBJECT (data->nvenc, "failed to get mapped pointer of map GL "
"texture %u in cuda ret :%d", gl_mem->tex_id, cuda_ret);
g_assert_not_reached ();
}
src_stride = GST_VIDEO_INFO_PLANE_STRIDE (data->info, i);
dest_stride = data->in_gl_resource->cuda_stride;
/* copy into scratch buffer */
cuda_ret =
cudaMemcpy2D (data_pointer, dest_stride,
data->in_gl_resource->cuda_plane_pointers[i], src_stride,
_get_plane_width (data->info, i) * plane_n_components,
_get_plane_height (data->info, i), cudaMemcpyDeviceToDevice);
if (cuda_ret != cudaSuccess) {
GST_ERROR_OBJECT (data->nvenc, "failed to copy GL texture %u into cuda "
"ret :%d", gl_mem->tex_id, cuda_ret);
g_assert_not_reached ();
}
cuda_ret =
cudaGraphicsUnmapResources (1, &data->in_gl_resource->cuda_texture, 0);
if (cuda_ret != cudaSuccess) {
GST_ERROR_OBJECT (data->nvenc, "failed to unmap GL texture %u from cuda "
"ret :%d", gl_mem->tex_id, cuda_ret);
g_assert_not_reached ();
}
cuda_ret =
cudaGraphicsUnregisterResource (data->in_gl_resource->cuda_texture);
if (cuda_ret != cudaSuccess) {
GST_ERROR_OBJECT (data->nvenc, "failed to unregister GL texture %u from "
"cuda ret :%d", gl_mem->tex_id, cuda_ret);
g_assert_not_reached ();
}
data_pointer =
data_pointer +
data->in_gl_resource->cuda_stride *
_get_plane_height (&data->nvenc->input_info, i);
}
cuCtxPopCurrent (NULL);
}
#endif
static GstFlowReturn
_acquire_input_buffer (GstNvBaseEnc * nvenc, gpointer * input)
{
g_assert (input);
GST_LOG_OBJECT (nvenc, "acquiring input buffer..");
GST_VIDEO_ENCODER_STREAM_UNLOCK (nvenc);
*input = g_async_queue_pop (nvenc->in_bufs_pool);
GST_VIDEO_ENCODER_STREAM_LOCK (nvenc);
return GST_FLOW_OK;
}
static GstFlowReturn
_submit_input_buffer (GstNvBaseEnc * nvenc, GstVideoCodecFrame * frame,
GstVideoFrame * vframe, void *inputBuffer, void *inputBufferPtr,
NV_ENC_BUFFER_FORMAT bufferFormat, void *outputBufferPtr)
{
GstNvBaseEncClass *nvenc_class = GST_NV_BASE_ENC_GET_CLASS (nvenc);
NV_ENC_PIC_PARAMS pic_params = { 0, };
NVENCSTATUS nv_ret;
GST_LOG_OBJECT (nvenc, "%u: input buffer %p, output buffer %p, "
"pts %" GST_TIME_FORMAT, frame->system_frame_number, inputBuffer,
outputBufferPtr, GST_TIME_ARGS (frame->pts));
pic_params.version = NV_ENC_PIC_PARAMS_VER;
pic_params.inputBuffer = inputBufferPtr;
pic_params.bufferFmt = bufferFormat;
pic_params.inputWidth = GST_VIDEO_FRAME_WIDTH (vframe);
pic_params.inputHeight = GST_VIDEO_FRAME_HEIGHT (vframe);
pic_params.outputBitstream = outputBufferPtr;
pic_params.completionEvent = NULL;
if (GST_VIDEO_FRAME_IS_INTERLACED (vframe)) {
if (GST_VIDEO_FRAME_IS_TFF (vframe))
pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FIELD_TOP_BOTTOM;
else
pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FIELD_BOTTOM_TOP;
} else {
pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FRAME;
}
pic_params.inputTimeStamp = frame->pts;
pic_params.inputDuration =
GST_CLOCK_TIME_IS_VALID (frame->duration) ? frame->duration : 0;
pic_params.frameIdx = frame->system_frame_number;
if (GST_VIDEO_CODEC_FRAME_IS_FORCE_KEYFRAME (frame))
pic_params.encodePicFlags = NV_ENC_PIC_FLAG_FORCEIDR;
else
pic_params.encodePicFlags = 0;
if (nvenc_class->set_pic_params
&& !nvenc_class->set_pic_params (nvenc, frame, &pic_params)) {
GST_ERROR_OBJECT (nvenc, "Subclass failed to submit buffer");
return GST_FLOW_ERROR;
}
nv_ret = NvEncEncodePicture (nvenc->encoder, &pic_params);
if (nv_ret == NV_ENC_SUCCESS) {
GST_LOG_OBJECT (nvenc, "Encoded picture");
} else if (nv_ret == NV_ENC_ERR_NEED_MORE_INPUT) {
/* FIXME: we should probably queue pending output buffers here and only
* submit them to the async queue once we got sucess back */
GST_DEBUG_OBJECT (nvenc, "Encoded picture (encoder needs more input)");
} else {
GST_ERROR_OBJECT (nvenc, "Failed to encode picture: %d", nv_ret);
