gstreamer/subprojects/gst-plugins-bad/sys/directshow/strmbase/baseclasses/wxutil.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

770 lines
20 KiB
C++
Raw Normal View History

//------------------------------------------------------------------------------
// File: WXUtil.cpp
//
// Desc: DirectShow base classes - implements helper classes for building
// multimedia filters.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#define STRSAFE_NO_DEPRECATE
#include <strsafe.h>
// --- CAMEvent -----------------------
CAMEvent::CAMEvent(BOOL fManualReset, __inout_opt HRESULT *phr)
{
m_hEvent = CreateEvent(NULL, fManualReset, FALSE, NULL);
if (NULL == m_hEvent) {
if (NULL != phr && SUCCEEDED(*phr)) {
*phr = E_OUTOFMEMORY;
}
}
}
CAMEvent::CAMEvent(__inout_opt HRESULT *phr)
{
m_hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
if (NULL == m_hEvent) {
if (NULL != phr && SUCCEEDED(*phr)) {
*phr = E_OUTOFMEMORY;
}
}
}
CAMEvent::~CAMEvent()
{
if (m_hEvent) {
EXECUTE_ASSERT(CloseHandle(m_hEvent));
}
}
// --- CAMMsgEvent -----------------------
// One routine. The rest is handled in CAMEvent
CAMMsgEvent::CAMMsgEvent(__inout_opt HRESULT *phr) : CAMEvent(FALSE, phr)
{
}
BOOL CAMMsgEvent::WaitMsg(DWORD dwTimeout)
{
// wait for the event to be signalled, or for the
// timeout (in MS) to expire. allow SENT messages
// to be processed while we wait
DWORD dwWait;
DWORD dwStartTime;
// set the waiting period.
DWORD dwWaitTime = dwTimeout;
// the timeout will eventually run down as we iterate
// processing messages. grab the start time so that
// we can calculate elapsed times.
if (dwWaitTime != INFINITE) {
dwStartTime = timeGetTime();
}
do {
dwWait = MsgWaitForMultipleObjects(1,&m_hEvent,FALSE, dwWaitTime, QS_SENDMESSAGE);
if (dwWait == WAIT_OBJECT_0 + 1) {
MSG Message;
PeekMessage(&Message,NULL,0,0,PM_NOREMOVE);
// If we have an explicit length of time to wait calculate
// the next wake up point - which might be now.
// If dwTimeout is INFINITE, it stays INFINITE
if (dwWaitTime != INFINITE) {
DWORD dwElapsed = timeGetTime()-dwStartTime;
dwWaitTime =
(dwElapsed >= dwTimeout)
? 0 // wake up with WAIT_TIMEOUT
: dwTimeout-dwElapsed;
}
}
} while (dwWait == WAIT_OBJECT_0 + 1);
// return TRUE if we woke on the event handle,
// FALSE if we timed out.
return (dwWait == WAIT_OBJECT_0);
}
// --- CAMThread ----------------------
CAMThread::CAMThread(__inout_opt HRESULT *phr)
: m_EventSend(TRUE, phr), // must be manual-reset for CheckRequest()
m_EventComplete(FALSE, phr)
{
m_hThread = NULL;
}
CAMThread::~CAMThread() {
Close();
}
// when the thread starts, it calls this function. We unwrap the 'this'
//pointer and call ThreadProc.
DWORD WINAPI
CAMThread::InitialThreadProc(__inout LPVOID pv)
{
HRESULT hrCoInit = CAMThread::CoInitializeHelper();
if(FAILED(hrCoInit)) {
DbgLog((LOG_ERROR, 1, TEXT("CoInitializeEx failed.")));
}
CAMThread * pThread = (CAMThread *) pv;
HRESULT hr = pThread->ThreadProc();
if(SUCCEEDED(hrCoInit)) {
CoUninitialize();
}
return hr;
}
BOOL
CAMThread::Create()
{
DWORD threadid;
CAutoLock lock(&m_AccessLock);
if (ThreadExists()) {
return FALSE;
}
m_hThread = CreateThread(
NULL,
0,
CAMThread::InitialThreadProc,
this,
0,
&threadid);
if (!m_hThread) {
return FALSE;
}
return TRUE;
}
DWORD
CAMThread::CallWorker(DWORD dwParam)
{
// lock access to the worker thread for scope of this object
CAutoLock lock(&m_AccessLock);
if (!ThreadExists()) {
return (DWORD) E_FAIL;
}
// set the parameter
m_dwParam = dwParam;
// signal the worker thread
m_EventSend.Set();
// wait for the completion to be signalled
m_EventComplete.Wait();
// done - this is the thread's return value
return m_dwReturnVal;
}
// Wait for a request from the client
DWORD
CAMThread::GetRequest()
{
m_EventSend.Wait();
return m_dwParam;
}
// is there a request?
