gstreamer/subprojects/gst-plugins-bad/sys/nvcodec/gstnvbaseenc.c

2891 lines
90 KiB
C
Raw Normal View History

/* GStreamer NVENC plugin
* Copyright (C) 2015 Centricular Ltd
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "gstnvbaseenc.h"
#include "gstcudautils.h"
#include "gstcudabufferpool.h"
#include <gst/pbutils/codec-utils.h>
#include <string.h>
GST_DEBUG_CATEGORY_EXTERN (gst_nvenc_debug);
#define GST_CAT_DEFAULT gst_nvenc_debug
#if HAVE_NVCODEC_GST_GL
#include <gst/gl/gl.h>
#endif
/* This currently supports both 5.x and 6.x versions of the NvEncodeAPI.h
* header which are mostly API compatible. */
#define SUPPORTED_GL_APIS GST_GL_API_OPENGL3
/* magic pointer value we can put in the async queue to signal shut down */
#define SHUTDOWN_COOKIE ((gpointer)GINT_TO_POINTER (1))
#define parent_class gst_nv_base_enc_parent_class
G_DEFINE_ABSTRACT_TYPE (GstNvBaseEnc, gst_nv_base_enc, GST_TYPE_VIDEO_ENCODER);
#define GST_TYPE_NV_PRESET (gst_nv_preset_get_type())
static GType
gst_nv_preset_get_type (void)
{
static GType nv_preset_type = 0;
static const GEnumValue presets[] = {
{GST_NV_PRESET_DEFAULT, "Default", "default"},
{GST_NV_PRESET_HP, "High Performance", "hp"},
{GST_NV_PRESET_HQ, "High Quality", "hq"},
/* {GST_NV_PRESET_BD, "BD", "bd"}, */
{GST_NV_PRESET_LOW_LATENCY_DEFAULT, "Low Latency", "low-latency"},
{GST_NV_PRESET_LOW_LATENCY_HQ, "Low Latency, High Quality",
"low-latency-hq"},
{GST_NV_PRESET_LOW_LATENCY_HP, "Low Latency, High Performance",
"low-latency-hp"},
{GST_NV_PRESET_LOSSLESS_DEFAULT, "Lossless", "lossless"},
{GST_NV_PRESET_LOSSLESS_HP, "Lossless, High Performance", "lossless-hp"},
{0, NULL, NULL},
};
if (!nv_preset_type) {
nv_preset_type = g_enum_register_static ("GstNvPreset", presets);
}
return nv_preset_type;
}
static GUID
_nv_preset_to_guid (GstNvPreset preset)
{
GUID null = { 0, };
switch (preset) {
#define CASE(gst,nv) case G_PASTE(GST_NV_PRESET_,gst): return G_PASTE(G_PASTE(NV_ENC_PRESET_,nv),_GUID)
CASE (DEFAULT, DEFAULT);
CASE (HP, HP);
CASE (HQ, HQ);
/* CASE (BD, BD);*/
CASE (LOW_LATENCY_DEFAULT, LOW_LATENCY_DEFAULT);
CASE (LOW_LATENCY_HQ, LOW_LATENCY_HQ);
CASE (LOW_LATENCY_HP, LOW_LATENCY_HQ);
CASE (LOSSLESS_DEFAULT, LOSSLESS_DEFAULT);
CASE (LOSSLESS_HP, LOSSLESS_HP);
#undef CASE
default:
return null;
}
}
#define GST_TYPE_NV_RC_MODE (gst_nv_rc_mode_get_type())
static GType
gst_nv_rc_mode_get_type (void)
{
static GType nv_rc_mode_type = 0;
static const GEnumValue modes[] = {
{GST_NV_RC_MODE_DEFAULT, "Default", "default"},
{GST_NV_RC_MODE_CONSTQP, "Constant Quantization", "constqp"},
{GST_NV_RC_MODE_CBR, "Constant Bit Rate", "cbr"},
{GST_NV_RC_MODE_VBR, "Variable Bit Rate", "vbr"},
{GST_NV_RC_MODE_VBR_MINQP,
"Variable Bit Rate "
"(with minimum quantization parameter, DEPRECATED)", "vbr-minqp"},
{GST_NV_RC_MODE_CBR_LOWDELAY_HQ,
"Low-Delay CBR, High Quality", "cbr-ld-hq"},
{GST_NV_RC_MODE_CBR_HQ, "CBR, High Quality (slower)", "cbr-hq"},
{GST_NV_RC_MODE_VBR_HQ, "VBR, High Quality (slower)", "vbr-hq"},
{0, NULL, NULL},
};
if (!nv_rc_mode_type) {
nv_rc_mode_type = g_enum_register_static ("GstNvRCMode", modes);
}
return nv_rc_mode_type;
}
static NV_ENC_PARAMS_RC_MODE
_rc_mode_to_nv (GstNvRCMode mode)
{
switch (mode) {
case GST_NV_RC_MODE_DEFAULT:
return NV_ENC_PARAMS_RC_VBR;
#define CASE(gst,nv) case G_PASTE(GST_NV_RC_MODE_,gst): return G_PASTE(NV_ENC_PARAMS_RC_,nv)
CASE (CONSTQP, CONSTQP);
CASE (CBR, CBR);
CASE (VBR, VBR);
CASE (VBR_MINQP, VBR_MINQP);
CASE (CBR_LOWDELAY_HQ, CBR_LOWDELAY_HQ);
CASE (CBR_HQ, CBR_HQ);
CASE (VBR_HQ, VBR_HQ);
#undef CASE
default:
return NV_ENC_PARAMS_RC_VBR;
}
}
enum
{
PROP_0,
PROP_DEVICE_ID,
PROP_PRESET,
PROP_BITRATE,
PROP_RC_MODE,
PROP_QP_MIN,
PROP_QP_MAX,
PROP_QP_CONST,
PROP_GOP_SIZE,
PROP_MAX_BITRATE,
PROP_SPATIAL_AQ,
PROP_AQ_STRENGTH,
PROP_NON_REF_P,
PROP_ZEROLATENCY,
PROP_STRICT_GOP,
PROP_CONST_QUALITY,
PROP_I_ADAPT,
PROP_QP_MIN_I,
PROP_QP_MIN_P,
PROP_QP_MIN_B,
PROP_QP_MAX_I,
PROP_QP_MAX_P,
PROP_QP_MAX_B,
PROP_QP_CONST_I,
PROP_QP_CONST_P,
PROP_QP_CONST_B,
};
#define DEFAULT_PRESET GST_NV_PRESET_DEFAULT
#define DEFAULT_BITRATE 0
#define DEFAULT_RC_MODE GST_NV_RC_MODE_DEFAULT
#define DEFAULT_QP_MIN -1
#define DEFAULT_QP_MAX -1
#define DEFAULT_QP_CONST -1
#define DEFAULT_GOP_SIZE 75
#define DEFAULT_MAX_BITRATE 0
#define DEFAULT_SPATIAL_AQ FALSE
#define DEFAULT_AQ_STRENGTH 0
#define DEFAULT_NON_REF_P FALSE
#define DEFAULT_ZEROLATENCY FALSE
#define DEFAULT_STRICT_GOP FALSE
#define DEFAULT_CONST_QUALITY 0
#define DEFAULT_I_ADAPT FALSE
#define DEFAULT_QP_DETAIL -1
/* This lock is needed to prevent the situation where multiple encoders are
* initialised at the same time which appears to cause excessive CPU usage over
* some period of time. */
G_LOCK_DEFINE_STATIC (initialization_lock);
typedef struct
{
/* Allocated CUDA device memory and registered to NVENC to be used as input
* buffer regardless of the input memory type (OpenGL or System memory) */
CUdeviceptr cuda_pointer;
/* The stride of allocated CUDA device memory (CuMemAllocPitch).
* This might be different from the stride of GstVideoInfo */
gsize cuda_stride;
/* Registered NVENC resource (cuda_pointer is used for this) */
NV_ENC_REGISTER_RESOURCE nv_resource;
/* Mapped resource of nv_resource */
NV_ENC_MAP_INPUT_RESOURCE nv_mapped_resource;
/* whether nv_mapped_resource was mapped via NvEncMapInputResource()
* and therefore should unmap via NvEncUnmapInputResource or not */
gboolean mapped;
} GstNvEncInputResource;
/* The pair of GstNvEncInputResource () and NV_ENC_OUTPUT_PTR.
* The number of input/output resource are always identical */
typedef struct
{
GstNvEncInputResource *in_buf;
NV_ENC_OUTPUT_PTR out_buf;
} GstNvEncFrameState;
static gboolean gst_nv_base_enc_open (GstVideoEncoder * enc);
static gboolean gst_nv_base_enc_close (GstVideoEncoder * enc);
static gboolean gst_nv_base_enc_start (GstVideoEncoder * enc);
static gboolean gst_nv_base_enc_stop (GstVideoEncoder * enc);
static void gst_nv_base_enc_set_context (GstElement * element,
GstContext * context);
static gboolean gst_nv_base_enc_sink_query (GstVideoEncoder * enc,
GstQuery * query);
static gboolean gst_nv_base_enc_sink_event (GstVideoEncoder * enc,
GstEvent * event);
static gboolean gst_nv_base_enc_set_format (GstVideoEncoder * enc,
GstVideoCodecState * state);
static GstFlowReturn gst_nv_base_enc_handle_frame (GstVideoEncoder * enc,
GstVideoCodecFrame * frame);
static void gst_nv_base_enc_free_buffers (GstNvBaseEnc * nvenc);
static GstFlowReturn gst_nv_base_enc_finish (GstVideoEncoder * enc);
static void gst_nv_base_enc_set_property (GObject * object, guint prop_id,
const GValue * value, GParamSpec * pspec);
static void gst_nv_base_enc_get_property (GObject * object, guint prop_id,
GValue * value, GParamSpec * pspec);
static void gst_nv_base_enc_finalize (GObject * obj);
static GstCaps *gst_nv_base_enc_getcaps (GstVideoEncoder * enc,
GstCaps * filter);
static gboolean gst_nv_base_enc_stop_bitstream_thread (GstNvBaseEnc * nvenc,
gboolean force);
static gboolean gst_nv_base_enc_drain_encoder (GstNvBaseEnc * nvenc);
static gboolean gst_nv_base_enc_propose_allocation (GstVideoEncoder * enc,
GstQuery * query);
static void
gst_nv_base_enc_class_init (GstNvBaseEncClass * klass)
{
GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
GstElementClass *element_class = GST_ELEMENT_CLASS (klass);
GstVideoEncoderClass *videoenc_class = GST_VIDEO_ENCODER_CLASS (klass);
gobject_class->set_property = gst_nv_base_enc_set_property;
gobject_class->get_property = gst_nv_base_enc_get_property;
gobject_class->finalize = gst_nv_base_enc_finalize;
element_class->set_context = GST_DEBUG_FUNCPTR (gst_nv_base_enc_set_context);
videoenc_class->open = GST_DEBUG_FUNCPTR (gst_nv_base_enc_open);
videoenc_class->close = GST_DEBUG_FUNCPTR (gst_nv_base_enc_close);
videoenc_class->start = GST_DEBUG_FUNCPTR (gst_nv_base_enc_start);
videoenc_class->stop = GST_DEBUG_FUNCPTR (gst_nv_base_enc_stop);
videoenc_class->set_format = GST_DEBUG_FUNCPTR (gst_nv_base_enc_set_format);
videoenc_class->getcaps = GST_DEBUG_FUNCPTR (gst_nv_base_enc_getcaps);
videoenc_class->handle_frame =
GST_DEBUG_FUNCPTR (gst_nv_base_enc_handle_frame);
videoenc_class->finish = GST_DEBUG_FUNCPTR (gst_nv_base_enc_finish);
videoenc_class->sink_query = GST_DEBUG_FUNCPTR (gst_nv_base_enc_sink_query);
videoenc_class->sink_event = GST_DEBUG_FUNCPTR (gst_nv_base_enc_sink_event);
videoenc_class->propose_allocation =
GST_DEBUG_FUNCPTR (gst_nv_base_enc_propose_allocation);
g_object_class_install_property (gobject_class, PROP_DEVICE_ID,
g_param_spec_uint ("cuda-device-id",
"Cuda Device ID",
"Get the GPU device to use for operations",
0, G_MAXUINT, 0, G_PARAM_READABLE | G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_PRESET,
g_param_spec_enum ("preset", "Encoding Preset",
"Encoding Preset",
GST_TYPE_NV_PRESET, DEFAULT_PRESET,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_RC_MODE,
g_param_spec_enum ("rc-mode", "RC Mode", "Rate Control Mode",
GST_TYPE_NV_RC_MODE, DEFAULT_RC_MODE,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_QP_MIN,
g_param_spec_int ("qp-min", "Minimum Quantizer",
"Minimum quantizer (-1 = from NVENC preset)", -1, 51, DEFAULT_QP_MIN,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_QP_MAX,
g_param_spec_int ("qp-max", "Maximum Quantizer",
"Maximum quantizer (-1 = from NVENC preset)", -1, 51, DEFAULT_QP_MAX,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_QP_CONST,
g_param_spec_int ("qp-const", "Constant Quantizer",
"Constant quantizer (-1 = from NVENC preset)", -1, 51,
DEFAULT_QP_CONST,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_GOP_SIZE,
g_param_spec_int ("gop-size", "GOP size",
"Number of frames between intra frames (-1 = infinite)",
-1, G_MAXINT, DEFAULT_GOP_SIZE,