GST_DEBUG_OBJECT (nvenc, "re-enqueueing input buffer %p", inputBuffer);
g_async_queue_push (nvenc->in_bufs_pool, inputBuffer);
GST_DEBUG_OBJECT (nvenc, "re-enqueueing output buffer %p", outputBufferPtr);
g_async_queue_push (nvenc->bitstream_pool, outputBufferPtr);
return GST_FLOW_ERROR;
}
g_async_queue_push (nvenc->bitstream_queue, outputBufferPtr);
return GST_FLOW_OK;
}
static GstFlowReturn
gst_nv_base_enc_handle_frame (GstVideoEncoder * enc, GstVideoCodecFrame * frame)
{
gpointer input_buffer = NULL;
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
NV_ENC_OUTPUT_PTR out_buf;
NVENCSTATUS nv_ret;
GstVideoFrame vframe;
GstVideoInfo *info = &nvenc->input_state->info;
GstFlowReturn flow = GST_FLOW_OK;
GstMapFlags in_map_flags = GST_MAP_READ;
struct frame_state *state;
guint frame_n = 0;
g_assert (nvenc->encoder != NULL);
#if HAVE_NVENC_GST_GL
if (nvenc->gl_input)
in_map_flags |= GST_MAP_GL;
#endif
if (!gst_video_frame_map (&vframe, info, frame->input_buffer, in_map_flags))
return GST_FLOW_ERROR;
/* make sure our thread that waits for output to be ready is started */
if (nvenc->bitstream_thread == NULL) {
if (!gst_nv_base_enc_start_bitstream_thread (nvenc))
goto error;
}
flow = _acquire_input_buffer (nvenc, &input_buffer);
if (flow != GST_FLOW_OK)
return flow;
if (input_buffer == NULL)
return GST_FLOW_ERROR;
state = frame->user_data;
if (!state)
state = g_new0 (struct frame_state, 1);
state->n_buffers = 1;
#if HAVE_NVENC_GST_GL
if (nvenc->gl_input) {
struct gl_input_resource *in_gl_resource = input_buffer;
struct map_gl_input data;
GST_LOG_OBJECT (enc, "got input buffer %p", in_gl_resource);
in_gl_resource->gl_mem[0] =
(GstGLMemory *) gst_buffer_peek_memory (frame->input_buffer, 0);
g_assert (gst_is_gl_memory ((GstMemory *) in_gl_resource->gl_mem[0]));
data.nvenc = nvenc;
data.frame = frame;
data.info = &vframe.info;
data.in_gl_resource = in_gl_resource;
gst_gl_context_thread_add (in_gl_resource->gl_mem[0]->mem.context,
(GstGLContextThreadFunc) _map_gl_input_buffer, &data);
in_gl_resource->nv_mapped_resource.version = NV_ENC_MAP_INPUT_RESOURCE_VER;
in_gl_resource->nv_mapped_resource.registeredResource =
in_gl_resource->nv_resource.registeredResource;
nv_ret =
NvEncMapInputResource (nvenc->encoder,
&in_gl_resource->nv_mapped_resource);
if (nv_ret != NV_ENC_SUCCESS) {
GST_ERROR_OBJECT (nvenc, "Failed to map input resource %p, ret %d",
in_gl_resource, nv_ret);
goto error;
}
out_buf = g_async_queue_try_pop (nvenc->bitstream_pool);
if (out_buf == NULL) {
GST_DEBUG_OBJECT (nvenc, "wait for output buf to become available again");
out_buf = g_async_queue_pop (nvenc->bitstream_pool);
}
state->in_bufs[frame_n] = in_gl_resource;
state->out_bufs[frame_n++] = out_buf;
frame->user_data = state;
frame->user_data_destroy_notify = (GDestroyNotify) g_free;
flow =
_submit_input_buffer (nvenc, frame, &vframe, in_gl_resource,
in_gl_resource->nv_mapped_resource.mappedResource,
in_gl_resource->nv_mapped_resource.mappedBufferFmt, out_buf);
/* encoder will keep frame in list internally, we'll look it up again later
* in the thread where we get the output buffers and finish it there */
gst_video_codec_frame_unref (frame);
frame = NULL;
}
#endif
if (!nvenc->gl_input) {
NV_ENC_LOCK_INPUT_BUFFER in_buf_lock = { 0, };
NV_ENC_INPUT_PTR in_buf = input_buffer;
guint8 *src, *dest;
guint src_stride, dest_stride;
guint height, width;
guint y;
GST_LOG_OBJECT (enc, "got input buffer %p", in_buf);
in_buf_lock.version = NV_ENC_LOCK_INPUT_BUFFER_VER;
in_buf_lock.inputBuffer = in_buf;
nv_ret = NvEncLockInputBuffer (nvenc->encoder, &in_buf_lock);
if (nv_ret != NV_ENC_SUCCESS) {
GST_ERROR_OBJECT (nvenc, "Failed to lock input buffer: %d", nv_ret);
/* FIXME: post proper error message */