BOOL
CAMThread::CheckRequest(__out_opt DWORD * pParam)
{
if (!m_EventSend.Check()) {
return FALSE;
} else {
if (pParam) {
*pParam = m_dwParam;
}
return TRUE;
}
}
// reply to the request
void
CAMThread::Reply(DWORD dw)
{
m_dwReturnVal = dw;
// The request is now complete so CheckRequest should fail from
// now on
//
// This event should be reset BEFORE we signal the client or
// the client may Set it before we reset it and we'll then
// reset it (!)
m_EventSend.Reset();
// Tell the client we're finished
m_EventComplete.Set();
}
HRESULT CAMThread::CoInitializeHelper()
{
// call CoInitializeEx and tell OLE not to create a window (this
// thread probably won't dispatch messages and will hang on
// broadcast msgs o/w).
//
// If CoInitEx is not available, threads that don't call CoCreate
// aren't affected. Threads that do will have to handle the
// failure. Perhaps we should fall back to CoInitialize and risk
// hanging?
//
// older versions of ole32.dll don't have CoInitializeEx
HRESULT hr = E_FAIL;
HINSTANCE hOle = GetModuleHandle(TEXT("ole32.dll"));
if(hOle)
{
typedef HRESULT (STDAPICALLTYPE *PCoInitializeEx)(
LPVOID pvReserved, DWORD dwCoInit);
PCoInitializeEx pCoInitializeEx =
(PCoInitializeEx)(GetProcAddress(hOle, "CoInitializeEx"));
if(pCoInitializeEx)
{
hr = (*pCoInitializeEx)(0, COINIT_DISABLE_OLE1DDE );
}
}
else
{
// caller must load ole32.dll
DbgBreak("couldn't locate ole32.dll");
}
return hr;
}
// destructor for CMsgThread - cleans up any messages left in the
// queue when the thread exited
CMsgThread::~CMsgThread()
{
if (m_hThread != NULL) {
WaitForSingleObject(m_hThread, INFINITE);
EXECUTE_ASSERT(CloseHandle(m_hThread));
}
POSITION pos = m_ThreadQueue.GetHeadPosition();
while (pos) {
CMsg * pMsg = m_ThreadQueue.GetNext(pos);
delete pMsg;
}
m_ThreadQueue.RemoveAll();
if (m_hSem != NULL) {
EXECUTE_ASSERT(CloseHandle(m_hSem));
}
}
BOOL
CMsgThread::CreateThread(
)
{
m_hSem = CreateSemaphore(NULL, 0, 0x7FFFFFFF, NULL);
if (m_hSem == NULL) {
return FALSE;
}
m_hThread = ::CreateThread(NULL, 0, DefaultThreadProc,
(LPVOID)this, 0, &m_ThreadId);
return m_hThread != NULL;
}
// This is the threads message pump. Here we get and dispatch messages to
// clients thread proc until the client refuses to process a message.
// The client returns a non-zero value to stop the message pump, this
// value becomes the threads exit code.
DWORD WINAPI
CMsgThread::DefaultThreadProc(
__inout LPVOID lpParam
)
{
CMsgThread *lpThis = (CMsgThread *)lpParam;
CMsg msg;
LRESULT lResult;
// !!!
CoInitialize(NULL);
// allow a derived class to handle thread startup
lpThis->OnThreadInit();
do {
lpThis->GetThreadMsg(&msg);
lResult = lpThis->ThreadMessageProc(msg.uMsg,msg.dwFlags,
msg.lpParam, msg.pEvent);
} while (lResult == 0L);
// !!!
CoUninitialize();
return (DWORD)lResult;
}
// Block until the next message is placed on the list m_ThreadQueue.