(GParamFlags) (G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS)));
g_object_class_install_property (gobject_class, PROP_BITRATE,
g_param_spec_uint ("bitrate", "Bitrate",
"Bitrate in kbit/sec (0 = from NVENC preset)", 0, 2000 * 1024,
DEFAULT_BITRATE,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_MAX_BITRATE,
g_param_spec_uint ("max-bitrate", "Max Bitrate",
"Maximum Bitrate in kbit/sec (ignored for CBR mode)", 0, 2000 * 1024,
DEFAULT_MAX_BITRATE,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_SPATIAL_AQ,
g_param_spec_boolean ("spatial-aq", "Spatial AQ",
"Spatial Adaptive Quantization",
DEFAULT_SPATIAL_AQ,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_AQ_STRENGTH,
g_param_spec_uint ("aq-strength", "AQ Strength",
"Adaptive Quantization Strength when spatial-aq is enabled"
" from 1 (low) to 15 (aggressive), (0 = autoselect)",
0, 15, DEFAULT_AQ_STRENGTH,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_NON_REF_P,
g_param_spec_boolean ("nonref-p", "Nonref P",
"Automatic insertion of non-reference P-frames", DEFAULT_NON_REF_P,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_ZEROLATENCY,
g_param_spec_boolean ("zerolatency", "Zerolatency",
"Zero latency operation (no reordering delay)", DEFAULT_ZEROLATENCY,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_STRICT_GOP,
g_param_spec_boolean ("strict-gop", "Strict GOP",
"Minimize GOP-to-GOP rate fluctuations", DEFAULT_STRICT_GOP,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_CONST_QUALITY,
g_param_spec_double ("const-quality", "Constant Quality",
"Target Constant Quality level for VBR mode (0 = automatic)",
0, 51, DEFAULT_CONST_QUALITY,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_I_ADAPT,
g_param_spec_boolean ("i-adapt", "I Adapt",
"Enable adaptive I-frame insert when lookahead is enabled",
DEFAULT_I_ADAPT,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_READY |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_QP_MIN_I,
g_param_spec_int ("qp-min-i", "QP Min I",
"Minimum QP value for I frame, When >= 0, \"qp-min-p\" and "
"\"qp-min-b\" should be also >= 0. Overwritten by \"qp-min\""
" (-1 = from NVENC preset)", -1, 51,
DEFAULT_QP_DETAIL,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_QP_MIN_P,
g_param_spec_int ("qp-min-p", "QP Min P",
"Minimum QP value for P frame, When >= 0, \"qp-min-i\" and "
"\"qp-min-b\" should be also >= 0. Overwritten by \"qp-min\""
" (-1 = from NVENC preset)", -1, 51,
DEFAULT_QP_DETAIL,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_QP_MIN_B,
g_param_spec_int ("qp-min-b", "QP Min B",
"Minimum QP value for B frame, When >= 0, \"qp-min-i\" and "
"\"qp-min-p\" should be also >= 0. Overwritten by \"qp-min\""
" (-1 = from NVENC preset)", -1, 51,
DEFAULT_QP_DETAIL,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_QP_MAX_I,
g_param_spec_int ("qp-max-i", "QP Max I",
"Maximum QP value for I frame, When >= 0, \"qp-max-p\" and "
"\"qp-max-b\" should be also >= 0. Overwritten by \"qp-max\""
" (-1 = from NVENC preset)", -1, 51,
DEFAULT_QP_DETAIL,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_QP_MAX_P,
g_param_spec_int ("qp-max-p", "QP Max P",
"Maximum QP value for P frame, When >= 0, \"qp-max-i\" and "
"\"qp-max-b\" should be also >= 0. Overwritten by \"qp-max\""
" (-1 = from NVENC preset)", -1, 51,
DEFAULT_QP_DETAIL,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_QP_MAX_B,
g_param_spec_int ("qp-max-b", "QP Max B",
"Maximum QP value for B frame, When >= 0, \"qp-max-i\" and "
"\"qp-max-p\" should be also >= 0. Overwritten by \"qp-max\""
" (-1 = from NVENC preset)", -1, 51,
DEFAULT_QP_DETAIL,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_QP_CONST_I,
g_param_spec_int ("qp-const-i", "QP Const I",
"Constant QP value for I frame, When >= 0, \"qp-const-p\" and "
"\"qp-const-b\" should be also >= 0. Overwritten by \"qp-const\""
" (-1 = from NVENC preset)", -1, 51,
DEFAULT_QP_DETAIL,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_QP_CONST_P,
g_param_spec_int ("qp-const-p", "QP Const P",
"Constant QP value for P frame, When >= 0, \"qp-const-i\" and "
"\"qp-const-b\" should be also >= 0. Overwritten by \"qp-const\""
" (-1 = from NVENC preset)", -1, 51,
DEFAULT_QP_DETAIL,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_QP_CONST_B,
g_param_spec_int ("qp-const-b", "QP Const B",
"Constant QP value for B frame, When >= 0, \"qp-const-i\" and "
"\"qp-const-p\" should be also >= 0. Overwritten by \"qp-const\""
" (-1 = from NVENC preset)", -1, 51,
DEFAULT_QP_DETAIL,
G_PARAM_READWRITE | GST_PARAM_MUTABLE_PLAYING |
G_PARAM_STATIC_STRINGS));
2020-06-23 00:51:48 +00:00
gst_type_mark_as_plugin_api (GST_TYPE_NV_BASE_ENC, 0);
gst_type_mark_as_plugin_api (GST_TYPE_NV_PRESET, 0);
gst_type_mark_as_plugin_api (GST_TYPE_NV_RC_MODE, 0);
}
static gboolean
gst_nv_base_enc_open_encode_session (GstNvBaseEnc * nvenc)
{
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS params = { 0, };
NVENCSTATUS nv_ret;
params.version = gst_nvenc_get_open_encode_session_ex_params_version ();
params.apiVersion = gst_nvenc_get_api_version ();
params.device = gst_cuda_context_get_handle (nvenc->cuda_ctx);
params.deviceType = NV_ENC_DEVICE_TYPE_CUDA;
nv_ret = NvEncOpenEncodeSessionEx (&params, &nvenc->encoder);
return nv_ret == NV_ENC_SUCCESS;
}
static gboolean
gst_nv_base_enc_open (GstVideoEncoder * enc)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
GstNvBaseEncClass *klass = GST_NV_BASE_ENC_GET_CLASS (enc);
GValue *formats = NULL;
CUresult cuda_ret;
if (!gst_cuda_ensure_element_context (GST_ELEMENT_CAST (enc),
klass->cuda_device_id, &nvenc->cuda_ctx)) {
GST_ERROR_OBJECT (nvenc, "failed to create CUDA context");
return FALSE;
}
if (gst_cuda_context_push (nvenc->cuda_ctx)) {
cuda_ret = CuStreamCreate (&nvenc->cuda_stream, CU_STREAM_DEFAULT);
if (!gst_cuda_result (cuda_ret)) {
GST_WARNING_OBJECT (nvenc,
"Could not create cuda stream, will use default stream");
nvenc->cuda_stream = NULL;
}
gst_cuda_context_pop (NULL);
}
if (!gst_nv_base_enc_open_encode_session (nvenc)) {
GST_ERROR ("Failed to create NVENC encoder session");
gst_clear_object (&nvenc->cuda_ctx);
return FALSE;
}
GST_INFO ("created NVENC encoder %p", nvenc->encoder);
/* query supported input formats */
if (!gst_nvenc_get_supported_input_formats (nvenc->encoder, klass->codec_id,
&formats)) {
GST_WARNING_OBJECT (nvenc, "No supported input formats");
gst_nv_base_enc_close (enc);
return FALSE;
}
nvenc->input_formats = formats;
return TRUE;
}
static void
gst_nv_base_enc_set_context (GstElement * element, GstContext * context)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (element);
GstNvBaseEncClass *klass = GST_NV_BASE_ENC_GET_CLASS (nvenc);
if (gst_cuda_handle_set_context (element, context, klass->cuda_device_id,
&nvenc->cuda_ctx)) {
goto done;
}
#if HAVE_NVCODEC_GST_GL
gst_gl_handle_set_context (element, context,
(GstGLDisplay **) & nvenc->display,
(GstGLContext **) & nvenc->other_context);
if (nvenc->display)
gst_gl_display_filter_gl_api (GST_GL_DISPLAY (nvenc->display),
SUPPORTED_GL_APIS);
#endif
done:
GST_ELEMENT_CLASS (parent_class)->set_context (element, context);
}
static gboolean
gst_nv_base_enc_sink_query (GstVideoEncoder * enc, GstQuery * query)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
switch (GST_QUERY_TYPE (query)) {
case GST_QUERY_CONTEXT:{
if (gst_cuda_handle_context_query (GST_ELEMENT (nvenc),
query, nvenc->cuda_ctx))
return TRUE;
#if HAVE_NVCODEC_GST_GL
{
gboolean ret;
ret = gst_gl_handle_context_query ((GstElement *) nvenc, query,
(GstGLDisplay *) nvenc->display, NULL,
(GstGLContext *) nvenc->other_context);
if (nvenc->display) {
gst_gl_display_filter_gl_api (GST_GL_DISPLAY (nvenc->display),
SUPPORTED_GL_APIS);
}
if (ret)
return ret;
}
#endif
break;
}
default:
break;
}
return GST_VIDEO_ENCODER_CLASS (parent_class)->sink_query (enc, query);
}
#ifdef HAVE_NVCODEC_GST_GL
static gboolean
gst_nv_base_enc_ensure_gl_context (GstNvBaseEnc * nvenc)
{
if (!nvenc->display) {
GST_DEBUG_OBJECT (nvenc, "No available OpenGL display");
return FALSE;
}
if (!gst_gl_query_local_gl_context (GST_ELEMENT (nvenc), GST_PAD_SINK,
(GstGLContext **) & nvenc->gl_context)) {
GST_INFO_OBJECT (nvenc, "failed to query local OpenGL context");
if (nvenc->gl_context)
gst_object_unref (nvenc->gl_context);
nvenc->gl_context =
(GstObject *) gst_gl_display_get_gl_context_for_thread ((GstGLDisplay *)
nvenc->display, NULL);
if (!nvenc->gl_context
|| !gst_gl_display_add_context ((GstGLDisplay *) nvenc->display,
(GstGLContext *) nvenc->gl_context)) {
if (nvenc->gl_context)
gst_object_unref (nvenc->gl_context);
if (!gst_gl_display_create_context ((GstGLDisplay *) nvenc->display,
(GstGLContext *) nvenc->other_context,
(GstGLContext **) & nvenc->gl_context, NULL)) {
GST_ERROR_OBJECT (nvenc, "failed to create OpenGL context");
return FALSE;
}
if (!gst_gl_display_add_context ((GstGLDisplay *) nvenc->display,
(GstGLContext *) nvenc->gl_context)) {
GST_ERROR_OBJECT (nvenc,
"failed to add the OpenGL context to the display");
return FALSE;
}
}
}
if (!gst_gl_context_check_gl_version ((GstGLContext *) nvenc->gl_context,
SUPPORTED_GL_APIS, 3, 0)) {
GST_WARNING_OBJECT (nvenc, "OpenGL context could not support PBO download");
return FALSE;
}
return TRUE;
}
#endif
static gboolean
gst_nv_base_enc_propose_allocation (GstVideoEncoder * enc, GstQuery * query)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
GstCaps *caps;
GstVideoInfo info;
GstBufferPool *pool;
GstStructure *config;
GstCapsFeatures *features;
GST_DEBUG_OBJECT (nvenc, "propose allocation");
gst_query_parse_allocation (query, &caps, NULL);
if (caps == NULL)
return FALSE;
if (!gst_video_info_from_caps (&info, caps)) {
GST_WARNING_OBJECT (nvenc, "failed to get video info");
return FALSE;
}
