gstreamer/ci/gitlab/trigger_cerbero_pipeline.py

65 lines
1.6 KiB
Python
Raw Normal View History

#!/usr/bin/python3
import time
import os
import sys
import gitlab
CERBERO_PROJECT = 'gstreamer/cerbero'
class Status:
FAILED = 'failed'
MANUAL = 'manual'
CANCELED = 'canceled'
SUCCESS = 'success'
SKIPPED = 'skipped'
CREATED = 'created'
@classmethod
def is_finished(cls, state):
return state in [
cls.FAILED,
cls.MANUAL,
cls.CANCELED,
cls.SUCCESS,
cls.SKIPPED,
]
def fprint(msg):
print(msg, end="")
sys.stdout.flush()
if __name__ == "__main__":
server = os.environ['CI_SERVER_URL']
gl = gitlab.Gitlab(server,
private_token=os.environ.get('GITLAB_API_TOKEN'),
job_token=os.environ.get('CI_JOB_TOKEN'))
cerbero = gl.projects.get(CERBERO_PROJECT)
pipe = cerbero.trigger_pipeline(
token=os.environ['CI_JOB_TOKEN'],
ref=os.environ["GST_UPSTREAM_BRANCH"],
variables={
"CI_GSTREAMER_URL": os.environ["CI_PROJECT_URL"],
"CI_GSTREAMER_REF_NAME": os.environ["CI_COMMIT_REF_NAME"],
# This tells cerebero CI that this is a pipeline started via the
# trigger API, which means it can use a deps cache instead of
# building from scratch.
"CI_GSTREMER_TRIGGERED": "true",
}
)
fprint(f'Cerbero pipeline running at {pipe.web_url} ')
while True:
time.sleep(15)
pipe.refresh()
if Status.is_finished(pipe.status):
fprint(f": {pipe.status}\n")
sys.exit(0 if pipe.status == Status.SUCCESS else 1)
else:
fprint(".")