// copies the message to the message pointed to by *pmsg
void
CMsgThread::GetThreadMsg(__out CMsg *msg)
{
CMsg * pmsg = NULL;
// keep trying until a message appears
while (TRUE) {
{
CAutoLock lck(&m_Lock);
pmsg = m_ThreadQueue.RemoveHead();
if (pmsg == NULL) {
m_lWaiting++;
} else {
break;
}
}
// the semaphore will be signalled when it is non-empty
WaitForSingleObject(m_hSem, INFINITE);
}
// copy fields to caller's CMsg
*msg = *pmsg;
// this CMsg was allocated by the 'new' in PutThreadMsg
delete pmsg;
}
// Helper function - convert int to WSTR
void WINAPI IntToWstr(int i, __out_ecount(12) LPWSTR wstr)
{
#ifdef UNICODE
if (FAILED(StringCchPrintf(wstr, 12, L"%d", i))) {
wstr[0] = 0;
}
#else
TCHAR temp[12];
if (FAILED(StringCchPrintf(temp, NUMELMS(temp), "%d", i))) {
wstr[0] = 0;
} else {
MultiByteToWideChar(CP_ACP, 0, temp, -1, wstr, 12);
}
#endif
} // IntToWstr
#define MEMORY_ALIGNMENT 4
#define MEMORY_ALIGNMENT_LOG2 2
#define MEMORY_ALIGNMENT_MASK MEMORY_ALIGNMENT - 1
void * __stdcall memmoveInternal(void * dst, const void * src, size_t count)
{
void * ret = dst;
#ifdef _X86_
if (dst <= src || (char *)dst >= ((char *)src + count)) {
/*
* Non-Overlapping Buffers
* copy from lower addresses to higher addresses
*/
_asm {
mov esi,src
mov edi,dst
mov ecx,count
cld
mov edx,ecx
and edx,MEMORY_ALIGNMENT_MASK
shr ecx,MEMORY_ALIGNMENT_LOG2
rep movsd
or ecx,edx
jz memmove_done
rep movsb
memmove_done:
}
}
else {
/*
* Overlapping Buffers
* copy from higher addresses to lower addresses
*/
_asm {
mov esi,src
mov edi,dst
mov ecx,count
std
add esi,ecx
add edi,ecx
dec esi
dec edi
rep movsb
cld
}
}
#else
MoveMemory(dst, src, count);
#endif
return ret;
}
HRESULT AMSafeMemMoveOffset(
__in_bcount(dst_size) void * dst,
__in size_t dst_size,
__in DWORD cb_dst_offset,
__in_bcount(src_size) const void * src,
__in size_t src_size,
__in DWORD cb_src_offset,
__in size_t count)
{
// prevent read overruns
if( count + cb_src_offset < count || // prevent integer overflow
count + cb_src_offset > src_size) // prevent read overrun
{
return E_INVALIDARG;
}
// prevent write overruns
if( count + cb_dst_offset < count || // prevent integer overflow
count + cb_dst_offset > dst_size) // prevent write overrun
{
return E_INVALIDARG;
}
memmoveInternal( (BYTE *)dst+cb_dst_offset, (BYTE *)src+cb_src_offset, count);
return S_OK;
}
#ifdef DEBUG
/******************************Public*Routine******************************\
* Debug CCritSec helpers
*
* We provide debug versions of the Constructor, destructor, Lock and Unlock
* routines. The debug code tracks who owns each critical section by
* maintaining a depth count.