features = gst_caps_get_features (caps, 0);
#if HAVE_NVCODEC_GST_GL
if (features && gst_caps_features_contains (features,
GST_CAPS_FEATURE_MEMORY_GL_MEMORY)) {
GST_DEBUG_OBJECT (nvenc, "upsteram support GL memory");
if (!gst_nv_base_enc_ensure_gl_context (nvenc)) {
GST_WARNING_OBJECT (nvenc, "Could not get gl context");
goto done;
}
pool = gst_gl_buffer_pool_new ((GstGLContext *) nvenc->gl_context);
} else
#endif
if (features && gst_caps_features_contains (features,
GST_CAPS_FEATURE_MEMORY_CUDA_MEMORY)) {
GST_DEBUG_OBJECT (nvenc, "upstream support CUDA memory");
pool = gst_cuda_buffer_pool_new (nvenc->cuda_ctx);
} else {
GST_DEBUG_OBJECT (nvenc, "use system memory");
goto done;
}
if (G_UNLIKELY (pool == NULL)) {
GST_WARNING_OBJECT (nvenc, "cannot create buffer pool");
goto done;
}
config = gst_buffer_pool_get_config (pool);
gst_buffer_pool_config_set_params (config, caps, GST_VIDEO_INFO_SIZE (&info),
nvenc->items->len, 0);
gst_query_add_allocation_pool (query, pool, GST_VIDEO_INFO_SIZE (&info),
nvenc->items->len, 0);
gst_buffer_pool_config_add_option (config, GST_BUFFER_POOL_OPTION_VIDEO_META);
gst_query_add_allocation_meta (query, GST_VIDEO_META_API_TYPE, NULL);
if (!gst_buffer_pool_set_config (pool, config))
goto error_pool_config;
gst_object_unref (pool);
done:
return GST_VIDEO_ENCODER_CLASS (parent_class)->propose_allocation (enc,
query);
error_pool_config:
{
if (pool)
gst_object_unref (pool);
GST_WARNING_OBJECT (nvenc, "failed to set config");
return FALSE;
}
}
static gboolean
gst_nv_base_enc_sink_event (GstVideoEncoder * enc, GstEvent * event)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
gboolean ret;
ret = GST_VIDEO_ENCODER_CLASS (parent_class)->sink_event (enc, event);
switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_STREAM_START:
case GST_EVENT_FLUSH_STOP:
nvenc->last_flow = GST_FLOW_OK;
break;
default:
break;
}
return ret;
}
static gboolean
gst_nv_base_enc_start (GstVideoEncoder * enc)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
nvenc->available_queue = g_async_queue_new ();
nvenc->pending_queue = g_async_queue_new ();
nvenc->bitstream_queue = g_async_queue_new ();
nvenc->items = g_array_new (FALSE, TRUE, sizeof (GstNvEncFrameState));
nvenc->last_flow = GST_FLOW_OK;
memset (&nvenc->init_params, 0, sizeof (NV_ENC_INITIALIZE_PARAMS));
memset (&nvenc->config, 0, sizeof (NV_ENC_CONFIG));
#if HAVE_NVCODEC_GST_GL
{
gst_gl_ensure_element_data (GST_ELEMENT (nvenc),
(GstGLDisplay **) & nvenc->display,
(GstGLContext **) & nvenc->other_context);
if (nvenc->display)
gst_gl_display_filter_gl_api (GST_GL_DISPLAY (nvenc->display),
SUPPORTED_GL_APIS);
}
#endif
/* DTS can be negative if bframe was enabled */
gst_video_encoder_set_min_pts (enc, GST_SECOND * 60 * 60 * 1000);
return TRUE;
}
static gboolean
gst_nv_base_enc_stop (GstVideoEncoder * enc)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
gst_nv_base_enc_stop_bitstream_thread (nvenc, TRUE);
gst_nv_base_enc_free_buffers (nvenc);
if (nvenc->input_state) {
gst_video_codec_state_unref (nvenc->input_state);
nvenc->input_state = NULL;
}
if (nvenc->available_queue) {
g_async_queue_unref (nvenc->available_queue);
nvenc->available_queue = NULL;
}
if (nvenc->pending_queue) {
g_async_queue_unref (nvenc->pending_queue);
nvenc->pending_queue = NULL;
}
if (nvenc->bitstream_queue) {
g_async_queue_unref (nvenc->bitstream_queue);
nvenc->bitstream_queue = NULL;
}
if (nvenc->display) {
gst_object_unref (nvenc->display);
nvenc->display = NULL;
}
if (nvenc->other_context) {
gst_object_unref (nvenc->other_context);
nvenc->other_context = NULL;
}
if (nvenc->gl_context) {
gst_object_unref (nvenc->gl_context);
nvenc->gl_context = NULL;
}
if (nvenc->items) {
g_array_free (nvenc->items, TRUE);
nvenc->items = NULL;
}
return TRUE;
}
static void
check_formats (const gchar * str, guint * max_chroma, guint * max_bit_minus8)
{
if (!str)
return;
if (g_strrstr (str, "-444") || g_strrstr (str, "-4:4:4"))
*max_chroma = 2;
else if ((g_strrstr (str, "-4:2:2") || g_strrstr (str, "-422"))
&& *max_chroma < 1)
*max_chroma = 1;
if (g_strrstr (str, "-12"))
*max_bit_minus8 = 4;
else if (g_strrstr (str, "-10") && *max_bit_minus8 < 2)
*max_bit_minus8 = 2;
}
static gboolean
gst_nv_base_enc_set_filtered_input_formats (GstNvBaseEnc * nvenc,
GstCaps * caps, const GValue * input_formats, guint max_chroma,
guint max_bit_minus8)
{
gint i;
GValue supported_format = G_VALUE_INIT;
gint num_format = 0;
const GValue *last_format = NULL;
g_value_init (&supported_format, GST_TYPE_LIST);
for (i = 0; i < gst_value_list_get_size (input_formats); i++) {
const GValue *val;
GstVideoFormat format;
val = gst_value_list_get_value (input_formats, i);
format = gst_video_format_from_string (g_value_get_string (val));
switch (format) {
case GST_VIDEO_FORMAT_NV12:
case GST_VIDEO_FORMAT_YV12:
case GST_VIDEO_FORMAT_I420:
/* 8bits 4:2:0 formats are always supported */
case GST_VIDEO_FORMAT_BGRA:
case GST_VIDEO_FORMAT_RGBA:
/* NOTE: RGB formats seems to also supported format, which are
* encoded to 4:2:0 formats */
gst_value_list_append_value (&supported_format, val);
last_format = val;
num_format++;
break;
case GST_VIDEO_FORMAT_Y444:
case GST_VIDEO_FORMAT_VUYA:
if (max_chroma >= 2) {
gst_value_list_append_value (&supported_format, val);
last_format = val;
num_format++;
}
break;
case GST_VIDEO_FORMAT_P010_10LE:
case GST_VIDEO_FORMAT_P010_10BE:
case GST_VIDEO_FORMAT_BGR10A2_LE:
case GST_VIDEO_FORMAT_RGB10A2_LE:
case GST_VIDEO_FORMAT_Y444_16LE:
case GST_VIDEO_FORMAT_Y444_16BE:
if (max_bit_minus8 >= 2) {
gst_value_list_append_value (&supported_format, val);
last_format = val;
num_format++;
}
break;
default:
break;
}
}
if (num_format == 0) {
g_value_unset (&supported_format);
GST_WARNING_OBJECT (nvenc, "Cannot find matching input format");
return FALSE;
}
if (num_format > 1)
gst_caps_set_value (caps, "format", &supported_format);
else
gst_caps_set_value (caps, "format", last_format);
g_value_unset (&supported_format);
return TRUE;
}
static GstCaps *
gst_nv_base_enc_getcaps (GstVideoEncoder * enc, GstCaps * filter)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
GstNvBaseEncClass *klass = GST_NV_BASE_ENC_GET_CLASS (enc);
GstCaps *supported_incaps = NULL;
GstCaps *template_caps, *caps, *allowed;
template_caps = gst_pad_get_pad_template_caps (enc->sinkpad);
allowed = gst_pad_get_allowed_caps (enc->srcpad);
GST_LOG_OBJECT (enc, "template caps %" GST_PTR_FORMAT, template_caps);
GST_LOG_OBJECT (enc, "allowed caps %" GST_PTR_FORMAT, allowed);
if (!allowed) {
/* no peer */
supported_incaps = template_caps;
template_caps = NULL;
goto done;
} else if (gst_caps_is_empty (allowed)) {
/* couldn't be negotiated, just return empty caps */
gst_caps_unref (template_caps);
return allowed;
}
GST_OBJECT_LOCK (nvenc);
if (nvenc->input_formats != NULL) {
gboolean has_profile = FALSE;
guint max_chroma_index = 0;
guint max_bit_minus8 = 0;
gint i, j;
for (i = 0; i < gst_caps_get_size (allowed); i++) {
const GstStructure *allowed_s = gst_caps_get_structure (allowed, i);
const GValue *val;
if ((val = gst_structure_get_value (allowed_s, "profile"))) {
if (G_VALUE_HOLDS_STRING (val)) {
check_formats (g_value_get_string (val), &max_chroma_index,
&max_bit_minus8);
has_profile = TRUE;
} else if (GST_VALUE_HOLDS_LIST (val)) {
for (j = 0; j < gst_value_list_get_size (val); j++) {
const GValue *vlist = gst_value_list_get_value (val, j);
if (G_VALUE_HOLDS_STRING (vlist)) {
check_formats (g_value_get_string (vlist), &max_chroma_index,
&max_bit_minus8);
has_profile = TRUE;
}
}
}
}
}
GST_LOG_OBJECT (enc,
"downstream requested profile %d, max bitdepth %d, max chroma %d",
has_profile, max_bit_minus8 + 8, max_chroma_index);
supported_incaps = gst_caps_copy (template_caps);
if (!has_profile ||
!gst_nv_base_enc_set_filtered_input_formats (nvenc, supported_incaps,
nvenc->input_formats, max_chroma_index, max_bit_minus8)) {
gst_caps_set_value (supported_incaps, "format", nvenc->input_formats);
}
if (nvenc->encoder) {
GValue *interlace_mode;
interlace_mode =
gst_nvenc_get_interlace_modes (nvenc->encoder, klass->codec_id);
gst_caps_set_value (supported_incaps, "interlace-mode", interlace_mode);
g_value_unset (interlace_mode);
g_free (interlace_mode);
}
GST_LOG_OBJECT (enc, "codec input caps %" GST_PTR_FORMAT, supported_incaps);
GST_LOG_OBJECT (enc, " template caps %" GST_PTR_FORMAT, template_caps);
caps = gst_caps_intersect (template_caps, supported_incaps);
gst_caps_unref (supported_incaps);
supported_incaps = caps;
GST_LOG_OBJECT (enc, " supported caps %" GST_PTR_FORMAT, supported_incaps);
}
GST_OBJECT_UNLOCK (nvenc);
done:
caps = gst_video_encoder_proxy_getcaps (enc, supported_incaps, filter);
if (supported_incaps)
gst_caps_unref (supported_incaps);
gst_clear_caps (&allowed);
gst_clear_caps (&template_caps);
GST_DEBUG_OBJECT (nvenc, " returning caps %" GST_PTR_FORMAT, caps);
return caps;
}
static gboolean
gst_nv_base_enc_close (GstVideoEncoder * enc)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
gboolean ret = TRUE;
if (nvenc->encoder) {
if (NvEncDestroyEncoder (nvenc->encoder) != NV_ENC_SUCCESS)
ret = FALSE;
nvenc->encoder = NULL;
}
if (nvenc->cuda_ctx && nvenc->cuda_stream) {
if (gst_cuda_context_push (nvenc->cuda_ctx)) {
gst_cuda_result (CuStreamDestroy (nvenc->cuda_stream));
gst_cuda_context_pop (NULL);
}
}
gst_clear_object (&nvenc->cuda_ctx);
nvenc->cuda_stream = NULL;
GST_OBJECT_LOCK (nvenc);
if (nvenc->input_formats)
g_value_unset (nvenc->input_formats);
g_free (nvenc->input_formats);
nvenc->input_formats = NULL;
GST_OBJECT_UNLOCK (nvenc);
if (nvenc->input_state) {
gst_video_codec_state_unref (nvenc->input_state);
nvenc->input_state = NULL;
}
return ret;
}
static void
gst_nv_base_enc_init (GstNvBaseEnc * nvenc)
{
GstVideoEncoder *encoder = GST_VIDEO_ENCODER (nvenc);
