#!/usr/bin/python3 import time import os import sys import gitlab CERBERO_PROJECT = 'gstreamer/cerbero' class Status: FAILED = 'failed' MANUAL = 'manual' CANCELED = 'canceled' SUCCESS = 'success' SKIPPED = 'skipped' CREATED = 'created' @classmethod def is_finished(cls, state): return state in [ cls.FAILED, cls.MANUAL, cls.CANCELED, cls.SUCCESS, cls.SKIPPED, ] def fprint(msg): print(msg, end="") sys.stdout.flush() if __name__ == "__main__": server = os.environ['CI_SERVER_URL'] gl = gitlab.Gitlab(server, private_token=os.environ.get('GITLAB_API_TOKEN'), job_token=os.environ.get('CI_JOB_TOKEN')) cerbero = gl.projects.get(CERBERO_PROJECT) pipe = cerbero.trigger_pipeline( token=os.environ['CI_JOB_TOKEN'], ref=os.environ["GST_UPSTREAM_BRANCH"], variables={ "CI_GSTREAMER_URL": os.environ["CI_PROJECT_URL"], "CI_GSTREAMER_REF_NAME": os.environ["CI_COMMIT_REF_NAME"], # This tells cerebero CI that this is a pipeline started via the # trigger API, which means it can use a deps cache instead of # building from scratch. "CI_GSTREMER_TRIGGERED": "true", } ) fprint(f'Cerbero pipeline running at {pipe.web_url} ') while True: time.sleep(15) pipe.refresh() if Status.is_finished(pipe.status): fprint(f": {pipe.status}\n") sys.exit(0 if pipe.status == Status.SUCCESS else 1) else: fprint(".")