*
* History:
*
\**************************************************************************/
CCritSec::CCritSec()
{
InitializeCriticalSection(&m_CritSec);
m_currentOwner = m_lockCount = 0;
m_fTrace = FALSE;
}
CCritSec::~CCritSec()
{
DeleteCriticalSection(&m_CritSec);
}
void CCritSec::Lock()
{
UINT tracelevel=3;
DWORD us = GetCurrentThreadId();
DWORD currentOwner = m_currentOwner;
if (currentOwner && (currentOwner != us)) {
// already owned, but not by us
if (m_fTrace) {
DbgLog((LOG_LOCKING, 2, TEXT("Thread %d about to wait for lock %x owned by %d"),
GetCurrentThreadId(), &m_CritSec, currentOwner));
tracelevel=2;
// if we saw the message about waiting for the critical
// section we ensure we see the message when we get the
// critical section
}
}
EnterCriticalSection(&m_CritSec);
if (0 == m_lockCount++) {
// we now own it for the first time. Set owner information
m_currentOwner = us;
if (m_fTrace) {
DbgLog((LOG_LOCKING, tracelevel, TEXT("Thread %d now owns lock %x"), m_currentOwner, &m_CritSec));
}
}
}
void CCritSec::Unlock() {
if (0 == --m_lockCount) {
// about to be unowned
if (m_fTrace) {
DbgLog((LOG_LOCKING, 3, TEXT("Thread %d releasing lock %x"), m_currentOwner, &m_CritSec));
}
m_currentOwner = 0;
}
LeaveCriticalSection(&m_CritSec);
}
void WINAPI DbgLockTrace(CCritSec * pcCrit, BOOL fTrace)
{
pcCrit->m_fTrace = fTrace;
}
BOOL WINAPI CritCheckIn(CCritSec * pcCrit)
{
return (GetCurrentThreadId() == pcCrit->m_currentOwner);
}
BOOL WINAPI CritCheckIn(const CCritSec * pcCrit)
{
return (GetCurrentThreadId() == pcCrit->m_currentOwner);
}
BOOL WINAPI CritCheckOut(CCritSec * pcCrit)
{
return (GetCurrentThreadId() != pcCrit->m_currentOwner);
}
BOOL WINAPI CritCheckOut(const CCritSec * pcCrit)
{
return (GetCurrentThreadId() != pcCrit->m_currentOwner);
}
#endif
STDAPI WriteBSTR(__deref_out BSTR *pstrDest, LPCWSTR szSrc)
{
*pstrDest = SysAllocString( szSrc );
if( !(*pstrDest) ) return E_OUTOFMEMORY;
return NOERROR;
}
STDAPI FreeBSTR(__deref_in BSTR* pstr)
{
if( (PVOID)*pstr == NULL ) return S_FALSE;
SysFreeString( *pstr );
return NOERROR;
}
// Return a wide string - allocating memory for it
// Returns:
// S_OK - no error
// E_POINTER - ppszReturn == NULL
// E_OUTOFMEMORY - can't allocate memory for returned string
STDAPI AMGetWideString(LPCWSTR psz, __deref_out LPWSTR *ppszReturn)
{
CheckPointer(ppszReturn, E_POINTER);
ValidateReadWritePtr(ppszReturn, sizeof(LPWSTR));
*ppszReturn = NULL;
size_t nameLen;
HRESULT hr = StringCbLengthW(psz, 100000, &nameLen);
if (FAILED(hr)) {
return hr;
}
*ppszReturn = (LPWSTR)CoTaskMemAlloc(nameLen + sizeof(WCHAR));
if (*ppszReturn == NULL) {
return E_OUTOFMEMORY;
}
CopyMemory(*ppszReturn, psz, nameLen + sizeof(WCHAR));
return NOERROR;
}
// Waits for the HANDLE hObject. While waiting messages sent
// to windows on our thread by SendMessage will be processed.
// Using this function to do waits and mutual exclusion
// avoids some deadlocks in objects with windows.
// Return codes are the same as for WaitForSingleObject
DWORD WINAPI WaitDispatchingMessages(
HANDLE hObject,
DWORD dwWait,
HWND hwnd,
UINT uMsg,
HANDLE hEvent)
{
BOOL bPeeked = FALSE;
DWORD dwResult;
DWORD dwStart;
DWORD dwThreadPriority;
static UINT uMsgId = 0;
HANDLE hObjects[2] = { hObject, hEvent };
if (dwWait != INFINITE && dwWait != 0) {
dwStart = GetTickCount();
}
for (; ; ) {
DWORD nCount = NULL != hEvent ? 2 : 1;
// Minimize the chance of actually dispatching any messages
// by seeing if we can lock immediately.