GstNvEncQP qp_detail =
{ DEFAULT_QP_DETAIL, DEFAULT_QP_DETAIL, DEFAULT_QP_DETAIL };
nvenc->preset_enum = DEFAULT_PRESET;
nvenc->selected_preset = _nv_preset_to_guid (nvenc->preset_enum);
nvenc->rate_control_mode = DEFAULT_RC_MODE;
nvenc->qp_min = DEFAULT_QP_MIN;
nvenc->qp_max = DEFAULT_QP_MAX;
nvenc->qp_const = DEFAULT_QP_CONST;
nvenc->bitrate = DEFAULT_BITRATE;
nvenc->gop_size = DEFAULT_GOP_SIZE;
nvenc->max_bitrate = DEFAULT_MAX_BITRATE;
nvenc->spatial_aq = DEFAULT_SPATIAL_AQ;
nvenc->aq_strength = DEFAULT_AQ_STRENGTH;
nvenc->non_refp = DEFAULT_NON_REF_P;
nvenc->zerolatency = DEFAULT_ZEROLATENCY;
nvenc->strict_gop = DEFAULT_STRICT_GOP;
nvenc->const_quality = DEFAULT_CONST_QUALITY;
nvenc->i_adapt = DEFAULT_I_ADAPT;
nvenc->qp_min_detail = qp_detail;
nvenc->qp_max_detail = qp_detail;
nvenc->qp_const_detail = qp_detail;
GST_VIDEO_ENCODER_STREAM_LOCK (encoder);
GST_VIDEO_ENCODER_STREAM_UNLOCK (encoder);
GST_PAD_SET_ACCEPT_INTERSECT (GST_VIDEO_ENCODER_SINK_PAD (encoder));
}
static void
gst_nv_base_enc_finalize (GObject * obj)
{
G_OBJECT_CLASS (gst_nv_base_enc_parent_class)->finalize (obj);
}
static GstVideoCodecFrame *
_find_frame_with_output_buffer (GstNvBaseEnc * nvenc, NV_ENC_OUTPUT_PTR out_buf)
{
GList *l, *walk = gst_video_encoder_get_frames (GST_VIDEO_ENCODER (nvenc));
GstVideoCodecFrame *ret = NULL;
for (l = walk; l; l = l->next) {
GstVideoCodecFrame *frame = (GstVideoCodecFrame *) l->data;
GstNvEncFrameState *state = gst_video_codec_frame_get_user_data (frame);
if (!state || !state->out_buf)
continue;
if (state->out_buf == out_buf) {
ret = frame;
break;
}
}
if (ret)
gst_video_codec_frame_ref (ret);
g_list_free_full (walk, (GDestroyNotify) gst_video_codec_frame_unref);
return ret;
}
static const gchar *
picture_type_to_string (NV_ENC_PIC_TYPE type)
{
switch (type) {
case NV_ENC_PIC_TYPE_P:
return "P";
case NV_ENC_PIC_TYPE_B:
return "B";
case NV_ENC_PIC_TYPE_I:
return "I";
case NV_ENC_PIC_TYPE_IDR:
return "IDR";
case NV_ENC_PIC_TYPE_BI:
return "BI";
case NV_ENC_PIC_TYPE_SKIPPED:
return "SKIPPED";
case NV_ENC_PIC_TYPE_INTRA_REFRESH:
return "INTRA-REFRESH";
case NV_ENC_PIC_TYPE_UNKNOWN:
default:
break;
}
return "UNKNOWN";
}
static gpointer
gst_nv_base_enc_bitstream_thread (gpointer user_data)
{
GstVideoEncoder *enc = user_data;
GstNvBaseEnc *nvenc = user_data;
GstFlowReturn flow = GST_FLOW_OK;
/* overview of operation:
2019-09-02 19:08:44 +00:00
* 1. retrieve the next buffer submitted to the bitstream pool
* 2. wait for that buffer to be ready from nvenc (LockBitsream)
2019-09-02 19:08:44 +00:00
* 3. retrieve the GstVideoCodecFrame associated with that buffer
* 4. for each buffer in the frame
* 4.1 (step 2): wait for that buffer to be ready from nvenc (LockBitsream)
* 4.2 create an output GstBuffer from the nvenc buffers
* 4.3 unlock the nvenc bitstream buffers UnlockBitsream
* 5. finish_frame()
* 6. cleanup
*/
do {
GstBuffer *buffer = NULL;
GstNvEncFrameState *state_in_queue = NULL;
GstNvEncFrameState *state = NULL;
GstVideoCodecFrame *frame = NULL;
NVENCSTATUS nv_ret;
NV_ENC_LOCK_BITSTREAM lock_bs = { 0, };
NV_ENC_OUTPUT_PTR out_buf;
GstNvEncInputResource *resource;
GST_LOG_OBJECT (enc, "wait for bitstream buffer..");
state_in_queue = g_async_queue_pop (nvenc->bitstream_queue);
if ((gpointer) state_in_queue == SHUTDOWN_COOKIE)
goto exit_thread;
out_buf = state_in_queue->out_buf;
resource = state_in_queue->in_buf;
GST_LOG_OBJECT (nvenc, "waiting for output buffer %p to be ready", out_buf);
lock_bs.version = gst_nvenc_get_lock_bitstream_version ();
lock_bs.outputBitstream = out_buf;
lock_bs.doNotWait = 0;
/* FIXME: this would need to be updated for other slice modes */
lock_bs.sliceOffsets = NULL;
if (!gst_cuda_context_push (nvenc->cuda_ctx)) {
GST_ELEMENT_ERROR (nvenc, LIBRARY, ENCODE, (NULL),
("Failed to push current context"));
goto error_shutdown;
}
nv_ret = NvEncLockBitstream (nvenc->encoder, &lock_bs);
if (nv_ret != NV_ENC_SUCCESS) {
gst_cuda_context_pop (NULL);
GST_ELEMENT_ERROR (nvenc, STREAM, ENCODE, (NULL),
("Failed to lock bitstream buffer %p, ret %d",
lock_bs.outputBitstream, nv_ret));
goto error_shutdown;
}
frame = _find_frame_with_output_buffer (nvenc, out_buf);
state = gst_video_codec_frame_get_user_data (frame);
g_assert (state->out_buf == out_buf);
/* copy into output buffer */
buffer = gst_buffer_new_allocate (NULL, lock_bs.bitstreamSizeInBytes, NULL);
gst_buffer_fill (buffer, 0, lock_bs.bitstreamBufferPtr,
lock_bs.bitstreamSizeInBytes);
if (lock_bs.pictureType == NV_ENC_PIC_TYPE_IDR) {
GST_DEBUG_OBJECT (nvenc, "This is a keyframe");
GST_VIDEO_CODEC_FRAME_SET_SYNC_POINT (frame);
}
nv_ret = NvEncUnlockBitstream (nvenc->encoder, state->out_buf);
if (nv_ret != NV_ENC_SUCCESS) {
gst_cuda_context_pop (NULL);
GST_ELEMENT_ERROR (nvenc, STREAM, ENCODE, (NULL),
("Failed to unlock bitstream buffer %p, ret %d",
lock_bs.outputBitstream, nv_ret));
gst_buffer_unref (buffer);
gst_video_encoder_finish_frame (enc, frame);
goto error_shutdown;
}
frame->dts = frame->pts;
frame->pts = lock_bs.outputTimeStamp;
frame->duration = lock_bs.outputDuration;
GST_LOG_OBJECT (nvenc, "frame index %" G_GUINT32_FORMAT
", frame type %s, dts %" GST_TIME_FORMAT
", pts %" GST_TIME_FORMAT,
lock_bs.frameIdx, picture_type_to_string (lock_bs.pictureType),
GST_TIME_ARGS (frame->dts), GST_TIME_ARGS (frame->pts));
frame->output_buffer = buffer;
nv_ret =
NvEncUnmapInputResource (nvenc->encoder,
resource->nv_mapped_resource.mappedResource);
resource->mapped = FALSE;
if (nv_ret != NV_ENC_SUCCESS) {
GST_ERROR_OBJECT (nvenc, "Failed to unmap input resource %p, ret %d",
resource, nv_ret);
}
gst_cuda_context_pop (NULL);
memset (&resource->nv_mapped_resource, 0,
sizeof (resource->nv_mapped_resource));
g_async_queue_push (nvenc->available_queue, state_in_queue);
/* Ugly but no other way to get DTS offset since nvenc dose not adjust
* dts/pts even if bframe was enabled. So the output PTS can be smaller
* than DTS. The maximum difference between DTS and PTS can be calculated
* using the PTS difference between the first frame and the second frame.
*/
if (nvenc->bframes > 0) {
if (nvenc->dts_offset == 0) {
if (!nvenc->first_frame) {
/* store the first frame to get dts offset */
nvenc->first_frame = frame;
continue;
} else {
if (nvenc->first_frame->pts >= frame->pts) {
GstClockTime duration = 0;
GST_WARNING_OBJECT (enc, "Could not calculate DTS offset");
if (nvenc->input_info.fps_n > 0 && nvenc->input_info.fps_d > 0) {
duration =
gst_util_uint64_scale (GST_SECOND, nvenc->input_info.fps_d,
nvenc->input_info.fps_n);
} else if (nvenc->first_frame->duration > 0 &&
GST_CLOCK_TIME_IS_VALID (nvenc->first_frame->duration)) {
duration = nvenc->first_frame->duration;
} else {
GST_WARNING_OBJECT (enc,
"No way to get frame duration, assuming 30fps");
duration = gst_util_uint64_scale (GST_SECOND, 1, 30);
}
nvenc->dts_offset = duration * nvenc->bframes;
} else {
nvenc->dts_offset = frame->pts - nvenc->first_frame->pts;
}
/* + 1 to dts_offset to adjust fraction */
nvenc->dts_offset++;
GST_DEBUG_OBJECT (enc,
"Calculated DTS offset %" GST_TIME_FORMAT,
GST_TIME_ARGS (nvenc->dts_offset));
}
nvenc->first_frame->dts -= nvenc->dts_offset;
gst_video_encoder_finish_frame (enc, nvenc->first_frame);
nvenc->first_frame = NULL;
}
frame->dts -= nvenc->dts_offset;
}
flow = gst_video_encoder_finish_frame (enc, frame);
if (flow != GST_FLOW_OK) {
GST_INFO_OBJECT (enc, "got flow %s", gst_flow_get_name (flow));
g_atomic_int_set (&nvenc->last_flow, flow);
g_async_queue_push (nvenc->available_queue, SHUTDOWN_COOKIE);
goto exit_thread;
}
}
while (TRUE);
error_shutdown:
{
if (nvenc->first_frame) {
gst_clear_buffer (&nvenc->first_frame->output_buffer);
gst_video_encoder_finish_frame (enc, nvenc->first_frame);
nvenc->first_frame = NULL;
}
g_atomic_int_set (&nvenc->last_flow, GST_FLOW_ERROR);
g_async_queue_push (nvenc->available_queue, SHUTDOWN_COOKIE);
goto exit_thread;
}
exit_thread:
{
if (nvenc->first_frame) {
gst_video_encoder_finish_frame (enc, nvenc->first_frame);
nvenc->first_frame = NULL;
}
GST_INFO_OBJECT (nvenc, "exiting thread");
return NULL;
}
}
static gboolean
gst_nv_base_enc_start_bitstream_thread (GstNvBaseEnc * nvenc)
{
gchar *name = g_strdup_printf ("%s-read-bits", GST_OBJECT_NAME (nvenc));
g_assert (nvenc->bitstream_thread == NULL);
g_assert (g_async_queue_length (nvenc->bitstream_queue) == 0);
nvenc->bitstream_thread =
g_thread_try_new (name, gst_nv_base_enc_bitstream_thread, nvenc, NULL);
g_free (name);
if (nvenc->bitstream_thread == NULL)
return FALSE;
GST_INFO_OBJECT (nvenc, "started thread to read bitstream");
return TRUE;
}
static gboolean
gst_nv_base_enc_stop_bitstream_thread (GstNvBaseEnc * nvenc, gboolean force)
{
GstNvEncFrameState *state;
if (nvenc->bitstream_thread == NULL)
return TRUE;
/* Always send EOS packet to flush GPU. Otherwise, randomly crash happens
* during NvEncDestroyEncoder especially when rc-lookahead or bframe was
* enabled */
gst_nv_base_enc_drain_encoder (nvenc);
if (force) {
g_async_queue_lock (nvenc->available_queue);
g_async_queue_lock (nvenc->pending_queue);
g_async_queue_lock (nvenc->bitstream_queue);
while ((state = g_async_queue_try_pop_unlocked (nvenc->bitstream_queue))) {
GST_INFO_OBJECT (nvenc, "stole bitstream buffer %p from queue", state);
g_async_queue_push_unlocked (nvenc->available_queue, state);
}
g_async_queue_push_unlocked (nvenc->bitstream_queue, SHUTDOWN_COOKIE);
g_async_queue_unlock (nvenc->available_queue);
g_async_queue_unlock (nvenc->pending_queue);
g_async_queue_unlock (nvenc->bitstream_queue);
} else {
/* wait for encoder to drain the remaining buffers */
g_async_queue_push (nvenc->bitstream_queue, SHUTDOWN_COOKIE);
}
if (!force) {
/* temporary unlock during finish, so other thread can find and push frame */