goto error;
}
GST_LOG_OBJECT (nvenc, "Locked input buffer %p", in_buf);
width = GST_VIDEO_FRAME_WIDTH (&vframe);
height = GST_VIDEO_FRAME_HEIGHT (&vframe);
// FIXME: this only works for NV12
g_assert (GST_VIDEO_FRAME_FORMAT (&vframe) == GST_VIDEO_FORMAT_NV12);
/* copy Y plane */
src = GST_VIDEO_FRAME_PLANE_DATA (&vframe, 0);
src_stride = GST_VIDEO_FRAME_PLANE_STRIDE (&vframe, 0);
dest = in_buf_lock.bufferDataPtr;
dest_stride = in_buf_lock.pitch;
for (y = 0; y < height; ++y) {
memcpy (dest, src, width);
dest += dest_stride;
src += src_stride;
}
/* copy UV plane */
src = GST_VIDEO_FRAME_PLANE_DATA (&vframe, 1);
src_stride = GST_VIDEO_FRAME_PLANE_STRIDE (&vframe, 1);
dest =
(guint8 *) in_buf_lock.bufferDataPtr +
GST_ROUND_UP_32 (GST_VIDEO_INFO_HEIGHT (&nvenc->input_info)) *
in_buf_lock.pitch;
dest_stride = in_buf_lock.pitch;
for (y = 0; y < GST_ROUND_UP_2 (height) / 2; ++y) {
memcpy (dest, src, width);
dest += dest_stride;
src += src_stride;
}
nv_ret = NvEncUnlockInputBuffer (nvenc->encoder, in_buf);
if (nv_ret != NV_ENC_SUCCESS) {
GST_ERROR_OBJECT (nvenc, "Failed to unlock input buffer: %d", nv_ret);
goto error;
}
out_buf = g_async_queue_try_pop (nvenc->bitstream_pool);
if (out_buf == NULL) {
GST_DEBUG_OBJECT (nvenc, "wait for output buf to become available again");
out_buf = g_async_queue_pop (nvenc->bitstream_pool);
}
state->in_bufs[frame_n] = in_buf;
state->out_bufs[frame_n++] = out_buf;
frame->user_data = state;
frame->user_data_destroy_notify = (GDestroyNotify) g_free;
flow =
_submit_input_buffer (nvenc, frame, &vframe, in_buf, in_buf,
gst_nvenc_get_nv_buffer_format (GST_VIDEO_INFO_FORMAT (info)), out_buf);
/* encoder will keep frame in list internally, we'll look it up again later
* in the thread where we get the output buffers and finish it there */
gst_video_codec_frame_unref (frame);
frame = NULL;
}
if (flow != GST_FLOW_OK)
goto out;
flow = g_atomic_int_get (&nvenc->last_flow);
out:
gst_video_frame_unmap (&vframe);
return flow;
error:
flow = GST_FLOW_ERROR;
goto out;
}
static gboolean
gst_nv_base_enc_drain_encoder (GstNvBaseEnc * nvenc)
{
NV_ENC_PIC_PARAMS pic_params = { 0, };
NVENCSTATUS nv_ret;
GST_INFO_OBJECT (nvenc, "draining encoder");
if (nvenc->input_state == NULL) {
GST_DEBUG_OBJECT (nvenc, "no input state, nothing to do");
return TRUE;
}
pic_params.version = NV_ENC_PIC_PARAMS_VER;
pic_params.encodePicFlags = NV_ENC_PIC_FLAG_EOS;
nv_ret = NvEncEncodePicture (nvenc->encoder, &pic_params);
if (nv_ret != NV_ENC_SUCCESS) {
GST_LOG_OBJECT (nvenc, "Failed to drain encoder, ret %d", nv_ret);
return FALSE;
}
return TRUE;
}
static GstFlowReturn
gst_nv_base_enc_finish (GstVideoEncoder * enc)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
GST_FIXME_OBJECT (enc, "implement finish");
gst_nv_base_enc_drain_encoder (nvenc);
/* wait for encoder to output the remaining buffers */
gst_nv_base_enc_stop_bitstream_thread (nvenc);
return GST_FLOW_OK;
}
#if 0
static gboolean
gst_nv_base_enc_flush (GstVideoEncoder * enc)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
GST_INFO_OBJECT (nvenc, "done flushing encoder");
return TRUE;
}
#endif
static void
gst_nv_base_enc_set_property (GObject * object, guint prop_id,
const GValue * value, GParamSpec * pspec)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (object);
switch (prop_id) {
case PROP_DEVICE_ID:
nvenc->cuda_device_id = g_value_get_uint (value);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
gst_nv_base_enc_get_property (GObject * object, guint prop_id, GValue * value,
GParamSpec * pspec)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (object);
switch (prop_id) {
case PROP_DEVICE_ID:
g_value_set_uint (value, nvenc->cuda_device_id);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}