dwResult = WaitForMultipleObjects(nCount, hObjects, FALSE, 0);
if (dwResult < WAIT_OBJECT_0 + nCount) {
break;
}
DWORD dwTimeOut = dwWait;
if (dwTimeOut > 10) {
dwTimeOut = 10;
}
dwResult = MsgWaitForMultipleObjects(
nCount,
hObjects,
FALSE,
dwTimeOut,
hwnd == NULL ? QS_SENDMESSAGE :
QS_SENDMESSAGE + QS_POSTMESSAGE);
if (dwResult == WAIT_OBJECT_0 + nCount ||
dwResult == WAIT_TIMEOUT && dwTimeOut != dwWait) {
MSG msg;
if (hwnd != NULL) {
while (PeekMessage(&msg, hwnd, uMsg, uMsg, PM_REMOVE)) {
DispatchMessage(&msg);
}
}
// Do this anyway - the previous peek doesn't flush out the
// messages
PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE);
if (dwWait != INFINITE && dwWait != 0) {
DWORD dwNow = GetTickCount();
// Working with differences handles wrap-around
DWORD dwDiff = dwNow - dwStart;
if (dwDiff > dwWait) {
dwWait = 0;
} else {
dwWait -= dwDiff;
}
dwStart = dwNow;
}
if (!bPeeked) {
// Raise our priority to prevent our message queue
// building up
dwThreadPriority = GetThreadPriority(GetCurrentThread());
if (dwThreadPriority < THREAD_PRIORITY_HIGHEST) {
SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST);
}
bPeeked = TRUE;
}
} else {
break;
}
}
if (bPeeked) {
SetThreadPriority(GetCurrentThread(), dwThreadPriority);
if (HIWORD(GetQueueStatus(QS_POSTMESSAGE)) & QS_POSTMESSAGE) {
if (uMsgId == 0) {
uMsgId = RegisterWindowMessage(TEXT("AMUnblock"));
}
if (uMsgId != 0) {
MSG msg;
// Remove old ones
while (PeekMessage(&msg, (HWND)-1, uMsgId, uMsgId, PM_REMOVE)) {
}
}
PostThreadMessage(GetCurrentThreadId(), uMsgId, 0, 0);
}
}
return dwResult;
}
HRESULT AmGetLastErrorToHResult()
{
DWORD dwLastError = GetLastError();
if(dwLastError != 0)
{
return HRESULT_FROM_WIN32(dwLastError);
}
else
{
return E_FAIL;
}
}
IUnknown* QzAtlComPtrAssign(__deref_inout_opt IUnknown** pp, __in_opt IUnknown* lp)
{
if (lp != NULL)
lp->AddRef();
if (*pp)
(*pp)->Release();
*pp = lp;
return lp;
}
/******************************************************************************
CompatibleTimeSetEvent
CompatibleTimeSetEvent() sets the TIME_KILL_SYNCHRONOUS flag before calling
timeSetEvent() if the current operating system supports it. TIME_KILL_SYNCHRONOUS
is supported on Windows XP and later operating systems.
Parameters:
- The same parameters as timeSetEvent(). See timeSetEvent()'s documentation in
the Platform SDK for more information.
Return Value:
- The same return value as timeSetEvent(). See timeSetEvent()'s documentation in
the Platform SDK for more information.
******************************************************************************/
MMRESULT CompatibleTimeSetEvent( UINT uDelay, UINT uResolution, __in LPTIMECALLBACK lpTimeProc, DWORD_PTR dwUser, UINT fuEvent )
{
#if WINVER >= 0x0501
{
static bool fCheckedVersion = false;
static bool fTimeKillSynchronousFlagAvailable = false;
if( !fCheckedVersion ) {
fTimeKillSynchronousFlagAvailable = TimeKillSynchronousFlagAvailable();
fCheckedVersion = true;
}
if( fTimeKillSynchronousFlagAvailable ) {
fuEvent = fuEvent | TIME_KILL_SYNCHRONOUS;
}
}
#endif // WINVER >= 0x0501
return timeSetEvent( uDelay, uResolution, lpTimeProc, dwUser, fuEvent );
}
bool TimeKillSynchronousFlagAvailable( void )
{
OSVERSIONINFO osverinfo;
osverinfo.dwOSVersionInfoSize = sizeof(osverinfo);
if( GetVersionEx( &osverinfo ) ) {
// Windows XP's major version is 5 and its' minor version is 1.
// timeSetEvent() started supporting the TIME_KILL_SYNCHRONOUS flag
// in Windows XP.
if( (osverinfo.dwMajorVersion > 5) ||
( (osverinfo.dwMajorVersion == 5) && (osverinfo.dwMinorVersion >= 1) ) ) {
return true;
}
}
return false;
}