GST_VIDEO_ENCODER_STREAM_UNLOCK (nvenc);
}
g_thread_join (nvenc->bitstream_thread);
if (!force)
GST_VIDEO_ENCODER_STREAM_LOCK (nvenc);
nvenc->bitstream_thread = NULL;
return TRUE;
}
static void
gst_nv_base_enc_reset_queues (GstNvBaseEnc * nvenc)
{
gpointer ptr;
GST_INFO_OBJECT (nvenc, "clearing queues");
while ((ptr = g_async_queue_try_pop (nvenc->available_queue))) {
/* do nothing */
}
while ((ptr = g_async_queue_try_pop (nvenc->pending_queue))) {
/* do nothing */
}
while ((ptr = g_async_queue_try_pop (nvenc->bitstream_queue))) {
/* do nothing */
}
}
static void
gst_nv_base_enc_free_buffers (GstNvBaseEnc * nvenc)
{
NVENCSTATUS nv_ret;
CUresult cuda_ret;
guint i;
if (nvenc->encoder == NULL)
return;
gst_nv_base_enc_reset_queues (nvenc);
if (!nvenc->items || !nvenc->items->len)
return;
gst_cuda_context_push (nvenc->cuda_ctx);
for (i = 0; i < nvenc->items->len; ++i) {
NV_ENC_OUTPUT_PTR out_buf =
g_array_index (nvenc->items, GstNvEncFrameState, i).out_buf;
GstNvEncInputResource *in_buf =
g_array_index (nvenc->items, GstNvEncFrameState, i).in_buf;
if (in_buf->mapped) {
GST_LOG_OBJECT (nvenc, "Unmap resource %p", in_buf);
nv_ret =
NvEncUnmapInputResource (nvenc->encoder,
in_buf->nv_mapped_resource.mappedResource);
if (nv_ret != NV_ENC_SUCCESS) {
GST_ERROR_OBJECT (nvenc, "Failed to unmap input resource %p, ret %d",
in_buf, nv_ret);
}
}
nv_ret =
NvEncUnregisterResource (nvenc->encoder,
in_buf->nv_resource.registeredResource);
if (nv_ret != NV_ENC_SUCCESS)
GST_ERROR_OBJECT (nvenc, "Failed to unregister resource %p, ret %d",
in_buf, nv_ret);
cuda_ret = CuMemFree (in_buf->cuda_pointer);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR_OBJECT (nvenc, "Failed to free CUDA device memory, ret %d",
cuda_ret);
}
g_free (in_buf);
GST_DEBUG_OBJECT (nvenc, "Destroying output bitstream buffer %p", out_buf);
nv_ret = NvEncDestroyBitstreamBuffer (nvenc->encoder, out_buf);
if (nv_ret != NV_ENC_SUCCESS) {
GST_ERROR_OBJECT (nvenc, "Failed to destroy output buffer %p, ret %d",
out_buf, nv_ret);
}
}
gst_cuda_context_pop (NULL);
g_array_set_size (nvenc->items, 0);
}
static inline guint
_get_plane_width (GstVideoInfo * info, guint plane)
{
return GST_VIDEO_INFO_COMP_WIDTH (info, plane)
* GST_VIDEO_INFO_COMP_PSTRIDE (info, plane);
}
static inline guint
_get_plane_height (GstVideoInfo * info, guint plane)
{
if (GST_VIDEO_INFO_IS_YUV (info))
/* For now component width and plane width are the same and the
* plane-component mapping matches
*/
return GST_VIDEO_INFO_COMP_HEIGHT (info, plane);
else /* RGB, GRAY */
return GST_VIDEO_INFO_HEIGHT (info);
}
static inline gsize
_get_frame_data_height (GstVideoInfo * info)
{
gsize ret = 0;
gint i;
for (i = 0; i < GST_VIDEO_INFO_N_PLANES (info); i++) {
ret += _get_plane_height (info, i);
}
return ret;
}
static gboolean
qp_has_values (const GstNvEncQP * qp)
{
return qp->qp_i >= 0 && qp->qp_p >= 0 && qp->qp_b >= 0;
}
static void
gst_nv_base_enc_setup_rate_control (GstNvBaseEnc * nvenc,
NV_ENC_RC_PARAMS * rc_params)
{
GstNvRCMode rc_mode = nvenc->rate_control_mode;
NV_ENC_PARAMS_RC_MODE nv_rcmode;
if (nvenc->bitrate)
rc_params->averageBitRate = nvenc->bitrate * 1024;
if (nvenc->max_bitrate)
rc_params->maxBitRate = nvenc->max_bitrate * 1024;
if (nvenc->vbv_buffersize)
rc_params->vbvBufferSize = nvenc->vbv_buffersize * 1024;
/* Guess the best matching mode */
if (rc_mode == GST_NV_RC_MODE_DEFAULT) {
if (nvenc->qp_const >= 0) {
/* constQP is used only for RC_CONSTQP mode */
rc_mode = GST_NV_RC_MODE_CONSTQP;
}
}
if (nvenc->qp_min >= 0) {
rc_params->enableMinQP = 1;
rc_params->minQP.qpInterB = nvenc->qp_min;
rc_params->minQP.qpInterP = nvenc->qp_min;
rc_params->minQP.qpIntra = nvenc->qp_min;
} else if (qp_has_values (&nvenc->qp_min_detail)) {
rc_params->enableMinQP = 1;
rc_params->minQP.qpInterB = nvenc->qp_min_detail.qp_b;
rc_params->minQP.qpInterP = nvenc->qp_min_detail.qp_p;
rc_params->minQP.qpIntra = nvenc->qp_min_detail.qp_i;
}
if (nvenc->qp_max >= 0) {
rc_params->enableMaxQP = 1;
rc_params->maxQP.qpInterB = nvenc->qp_max;
rc_params->maxQP.qpInterP = nvenc->qp_max;
rc_params->maxQP.qpIntra = nvenc->qp_max;
} else if (qp_has_values (&nvenc->qp_max_detail)) {
rc_params->enableMaxQP = 1;
rc_params->maxQP.qpInterB = nvenc->qp_max_detail.qp_b;
rc_params->maxQP.qpInterP = nvenc->qp_max_detail.qp_p;
rc_params->maxQP.qpIntra = nvenc->qp_max_detail.qp_i;
}
if (nvenc->qp_const >= 0) {
rc_params->constQP.qpInterB = nvenc->qp_const;
rc_params->constQP.qpInterP = nvenc->qp_const;
rc_params->constQP.qpIntra = nvenc->qp_const;
} else if (qp_has_values (&nvenc->qp_const_detail)) {
rc_params->constQP.qpInterB = nvenc->qp_const_detail.qp_b;
rc_params->constQP.qpInterP = nvenc->qp_const_detail.qp_p;
rc_params->constQP.qpIntra = nvenc->qp_const_detail.qp_i;
}
nv_rcmode = _rc_mode_to_nv (rc_mode);
if (nv_rcmode == NV_ENC_PARAMS_RC_VBR_MINQP && nvenc->qp_min < 0) {
GST_WARNING_OBJECT (nvenc, "vbr-minqp was requested without qp-min");
nv_rcmode = NV_ENC_PARAMS_RC_VBR;
}
rc_params->rateControlMode = nv_rcmode;
if (nvenc->spatial_aq) {
rc_params->enableAQ = 1;
rc_params->aqStrength = nvenc->aq_strength;
}
rc_params->enableTemporalAQ = nvenc->temporal_aq;
if (nvenc->rc_lookahead) {
rc_params->enableLookahead = 1;
rc_params->lookaheadDepth = nvenc->rc_lookahead;
rc_params->disableIadapt = !nvenc->i_adapt;
rc_params->disableBadapt = !nvenc->b_adapt;
}
rc_params->strictGOPTarget = nvenc->strict_gop;
rc_params->enableNonRefP = nvenc->non_refp;
rc_params->zeroReorderDelay = nvenc->zerolatency;
if (nvenc->const_quality) {
guint scaled = (gint) (nvenc->const_quality * 256.0);
rc_params->targetQuality = (guint8) (scaled >> 8);
rc_params->targetQualityLSB = (guint8) (scaled & 0xff);
}
}
static guint
gst_nv_base_enc_calculate_num_prealloc_buffers (GstNvBaseEnc * enc,
NV_ENC_CONFIG * config)
{
guint num_buffers;
/* At least 4 surfaces are required as documented by Nvidia Encoder guide */
num_buffers = 4;
/* + lookahead depth */
num_buffers += config->rcParams.lookaheadDepth;
/* + GOP size */
num_buffers += config->frameIntervalP;
/* hardcoded upper bound "48"
* The worst case
* default num buffers: 4
* maximum allowed lookahead: 32
* max bfraems: 4 -> frameIntervalP: 5
* "4 + 32 + 5" < "48" so it seems to sufficiently safe upper bound */
num_buffers = MIN (num_buffers, 48);
GST_DEBUG_OBJECT (enc, "Calculated num buffers: %d "
"(lookahead %d, frameIntervalP %d)",
num_buffers, config->rcParams.lookaheadDepth, config->frameIntervalP);
return num_buffers;
}
/* GstVideoEncoder::set_format or by nvenc self if new properties were set.
*
* NvEncReconfigureEncoder with following conditions are not allowed
* 1) GOP structure change
* 2) sync-Async mode change (Async mode is Windows only and we didn't support it)
* 3) MaxWidth, MaxHeight
* 4) PTDmode (Picture Type Decision mode)
*
* So we will force to re-init the encode session if
* 1) New resolution is larger than previous config
* 2) GOP size changed
* 3) Input pixel format change
* pre-allocated CUDA memory could not ensure stride, width and height
*
* TODO: bframe also considered as force re-init case
*/
static gboolean
gst_nv_base_enc_set_format (GstVideoEncoder * enc, GstVideoCodecState * state)
{
GstNvBaseEncClass *nvenc_class = GST_NV_BASE_ENC_GET_CLASS (enc);
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
GstVideoInfo *info = &state->info;
GstVideoCodecState *old_state = nvenc->input_state;
NV_ENC_RECONFIGURE_PARAMS reconfigure_params = { 0, };
NV_ENC_INITIALIZE_PARAMS *params = &nvenc->init_params;
NV_ENC_PRESET_CONFIG preset_config = { 0, };
NVENCSTATUS nv_ret;
gint dar_n, dar_d;
gboolean reconfigure = FALSE;
g_atomic_int_set (&nvenc->reconfig, FALSE);
if (!nvenc->encoder && !gst_nv_base_enc_open_encode_session (nvenc)) {
GST_ELEMENT_ERROR (nvenc, LIBRARY, INIT, (NULL),
("Failed to open encode session"));
return FALSE;
}
if (old_state) {
gboolean larger_resolution;
gboolean format_changed;
gboolean gop_size_changed;
larger_resolution =
(GST_VIDEO_INFO_WIDTH (info) > nvenc->init_params.maxEncodeWidth ||
GST_VIDEO_INFO_HEIGHT (info) > nvenc->init_params.maxEncodeHeight);
format_changed =
GST_VIDEO_INFO_FORMAT (info) !=
GST_VIDEO_INFO_FORMAT (&old_state->info);
if (nvenc->config.gopLength == NVENC_INFINITE_GOPLENGTH
&& nvenc->gop_size == -1) {
gop_size_changed = FALSE;
} else if (nvenc->config.gopLength != nvenc->gop_size) {
gop_size_changed = TRUE;
} else {
gop_size_changed = FALSE;
}
if (larger_resolution || format_changed || gop_size_changed) {
GST_DEBUG_OBJECT (nvenc,
"resolution %dx%d -> %dx%d, format %s -> %s, re-init",
nvenc->init_params.maxEncodeWidth, nvenc->init_params.maxEncodeHeight,
GST_VIDEO_INFO_WIDTH (info), GST_VIDEO_INFO_HEIGHT (info),
gst_video_format_to_string (GST_VIDEO_INFO_FORMAT (&old_state->info)),
gst_video_format_to_string (GST_VIDEO_INFO_FORMAT (info)));
gst_nv_base_enc_drain_encoder (nvenc);
gst_nv_base_enc_stop_bitstream_thread (nvenc, FALSE);
gst_nv_base_enc_free_buffers (nvenc);
NvEncDestroyEncoder (nvenc->encoder);
nvenc->encoder = NULL;
if (!gst_nv_base_enc_open_encode_session (nvenc)) {
GST_ERROR_OBJECT (nvenc, "Failed to open encode session");
return FALSE;
}
} else {
reconfigure_params.version = gst_nvenc_get_reconfigure_params_version ();
/* reset rate control state and start from IDR */
reconfigure_params.resetEncoder = TRUE;
reconfigure_params.forceIDR = TRUE;
reconfigure = TRUE;
}
}
params->version = gst_nvenc_get_initialize_params_version ();
params->encodeGUID = nvenc_class->codec_id;
params->encodeWidth = GST_VIDEO_INFO_WIDTH (info);
params->encodeHeight = GST_VIDEO_INFO_HEIGHT (info);
{
guint32 n_presets;
GUID *presets;
guint32 i;
nv_ret =
NvEncGetEncodePresetCount (nvenc->encoder,
params->encodeGUID, &n_presets);
if (nv_ret != NV_ENC_SUCCESS) {
GST_ELEMENT_ERROR (nvenc, LIBRARY, SETTINGS, (NULL),
("Failed to get encoder presets"));
return FALSE;
}
presets = g_new0 (GUID, n_presets);
nv_ret =
NvEncGetEncodePresetGUIDs (nvenc->encoder,
params->encodeGUID, presets, n_presets, &n_presets);
if (nv_ret != NV_ENC_SUCCESS) {
GST_ELEMENT_ERROR (nvenc, LIBRARY, SETTINGS, (NULL),
("Failed to get encoder presets"));
g_free (presets);
return FALSE;
}
for (i = 0; i < n_presets; i++) {
if (gst_nvenc_cmp_guid (presets[i], nvenc->selected_preset))
break;
}
g_free (presets);
if (i >= n_presets) {
GST_ELEMENT_ERROR (nvenc, LIBRARY, SETTINGS, (NULL),
("Selected preset not supported"));
return FALSE;
}
params->presetGUID = nvenc->selected_preset;
}
params->enablePTD = 1;
if (!reconfigure) {
/* this sets the required buffer size and the maximum allowed size on
* subsequent reconfigures */
params->maxEncodeWidth = GST_VIDEO_INFO_WIDTH (info);
params->maxEncodeHeight = GST_VIDEO_INFO_HEIGHT (info);
}
preset_config.version = gst_nvenc_get_preset_config_version ();
preset_config.presetCfg.version = gst_nvenc_get_config_version ();
nv_ret =
NvEncGetEncodePresetConfig (nvenc->encoder,
params->encodeGUID, params->presetGUID, &preset_config);
if (nv_ret != NV_ENC_SUCCESS) {
GST_ELEMENT_ERROR (nvenc, LIBRARY, SETTINGS, (NULL),
("Failed to get encode preset configuration: %d", nv_ret));
return FALSE;
}
params->encodeConfig = &preset_config.presetCfg;
if (GST_VIDEO_INFO_IS_INTERLACED (info)) {
if (GST_VIDEO_INFO_INTERLACE_MODE (info) ==
GST_VIDEO_INTERLACE_MODE_INTERLEAVED
|| GST_VIDEO_INFO_INTERLACE_MODE (info) ==
GST_VIDEO_INTERLACE_MODE_MIXED) {
preset_config.presetCfg.frameFieldMode =
NV_ENC_PARAMS_FRAME_FIELD_MODE_FIELD;
}
}
if (info->fps_d > 0 && info->fps_n > 0) {
params->frameRateNum = info->fps_n;
params->frameRateDen = info->fps_d;
} else {
params->frameRateNum = 0;
params->frameRateDen = 1;
}
if (gst_util_fraction_multiply (GST_VIDEO_INFO_WIDTH (info),
GST_VIDEO_INFO_HEIGHT (info), GST_VIDEO_INFO_PAR_N (info),
GST_VIDEO_INFO_PAR_D (info), &dar_n, &dar_d) && dar_n > 0
&& dar_d > 0) {
params->darWidth = dar_n;
params->darHeight = dar_d;
}
gst_nv_base_enc_setup_rate_control (nvenc, &params->encodeConfig->rcParams);
params->enableWeightedPrediction = nvenc->weighted_pred;
if (nvenc->gop_size < 0) {
params->encodeConfig->gopLength = NVENC_INFINITE_GOPLENGTH;
params->encodeConfig->frameIntervalP = 1;
} else if (nvenc->gop_size > 0) {
params->encodeConfig->gopLength = nvenc->gop_size;
/* frameIntervalP
* 0: All Intra frames
* 1: I/P only
* n ( > 1): n - 1 bframes
*/
params->encodeConfig->frameIntervalP = nvenc->bframes + 1;
} else {
/* gop size == 0 means all intra frames */
params->encodeConfig->gopLength = 1;
params->encodeConfig->frameIntervalP = 0;
}
g_assert (nvenc_class->set_encoder_config);
if (!nvenc_class->set_encoder_config (nvenc, state, params->encodeConfig)) {
GST_ERROR_OBJECT (enc, "Subclass failed to set encoder configuration");
return FALSE;
}
/* store the last config to reconfig/re-init decision in the next time */
nvenc->config = *params->encodeConfig;
G_LOCK (initialization_lock);
if (reconfigure) {
reconfigure_params.reInitEncodeParams = nvenc->init_params;
nv_ret = NvEncReconfigureEncoder (nvenc->encoder, &reconfigure_params);
} else {
nv_ret = NvEncInitializeEncoder (nvenc->encoder, params);
}
G_UNLOCK (initialization_lock);
if (nv_ret != NV_ENC_SUCCESS) {
GST_ELEMENT_ERROR (nvenc, LIBRARY, SETTINGS, (NULL),
("Failed to %sinit encoder: %d", reconfigure ? "re" : "", nv_ret));
NvEncDestroyEncoder (nvenc->encoder);
nvenc->encoder = NULL;
return FALSE;
}
if (!reconfigure) {
nvenc->input_info = *info;
}
if (nvenc->input_state)
gst_video_codec_state_unref (nvenc->input_state);
nvenc->input_state = gst_video_codec_state_ref (state);
GST_INFO_OBJECT (nvenc, "%sconfigured encoder", reconfigure ? "re" : "");
/* now allocate some buffers only on first configuration */
if (!reconfigure) {
GstCapsFeatures *features;
guint i;
guint input_width, input_height;
guint n_bufs;
input_width = GST_VIDEO_INFO_WIDTH (info);
input_height = GST_VIDEO_INFO_HEIGHT (info);
n_bufs =
gst_nv_base_enc_calculate_num_prealloc_buffers (nvenc,
params->encodeConfig);
/* input buffers */
g_array_set_size (nvenc->items, n_bufs);
nvenc->mem_type = GST_NVENC_MEM_TYPE_SYSTEM;
features = gst_caps_get_features (state->caps, 0);
if (gst_caps_features_contains (features,
GST_CAPS_FEATURE_MEMORY_CUDA_MEMORY)) {
nvenc->mem_type = GST_NVENC_MEM_TYPE_CUDA;
}
#if HAVE_NVCODEC_GST_GL
else if (gst_caps_features_contains (features,
GST_CAPS_FEATURE_MEMORY_GL_MEMORY)) {
nvenc->mem_type = GST_NVENC_MEM_TYPE_GL;
}
#endif
gst_cuda_context_push (nvenc->cuda_ctx);
for (i = 0; i < nvenc->items->len; ++i) {
GstNvEncInputResource *resource = g_new0 (GstNvEncInputResource, 1);
CUresult cu_ret;
memset (&resource->nv_resource, 0, sizeof (resource->nv_resource));
memset (&resource->nv_mapped_resource, 0,
sizeof (resource->nv_mapped_resource));
2019-09-02 19:08:44 +00:00
/* scratch buffer for non-contiguous planer into a contiguous buffer */
cu_ret =
CuMemAllocPitch (&resource->cuda_pointer,
&resource->cuda_stride, _get_plane_width (info, 0),
_get_frame_data_height (info), 16);
if (!gst_cuda_result (cu_ret)) {
2019-09-02 19:08:44 +00:00
GST_ERROR_OBJECT (nvenc, "failed to allocate cuda scratch buffer "
"ret %d", cu_ret);
g_assert_not_reached ();
}
resource->nv_resource.version =
gst_nvenc_get_register_resource_version ();
resource->nv_resource.resourceType =
NV_ENC_INPUT_RESOURCE_TYPE_CUDADEVICEPTR;
resource->nv_resource.width = input_width;
resource->nv_resource.height = input_height;
resource->nv_resource.pitch = resource->cuda_stride;
resource->nv_resource.bufferFormat =
gst_nvenc_get_nv_buffer_format (GST_VIDEO_INFO_FORMAT (info));
resource->nv_resource.resourceToRegister =
(gpointer) resource->cuda_pointer;
nv_ret = NvEncRegisterResource (nvenc->encoder, &resource->nv_resource);
if (nv_ret != NV_ENC_SUCCESS)
GST_ERROR_OBJECT (nvenc, "Failed to register resource %p, ret %d",
resource, nv_ret);
g_array_index (nvenc->items, GstNvEncFrameState, i).in_buf = resource;
}
gst_cuda_context_pop (NULL);
/* output buffers */
for (i = 0; i < nvenc->items->len; ++i) {
NV_ENC_CREATE_BITSTREAM_BUFFER cout_buf = { 0, };
cout_buf.version = gst_nvenc_get_create_bitstream_buffer_version ();
/* 1 MB should be large enough to hold most output frames.
* NVENC will automatically increase this if it's not enough. */
cout_buf.size = 1024 * 1024;
cout_buf.memoryHeap = NV_ENC_MEMORY_HEAP_SYSMEM_CACHED;
G_LOCK (initialization_lock);
nv_ret = NvEncCreateBitstreamBuffer (nvenc->encoder, &cout_buf);
G_UNLOCK (initialization_lock);
if (nv_ret != NV_ENC_SUCCESS) {
GST_WARNING_OBJECT (enc, "Failed to allocate input buffer: %d", nv_ret);
/* FIXME: clean up */
return FALSE;
}
GST_INFO_OBJECT (nvenc, "allocated output buffer %2d: %p", i,
cout_buf.bitstreamBuffer);
g_array_index (nvenc->items, GstNvEncFrameState, i).out_buf =
cout_buf.bitstreamBuffer;
g_async_queue_push (nvenc->available_queue, &g_array_index (nvenc->items,
GstNvEncFrameState, i));
}
#if 0
/* Get SPS/PPS */
{
NV_ENC_SEQUENCE_PARAM_PAYLOAD seq_param = { 0 };
uint32_t seq_size = 0;
seq_param.version = gst_nvenc_get_sequence_param_payload_version ();
seq_param.spsppsBuffer = g_alloca (1024);
seq_param.inBufferSize = 1024;
seq_param.outSPSPPSPayloadSize = &seq_size;
nv_ret = NvEncGetSequenceParams (nvenc->encoder, &seq_param);
if (nv_ret != NV_ENC_SUCCESS) {
GST_WARNING_OBJECT (enc, "Failed to retrieve SPS/PPS: %d", nv_ret);
return FALSE;
}
/* FIXME: use SPS/PPS */
GST_MEMDUMP_OBJECT (enc, "SPS/PPS", seq_param.spsppsBuffer, seq_size);
}
#endif
}
g_assert (nvenc_class->set_src_caps);
if (!nvenc_class->set_src_caps (nvenc, state)) {
GST_ERROR_OBJECT (nvenc, "Subclass failed to set output caps");
/* FIXME: clean up */
return FALSE;
}
return TRUE;
}
static guint
_get_cuda_device_stride (GstVideoInfo * info, guint plane, gsize cuda_stride)
{
switch (GST_VIDEO_INFO_FORMAT (info)) {
case GST_VIDEO_FORMAT_NV12:
case GST_VIDEO_FORMAT_NV21:
case GST_VIDEO_FORMAT_P010_10LE:
case GST_VIDEO_FORMAT_P010_10BE:
case GST_VIDEO_FORMAT_Y444:
case GST_VIDEO_FORMAT_BGRA:
case GST_VIDEO_FORMAT_RGBA:
case GST_VIDEO_FORMAT_BGR10A2_LE:
case GST_VIDEO_FORMAT_RGB10A2_LE:
case GST_VIDEO_FORMAT_Y444_16LE:
case GST_VIDEO_FORMAT_Y444_16BE:
case GST_VIDEO_FORMAT_VUYA:
return cuda_stride;
case GST_VIDEO_FORMAT_I420:
case GST_VIDEO_FORMAT_YV12:
return plane == 0 ? cuda_stride : (GST_ROUND_UP_2 (cuda_stride) / 2);
default:
g_assert_not_reached ();
return cuda_stride;
}
}
#if HAVE_NVCODEC_GST_GL
typedef struct _GstNvEncRegisterResourceData
{
GstMemory *mem;
GstCudaGraphicsResource *resource;
GstNvBaseEnc *nvenc;
gboolean ret;
} GstNvEncRegisterResourceData;
static void
register_cuda_resource (GstGLContext * context,
GstNvEncRegisterResourceData * data)
{
GstMemory *mem = data->mem;
GstCudaGraphicsResource *resource = data->resource;
GstNvBaseEnc *nvenc = data->nvenc;
GstMapInfo map_info = GST_MAP_INFO_INIT;
GstGLBuffer *gl_buf_obj;
data->ret = FALSE;
if (!gst_cuda_context_push (nvenc->cuda_ctx)) {
GST_WARNING_OBJECT (nvenc, "failed to push CUDA context");
return;
}
if (gst_memory_map (mem, &map_info, GST_MAP_READ | GST_MAP_GL)) {
GstGLMemoryPBO *gl_mem = (GstGLMemoryPBO *) data->mem;
gl_buf_obj = gl_mem->pbo;
GST_LOG_OBJECT (nvenc,
"register glbuffer %d to CUDA resource", gl_buf_obj->id);
if (gst_cuda_graphics_resource_register_gl_buffer (resource,
gl_buf_obj->id, CU_GRAPHICS_REGISTER_FLAGS_NONE)) {
data->ret = TRUE;
} else {
GST_WARNING_OBJECT (nvenc, "failed to register memory");
}
gst_memory_unmap (mem, &map_info);
} else {
GST_WARNING_OBJECT (nvenc, "failed to map memory");
}
if (!gst_cuda_context_pop (NULL))
GST_WARNING_OBJECT (nvenc, "failed to unlock CUDA context");
}
static GstCudaGraphicsResource *
ensure_cuda_graphics_resource (GstMemory * mem, GstNvBaseEnc * nvenc)
{
GQuark quark;
GstCudaGraphicsResource *cgr_info;
GstNvEncRegisterResourceData data;
if (!gst_is_gl_memory_pbo (mem)) {
GST_WARNING_OBJECT (nvenc, "memory is not GL PBO memory, %s",
mem->allocator->mem_type);
return NULL;
}
quark = gst_cuda_quark_from_id (GST_CUDA_QUARK_GRAPHICS_RESOURCE);
cgr_info = gst_mini_object_get_qdata (GST_MINI_OBJECT (mem), quark);
if (!cgr_info) {
cgr_info = gst_cuda_graphics_resource_new (nvenc->cuda_ctx,
GST_OBJECT (GST_GL_BASE_MEMORY_CAST (mem)->context),
GST_CUDA_GRAPHICS_RESOURCE_GL_BUFFER);
data.mem = mem;
data.resource = cgr_info;
data.nvenc = nvenc;
gst_gl_context_thread_add ((GstGLContext *) cgr_info->graphics_context,
(GstGLContextThreadFunc) register_cuda_resource, &data);
if (!data.ret) {
GST_WARNING_OBJECT (nvenc, "could not register resource");
gst_cuda_graphics_resource_free (cgr_info);
return NULL;
}
gst_mini_object_set_qdata (GST_MINI_OBJECT (mem), quark, cgr_info,
(GDestroyNotify) gst_cuda_graphics_resource_free);
}
return cgr_info;
}
typedef struct _GstNvEncGLMapData
{
GstNvBaseEnc *nvenc;
GstBuffer *buffer;
GstVideoInfo *info;
GstNvEncInputResource *resource;
gboolean ret;
} GstNvEncGLMapData;
static void
_map_gl_input_buffer (GstGLContext * context, GstNvEncGLMapData * data)
{
GstNvBaseEnc *nvenc = data->nvenc;
CUresult cuda_ret;
CUdeviceptr data_pointer;
guint i;
CUDA_MEMCPY2D param;
GstCudaGraphicsResource **resources;
guint num_resources;
data->ret = FALSE;
num_resources = gst_buffer_n_memory (data->buffer);
resources = g_newa (GstCudaGraphicsResource *, num_resources);
for (i = 0; i < num_resources; i++) {
GstMemory *mem;
mem = gst_buffer_peek_memory (data->buffer, i);
resources[i] = ensure_cuda_graphics_resource (mem, nvenc);
if (!resources[i]) {
GST_ERROR_OBJECT (nvenc, "could not register %dth memory", i);
return;
}
}
gst_cuda_context_push (nvenc->cuda_ctx);
data_pointer = data->resource->cuda_pointer;
for (i = 0; i < GST_VIDEO_INFO_N_PLANES (data->info); i++) {
GstGLBuffer *gl_buf_obj;
GstGLMemoryPBO *gl_mem;
guint src_stride, dest_stride;
CUgraphicsResource cuda_resource;
gsize cuda_num_bytes;
CUdeviceptr cuda_plane_pointer;
gl_mem = (GstGLMemoryPBO *) gst_buffer_peek_memory (data->buffer, i);
g_return_if_fail (gst_is_gl_memory_pbo ((GstMemory *) gl_mem));
gl_buf_obj = (GstGLBuffer *) gl_mem->pbo;
g_return_if_fail (gl_buf_obj != NULL);
/* get the texture into the PBO */
gst_gl_memory_pbo_upload_transfer (gl_mem);
gst_gl_memory_pbo_download_transfer (gl_mem);
GST_LOG_OBJECT (nvenc, "attempting to copy texture %u into cuda",
gl_mem->mem.tex_id);
cuda_resource =
gst_cuda_graphics_resource_map (resources[i], nvenc->cuda_stream,
CU_GRAPHICS_MAP_RESOURCE_FLAGS_READ_ONLY);
if (!cuda_resource) {
GST_ERROR_OBJECT (nvenc, "failed to map GL texture %u into cuda",
gl_mem->mem.tex_id);
g_assert_not_reached ();
}
cuda_ret =
CuGraphicsResourceGetMappedPointer (&cuda_plane_pointer,
&cuda_num_bytes, cuda_resource);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR_OBJECT (nvenc, "failed to get mapped pointer of map GL "
"texture %u in cuda ret :%d", gl_mem->mem.tex_id, cuda_ret);
g_assert_not_reached ();
}
src_stride = GST_VIDEO_INFO_PLANE_STRIDE (data->info, i);
dest_stride = _get_cuda_device_stride (&nvenc->input_info,
i, data->resource->cuda_stride);
/* copy into scratch buffer */
param.srcXInBytes = 0;
param.srcY = 0;
param.srcMemoryType = CU_MEMORYTYPE_DEVICE;
param.srcDevice = cuda_plane_pointer;
param.srcPitch = src_stride;
param.dstXInBytes = 0;
param.dstY = 0;
param.dstMemoryType = CU_MEMORYTYPE_DEVICE;
param.dstDevice = data_pointer;
param.dstPitch = dest_stride;
param.WidthInBytes = _get_plane_width (data->info, i);
param.Height = _get_plane_height (data->info, i);
cuda_ret = CuMemcpy2DAsync (&param, nvenc->cuda_stream);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR_OBJECT (data->nvenc, "failed to copy GL texture %u into cuda "
"ret :%d", gl_mem->mem.tex_id, cuda_ret);
g_assert_not_reached ();
}
gst_cuda_graphics_resource_unmap (resources[i], nvenc->cuda_stream);
data_pointer += dest_stride * _get_plane_height (&nvenc->input_info, i);
}
gst_cuda_result (CuStreamSynchronize (nvenc->cuda_stream));
gst_cuda_context_pop (NULL);
data->ret = TRUE;
}
#endif
static gboolean
gst_nv_base_enc_upload_frame (GstNvBaseEnc * nvenc, GstVideoFrame * frame,
GstNvEncInputResource * resource, gboolean use_device_memory)
{
gint i;
CUdeviceptr dst = resource->cuda_pointer;
GstVideoInfo *info = &frame->info;
CUresult cuda_ret;
GstCudaMemory *cuda_mem = NULL;
if (!gst_cuda_context_push (nvenc->cuda_ctx)) {
GST_ERROR_OBJECT (nvenc, "cannot push context");
return FALSE;
}
if (use_device_memory) {
cuda_mem = (GstCudaMemory *) gst_buffer_peek_memory (frame->buffer, 0);
}
for (i = 0; i < GST_VIDEO_FRAME_N_PLANES (frame); i++) {
CUDA_MEMCPY2D param = { 0, };
guint dest_stride = _get_cuda_device_stride (&nvenc->input_info, i,
resource->cuda_stride);
if (use_device_memory) {
param.srcMemoryType = CU_MEMORYTYPE_DEVICE;
param.srcDevice = cuda_mem->data + cuda_mem->offset[i];
param.srcPitch = cuda_mem->stride;
} else {
param.srcMemoryType = CU_MEMORYTYPE_HOST;
param.srcHost = GST_VIDEO_FRAME_PLANE_DATA (frame, i);
param.srcPitch = GST_VIDEO_FRAME_PLANE_STRIDE (frame, i);
}
param.dstMemoryType = CU_MEMORYTYPE_DEVICE;
param.dstDevice = dst;
param.dstPitch = dest_stride;
param.WidthInBytes = _get_plane_width (info, i);
param.Height = _get_plane_height (info, i);
cuda_ret = CuMemcpy2DAsync (&param, nvenc->cuda_stream);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR_OBJECT (nvenc, "cannot copy %dth plane, ret %d", i, cuda_ret);
gst_cuda_context_pop (NULL);
return FALSE;
}
dst += dest_stride * _get_plane_height (&nvenc->input_info, i);
}
gst_cuda_result (CuStreamSynchronize (nvenc->cuda_stream));
gst_cuda_context_pop (NULL);
return TRUE;
}
static GstFlowReturn
_acquire_input_buffer (GstNvBaseEnc * nvenc, GstNvEncFrameState ** input)
{
GST_LOG_OBJECT (nvenc, "acquiring input buffer..");
GST_VIDEO_ENCODER_STREAM_UNLOCK (nvenc);
*input = g_async_queue_pop (nvenc->available_queue);
GST_VIDEO_ENCODER_STREAM_LOCK (nvenc);
if (*input == SHUTDOWN_COOKIE)
return g_atomic_int_get (&nvenc->last_flow);
return GST_FLOW_OK;
}
static GstFlowReturn
_submit_input_buffer (GstNvBaseEnc * nvenc, GstVideoCodecFrame * frame,
GstVideoFrame * vframe, GstNvEncFrameState * state, void *inputBufferPtr,
NV_ENC_BUFFER_FORMAT bufferFormat)
{
GstNvBaseEncClass *nvenc_class = GST_NV_BASE_ENC_GET_CLASS (nvenc);
NV_ENC_PIC_PARAMS pic_params = { 0, };
NVENCSTATUS nv_ret;
gpointer inputBuffer, outputBufferPtr;
inputBuffer = state->in_buf;
outputBufferPtr = state->out_buf;
GST_LOG_OBJECT (nvenc, "%u: input buffer %p, output buffer %p, "
"pts %" GST_TIME_FORMAT, frame->system_frame_number, inputBuffer,
outputBufferPtr, GST_TIME_ARGS (frame->pts));
pic_params.version = gst_nvenc_get_pic_params_version ();
pic_params.inputBuffer = inputBufferPtr;
pic_params.bufferFmt = bufferFormat;
pic_params.inputWidth = GST_VIDEO_FRAME_WIDTH (vframe);
pic_params.inputHeight = GST_VIDEO_FRAME_HEIGHT (vframe);
pic_params.outputBitstream = outputBufferPtr;
pic_params.completionEvent = NULL;
if (GST_VIDEO_FRAME_IS_INTERLACED (vframe)) {
if (GST_VIDEO_FRAME_IS_TFF (vframe))
pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FIELD_TOP_BOTTOM;
else
pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FIELD_BOTTOM_TOP;
} else {
pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FRAME;
}
pic_params.inputTimeStamp = frame->pts;
pic_params.inputDuration =
GST_CLOCK_TIME_IS_VALID (frame->duration) ? frame->duration : 0;
pic_params.frameIdx = frame->system_frame_number;
if (GST_VIDEO_CODEC_FRAME_IS_FORCE_KEYFRAME (frame))
pic_params.encodePicFlags = NV_ENC_PIC_FLAG_FORCEIDR;
else
pic_params.encodePicFlags = 0;
if (nvenc_class->set_pic_params
&& !nvenc_class->set_pic_params (nvenc, frame, &pic_params)) {
GST_ERROR_OBJECT (nvenc, "Subclass failed to submit buffer");
return GST_FLOW_ERROR;
}
if (!gst_cuda_context_push (nvenc->cuda_ctx)) {
GST_ELEMENT_ERROR (nvenc, LIBRARY, ENCODE, (NULL),
("Failed to push current context"));
return GST_FLOW_ERROR;
}
nv_ret = NvEncEncodePicture (nvenc->encoder, &pic_params);
gst_cuda_context_pop (NULL);
if (nv_ret == NV_ENC_SUCCESS) {
GST_LOG_OBJECT (nvenc, "Encoded picture");
} else if (nv_ret == NV_ENC_ERR_NEED_MORE_INPUT) {
GST_DEBUG_OBJECT (nvenc, "Encoded picture (encoder needs more input)");
} else {
GST_ERROR_OBJECT (nvenc, "Failed to encode picture: %d", nv_ret);
g_async_queue_push (nvenc->available_queue, state);
return GST_FLOW_ERROR;
}
/* GstNvEncFrameState shouldn't be freed by DestroyNotify */
gst_video_codec_frame_set_user_data (frame, state, NULL);
g_async_queue_push (nvenc->pending_queue, state);
if (nv_ret == NV_ENC_SUCCESS) {
GstNvEncFrameState *pending_state;
gint len, i, end;
/* HACK: NvEncEncodePicture() with returning NV_ENC_SUCCESS means that
* we can pop encoded bitstream from GPU
* (via NvEncLockBitstream and copy to memory then NvEncUnlockBitstream).
* But if we try to pop every buffer from GPU when the rc-lookahead
* was enabled, NvEncLockBitstream returns error NV_ENC_ERR_INVALID_PARAM
* randomly (seemingly it's dependent on how fast the encoding thread
* dequeued the encoded picture).
* So make "pending_queue" having the number of lookahead pictures always,
* so that GPU should be able to reference the lookahead pictures.
*
* This behavior is not documented by Nvidia. The guess here is that
* the lookahead pictures are still used for rate-control by Nvidia driver
* and dequeuing the lookahead picture from GPU seems to be causing the
* problem.
*/
end = nvenc->rc_lookahead;
g_async_queue_lock (nvenc->pending_queue);
len = g_async_queue_length_unlocked (nvenc->pending_queue);
for (i = len; i > end; i--) {
pending_state = g_async_queue_pop_unlocked (nvenc->pending_queue);
g_async_queue_push (nvenc->bitstream_queue, pending_state);
}
g_async_queue_unlock (nvenc->pending_queue);
}
return GST_FLOW_OK;
}
static GstFlowReturn
gst_nv_base_enc_handle_frame (GstVideoEncoder * enc, GstVideoCodecFrame * frame)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
NVENCSTATUS nv_ret;
GstVideoFrame vframe;
GstVideoInfo *info = &nvenc->input_state->info;
GstFlowReturn flow = GST_FLOW_OK;
GstMapFlags in_map_flags = GST_MAP_READ;
GstNvEncFrameState *state = NULL;
GstNvEncInputResource *resource = NULL;
gboolean use_device_memory = FALSE;
g_assert (nvenc->encoder != NULL);
/* check last flow and if it's not OK, just return the last flow,
* non-OK flow means that encoding thread was terminated */
flow = g_atomic_int_get (&nvenc->last_flow);
if (flow != GST_FLOW_OK) {
GST_DEBUG_OBJECT (nvenc, "last flow was %s", gst_flow_get_name (flow));
/* just drop this frame */
gst_video_encoder_finish_frame (enc, frame);
return flow;
}
if (g_atomic_int_compare_and_exchange (&nvenc->reconfig, TRUE, FALSE)) {
if (!gst_nv_base_enc_set_format (enc, nvenc->input_state)) {
flow = GST_FLOW_NOT_NEGOTIATED;
goto drop;
}
/* reconfigured encode session should start from keyframe */
GST_VIDEO_CODEC_FRAME_SET_FORCE_KEYFRAME (frame);
}
#if HAVE_NVCODEC_GST_GL
if (nvenc->mem_type == GST_NVENC_MEM_TYPE_GL)
in_map_flags |= GST_MAP_GL;
#endif
if (nvenc->mem_type == GST_NVENC_MEM_TYPE_CUDA) {
GstMemory *mem;
if ((mem = gst_buffer_peek_memory (frame->input_buffer, 0)) &&
gst_is_cuda_memory (mem)) {
GstCudaMemory *cmem = GST_CUDA_MEMORY_CAST (mem);
if (cmem->context == nvenc->cuda_ctx ||
gst_cuda_context_get_handle (cmem->context) ==
gst_cuda_context_get_handle (nvenc->cuda_ctx) ||
(gst_cuda_context_can_access_peer (cmem->context, nvenc->cuda_ctx) &&
gst_cuda_context_can_access_peer (nvenc->cuda_ctx,
cmem->context))) {
use_device_memory = TRUE;
in_map_flags |= GST_MAP_CUDA;
}
}
}
if (!gst_video_frame_map (&vframe, info, frame->input_buffer, in_map_flags)) {
goto drop;
}
/* make sure our thread that waits for output to be ready is started */
if (nvenc->bitstream_thread == NULL) {
if (!gst_nv_base_enc_start_bitstream_thread (nvenc)) {
gst_video_frame_unmap (&vframe);
goto unmap_and_drop;
}
}
flow = _acquire_input_buffer (nvenc, &state);
if (flow != GST_FLOW_OK || state == SHUTDOWN_COOKIE || !state)
goto unmap_and_drop;
resource = state->in_buf;
#if HAVE_NVCODEC_GST_GL
if (nvenc->mem_type == GST_NVENC_MEM_TYPE_GL) {
GstGLMemory *gl_mem;
GstNvEncGLMapData data;
gl_mem = (GstGLMemory *) gst_buffer_peek_memory (frame->input_buffer, 0);
g_assert (gst_is_gl_memory ((GstMemory *) gl_mem));
data.nvenc = nvenc;
data.buffer = frame->input_buffer;
data.info = &vframe.info;
data.resource = resource;
gst_gl_context_thread_add (gl_mem->mem.context,
(GstGLContextThreadFunc) _map_gl_input_buffer, &data);
if (!data.ret) {
flow = GST_FLOW_ERROR;
goto unmap_and_drop;
}
} else
#endif
if (!gst_nv_base_enc_upload_frame (nvenc,
&vframe, resource, use_device_memory)) {
flow = GST_FLOW_ERROR;
goto unmap_and_drop;
}
resource->nv_mapped_resource.version =
gst_nvenc_get_map_input_resource_version ();
resource->nv_mapped_resource.registeredResource =
resource->nv_resource.registeredResource;
if (!gst_cuda_context_push (nvenc->cuda_ctx)) {
GST_ELEMENT_ERROR (nvenc, LIBRARY, ENCODE, (NULL),
("Failed to push current context"));
flow = GST_FLOW_ERROR;
goto unmap_and_drop;
}
nv_ret =
NvEncMapInputResource (nvenc->encoder, &resource->nv_mapped_resource);
gst_cuda_context_pop (NULL);
if (nv_ret != NV_ENC_SUCCESS) {
GST_ERROR_OBJECT (nvenc, "Failed to map input resource %p, ret %d",
resource, nv_ret);
flow = GST_FLOW_ERROR;
goto unmap_and_drop;
}
resource->mapped = TRUE;
flow =
_submit_input_buffer (nvenc, frame, &vframe, state,
resource->nv_mapped_resource.mappedResource,
resource->nv_mapped_resource.mappedBufferFmt);
if (flow != GST_FLOW_OK) {
GST_DEBUG_OBJECT (nvenc, "return state to pool");
g_async_queue_push (nvenc->available_queue, state);
goto unmap_and_drop;
}
flow = g_atomic_int_get (&nvenc->last_flow);
gst_video_frame_unmap (&vframe);
/* encoder will keep frame in list internally, we'll look it up again later
* in the thread where we get the output buffers and finish it there */
gst_video_codec_frame_unref (frame);
return flow;
/* ERRORS */
unmap_and_drop:
{
gst_video_frame_unmap (&vframe);
goto drop;
}
drop:
{
gst_video_encoder_finish_frame (enc, frame);
return flow;
}
}
static gboolean
gst_nv_base_enc_drain_encoder (GstNvBaseEnc * nvenc)
{
NV_ENC_PIC_PARAMS pic_params = { 0, };
NVENCSTATUS nv_ret;
gboolean ret = TRUE;
GST_INFO_OBJECT (nvenc, "draining encoder");
if (nvenc->input_state == NULL) {
GST_DEBUG_OBJECT (nvenc, "no input state, nothing to do");
return TRUE;
}
if (!nvenc->encoder) {
GST_DEBUG_OBJECT (nvenc, "no configured encode session");
return TRUE;
}
pic_params.version = gst_nvenc_get_pic_params_version ();
pic_params.encodePicFlags = NV_ENC_PIC_FLAG_EOS;
if (!gst_cuda_context_push (nvenc->cuda_ctx)) {
GST_ERROR_OBJECT (nvenc, "Could not push context");
return GST_FLOW_ERROR;
}
nv_ret = NvEncEncodePicture (nvenc->encoder, &pic_params);
if (nv_ret != NV_ENC_SUCCESS) {
GST_LOG_OBJECT (nvenc, "Failed to drain encoder, ret %d", nv_ret);
ret = FALSE;
} else {
GstNvEncFrameState *pending_state;
g_async_queue_lock (nvenc->pending_queue);
while ((pending_state =
g_async_queue_try_pop_unlocked (nvenc->pending_queue))) {
g_async_queue_push (nvenc->bitstream_queue, pending_state);
}
g_async_queue_unlock (nvenc->pending_queue);
}
gst_cuda_context_pop (NULL);
return ret;
}
static GstFlowReturn
gst_nv_base_enc_finish (GstVideoEncoder * enc)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
gst_nv_base_enc_stop_bitstream_thread (nvenc, FALSE);
return GST_FLOW_OK;
}
#if 0
static gboolean
gst_nv_base_enc_flush (GstVideoEncoder * enc)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (enc);
GST_INFO_OBJECT (nvenc, "done flushing encoder");
return TRUE;
}
#endif
void
gst_nv_base_enc_schedule_reconfig (GstNvBaseEnc * nvenc)
{
g_atomic_int_set (&nvenc->reconfig, TRUE);
}
static void
gst_nv_base_enc_set_property (GObject * object, guint prop_id,
const GValue * value, GParamSpec * pspec)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (object);
GstNvBaseEncClass *klass = GST_NV_BASE_ENC_GET_CLASS (nvenc);
gboolean reconfig = TRUE;
switch (prop_id) {
case PROP_PRESET:
nvenc->preset_enum = g_value_get_enum (value);
nvenc->selected_preset = _nv_preset_to_guid (nvenc->preset_enum);
gst_nv_base_enc_schedule_reconfig (nvenc);
break;
case PROP_RC_MODE:
{
GstNvRCMode rc_mode = g_value_get_enum (value);
NV_ENC_PARAMS_RC_MODE nv_rc_mode = _rc_mode_to_nv (rc_mode);
if ((klass->device_caps.rc_modes & nv_rc_mode) == nv_rc_mode) {
nvenc->rate_control_mode = rc_mode;
} else {
GST_WARNING_OBJECT (nvenc,
"device does not support requested rate control mode %d", rc_mode);
reconfig = FALSE;
}
break;
}
case PROP_QP_MIN:
nvenc->qp_min = g_value_get_int (value);
break;
case PROP_QP_MAX:
nvenc->qp_max = g_value_get_int (value);
break;
case PROP_QP_CONST:
nvenc->qp_const = g_value_get_int (value);
break;
case PROP_BITRATE:
nvenc->bitrate = g_value_get_uint (value);
break;
case PROP_GOP_SIZE:
nvenc->gop_size = g_value_get_int (value);
break;
case PROP_MAX_BITRATE:
nvenc->max_bitrate = g_value_get_uint (value);
break;
case PROP_SPATIAL_AQ:
nvenc->spatial_aq = g_value_get_boolean (value);
break;
case PROP_AQ_STRENGTH:
nvenc->aq_strength = g_value_get_uint (value);
break;
case PROP_NON_REF_P:
nvenc->non_refp = g_value_get_boolean (value);
break;
case PROP_ZEROLATENCY:
nvenc->zerolatency = g_value_get_boolean (value);
break;
case PROP_STRICT_GOP:
nvenc->strict_gop = g_value_get_boolean (value);
break;
case PROP_CONST_QUALITY:
nvenc->const_quality = g_value_get_double (value);
break;
case PROP_I_ADAPT:
nvenc->i_adapt = g_value_get_boolean (value);
break;
case PROP_QP_MIN_I:
nvenc->qp_min_detail.qp_i = g_value_get_int (value);
break;
case PROP_QP_MIN_P:
nvenc->qp_min_detail.qp_p = g_value_get_int (value);
break;
case PROP_QP_MIN_B:
nvenc->qp_min_detail.qp_b = g_value_get_int (value);
break;
case PROP_QP_MAX_I:
nvenc->qp_max_detail.qp_i = g_value_get_int (value);
break;
case PROP_QP_MAX_P:
nvenc->qp_max_detail.qp_p = g_value_get_int (value);
break;
case PROP_QP_MAX_B:
nvenc->qp_max_detail.qp_b = g_value_get_int (value);
break;
case PROP_QP_CONST_I:
nvenc->qp_const_detail.qp_i = g_value_get_int (value);
break;
case PROP_QP_CONST_P:
nvenc->qp_const_detail.qp_p = g_value_get_int (value);
break;
case PROP_QP_CONST_B:
nvenc->qp_const_detail.qp_b = g_value_get_int (value);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
reconfig = FALSE;
break;
}
if (reconfig)
gst_nv_base_enc_schedule_reconfig (nvenc);
}
static void
gst_nv_base_enc_get_property (GObject * object, guint prop_id, GValue * value,
GParamSpec * pspec)
{
GstNvBaseEnc *nvenc = GST_NV_BASE_ENC (object);
GstNvBaseEncClass *nvenc_class = GST_NV_BASE_ENC_GET_CLASS (object);
switch (prop_id) {
case PROP_DEVICE_ID:
g_value_set_uint (value, nvenc_class->cuda_device_id);
break;
case PROP_PRESET:
g_value_set_enum (value, nvenc->preset_enum);
break;
case PROP_RC_MODE:
g_value_set_enum (value, nvenc->rate_control_mode);
break;
case PROP_QP_MIN:
g_value_set_int (value, nvenc->qp_min);
break;
case PROP_QP_MAX:
g_value_set_int (value, nvenc->qp_max);
break;
case PROP_QP_CONST:
g_value_set_int (value, nvenc->qp_const);
break;
case PROP_BITRATE:
g_value_set_uint (value, nvenc->bitrate);
break;
case PROP_GOP_SIZE:
g_value_set_int (value, nvenc->gop_size);
break;
case PROP_MAX_BITRATE:
g_value_set_uint (value, nvenc->max_bitrate);
break;
case PROP_SPATIAL_AQ:
g_value_set_boolean (value, nvenc->spatial_aq);
break;
case PROP_AQ_STRENGTH:
g_value_set_uint (value, nvenc->aq_strength);
break;
case PROP_NON_REF_P:
g_value_set_boolean (value, nvenc->non_refp);
break;
case PROP_ZEROLATENCY:
g_value_set_boolean (value, nvenc->zerolatency);
break;
case PROP_STRICT_GOP:
g_value_set_boolean (value, nvenc->strict_gop);
break;
case PROP_CONST_QUALITY:
g_value_set_double (value, nvenc->const_quality);
break;
case PROP_I_ADAPT:
g_value_set_boolean (value, nvenc->i_adapt);
break;
case PROP_QP_MIN_I:
g_value_set_int (value, nvenc->qp_min_detail.qp_i);
break;
case PROP_QP_MIN_P:
g_value_set_int (value, nvenc->qp_min_detail.qp_p);
break;
case PROP_QP_MIN_B:
g_value_set_int (value, nvenc->qp_min_detail.qp_b);
break;
case PROP_QP_MAX_I:
g_value_set_int (value, nvenc->qp_max_detail.qp_i);
break;
case PROP_QP_MAX_P:
g_value_set_int (value, nvenc->qp_max_detail.qp_p);
break;
case PROP_QP_MAX_B:
g_value_set_int (value, nvenc->qp_max_detail.qp_b);
break;
case PROP_QP_CONST_I:
g_value_set_int (value, nvenc->qp_const_detail.qp_i);
break;
case PROP_QP_CONST_P:
g_value_set_int (value, nvenc->qp_const_detail.qp_p);
break;
case PROP_QP_CONST_B:
g_value_set_int (value, nvenc->qp_const_detail.qp_b);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
typedef struct
{
guint cuda_device_id;
GstNvEncDeviceCaps device_caps;
} GstNvEncClassData;
static void
gst_nv_base_enc_subclass_init (gpointer g_class, gpointer data)
{
GstNvBaseEncClass *nvbaseenc_class = GST_NV_BASE_ENC_CLASS (g_class);
GstNvEncClassData *cdata = (GstNvEncClassData *) data;
nvbaseenc_class->cuda_device_id = cdata->cuda_device_id;
nvbaseenc_class->device_caps = cdata->device_caps;
g_free (cdata);
}
GType
gst_nv_base_enc_register (const char *codec, guint device_id,
GstNvEncDeviceCaps * device_caps)
{
GTypeQuery type_query;
GTypeInfo type_info = { 0, };
GType subtype;
gchar *type_name;
GstNvEncClassData *cdata;
type_name = g_strdup_printf ("GstNvDevice%d%sEnc", device_id, codec);
subtype = g_type_from_name (type_name);
/* has already registered nvdeviceenc class */
if (subtype)
goto done;
cdata = g_new0 (GstNvEncClassData, 1);
cdata->cuda_device_id = device_id;
cdata->device_caps = *device_caps;
g_type_query (GST_TYPE_NV_BASE_ENC, &type_query);
memset (&type_info, 0, sizeof (type_info));
type_info.class_size = type_query.class_size;
type_info.instance_size = type_query.instance_size;
type_info.class_init = (GClassInitFunc) gst_nv_base_enc_subclass_init;
type_info.class_data = cdata;
subtype = g_type_register_static (GST_TYPE_NV_BASE_ENC,
type_name, &type_info, 0);
2020-06-23 00:51:48 +00:00
gst_type_mark_as_plugin_api (subtype, 0);
done:
g_free (type_name);
return subtype;
}