gstreamer-rs/gstreamer/src/format/mod.rs
François Laignel dcf6d16496 gst/format: new panicking constructors and some Percent fixes
Previous proposition for constructing specific formatted values was
to use an operation such as `42 * Default::ONE` which, in retrospect,
doesn't seem idiomatic.

This commit adds `from_u64` and `from_usize` constructors for most
formatted values. Having `from_usize` is convenient when dealing with
quantities related to containers indices or length.

This also fixes the `Percent` from float constructors from which was
derived the `ONE` constant as well as previous display implementation.

Also removed the `pub` specifier for `Undefined` inner value. It wasn't
removed in a previous commit as `Undefined` can use the full range of
the inner type. But now, it seems preferable not to expose the inner
value for proper encapsulation and so as to reduce the differences with
other formatted values (kind of least astonishment principle).
2022-10-11 13:25:53 +02:00

999 lines
35 KiB
Rust

// Take a look at the license at the top of the repository in the LICENSE file.
// rustdoc-stripper-ignore-next
//! This modules gathers GStreamer's formatted value concepts together.
//!
//! GStreamer uses formatted values to differentiate value units in some APIs.
//! In C this is done by qualifying an integer value by a companion enum
//! [`GstFormat`]. In Rust, most APIs can use a specific type for each format.
//! Each format type embeds the actual value using the new type pattern.
//!
//! # Specific Formatted Values
//!
//! Examples of specific formatted values include [`ClockTime`], [`Buffers`], etc.
//! These types represent both the quantity and the unit making it possible for Rust
//! to perform runtime and, to a certain extent, compile time invariants enforcement.
//!
//! Specific formatted values are also guaranteed to always represent a valid value.
//! For instance:
//!
//! - [`Percent`] only allows values in the integer range [0, 1_000_000] or
//! float range [0.0, 1.0].
//! - [`ClockTime`] can use all `u64` values except `u64::MAX` which is reserved by
//! the C constant `GST_CLOCK_TIME_NONE`.
//!
//! ## Examples
//!
//! ### Querying the pipeline for a time position
//!
//! ```
//! # use gstreamer as gst;
//! # use gst::prelude::ElementExtManual;
//! # gst::init();
//! # let pipeline = gst::Pipeline::new(None);
//! let res = pipeline.query_position::<gst::ClockTime>();
//! ```
//!
//! ## Seeking to a specific time position
//!
//! ```
//! # use gstreamer as gst;
//! # use gst::prelude::ElementExtManual;
//! # gst::init();
//! # let pipeline = gst::Pipeline::new(None);
//! # let seek_flags = gst::SeekFlags::FLUSH | gst::SeekFlags::KEY_UNIT;
//! let seek_pos = gst::ClockTime::from_seconds(10);
//! let res = pipeline.seek_simple(seek_flags, seek_pos);
//! ```
//!
//! ### Downcasting a `Segment` for specific formatted value use
//!
//! ```
//! # use gstreamer as gst;
//! # use gst::format::FormattedValue;
//! # gst::init();
//! # let segment = gst::FormattedSegment::<gst::ClockTime>::new().upcast();
//! // Downcasting the generic `segment` for `gst::ClockTime` use.
//! let time_segment = segment.downcast_ref::<gst::ClockTime>().expect("time segment");
//! // Setters and getters conform to `gst::ClockTime`.
//! // This is enforced at compilation time.
//! let start = time_segment.start();
//! assert_eq!(start.format(), gst::Format::Time);
//! ```
//!
//! ### Building a specific formatted value
//!
//! ```
//! # use gstreamer as gst;
//! use gst::format::{Buffers, Bytes, ClockTime, Default, Percent};
//!
//! // Specific formatted values implement the faillible `try_from` constructor:
//! let default = Default::try_from(42).unwrap();
//! assert_eq!(*default, 42);
//! assert_eq!(Default::try_from(42), Ok(default));
//! assert_eq!(Default::try_from(42).ok(), Some(default));
//!
//! // `ClockTime` provides specific constructors,
//! // which can panic if the requested value is out of range.
//! let time = ClockTime::from_nseconds(45_834_908_569_837);
//! let time = ClockTime::from_seconds(20);
//!
//! // Other formatted values also come with (panicking) constructors:
//! let buffers_nb = Buffers::from_u64(512);
//! let received = Bytes::from_u64(64);
//! let sample_size = Bytes::from_usize([0u8; 4].len());
//! let quantity = Default::from_u64(42);
//!
//! // This can be convenient:
//! assert_eq!(
//! 20 * ClockTime::MSECOND,
//! ClockTime::from_nseconds(20_000_000),
//! );
//! assert_eq!(
//! 40 * ClockTime::SECOND,
//! ClockTime::from_nseconds(40_000_000_000),
//! );
//!
//! // `ZERO` and `NONE` can come in handy sometimes:
//! assert_eq!(*Buffers::ZERO, 0);
//! assert!(ClockTime::NONE.is_none());
//!
//! // Specific formatted values provide the `ONE` value:
//! assert_eq!(*(128 * Buffers::ONE), 128);
//!
//! // `Bytes` also comes with usual multipliers:
//! assert_eq!(*(512 * Bytes::K), 512 * 1024);
//! assert_eq!(*(8 * Bytes::M), 8 * 1024 * 1024);
//! assert_eq!(*(4 * Bytes::G), 4 * 1024 * 1024 * 1024);
//!
//! // `Percent` can be built from a floating point ratio:
//! let a_quarter_from_ratio = Percent::from_ratio(0.25);
//! // ... from a percent integer value:
//! let a_quarter = Percent::from_percent(25);
//! assert_eq!(a_quarter, a_quarter_from_ratio);
//! // ... from a part per million integer value:
//! let a_quarter_from_ppm = Percent::from_ppm(25 * 10_000);
//! assert_eq!(a_quarter, a_quarter_from_ppm);
//! // ... `MAX` which represents 100%:
//! assert_eq!(Percent::MAX / 4, a_quarter);
//! // ... `ONE` which is 1%:
//! assert_eq!(25 * Percent::ONE, a_quarter);
//! // ... and `SCALE` which is 1% in ppm:
//! assert_eq!(Percent::SCALE, Percent::from_ppm(10_000));
//! ```
//!
//! ### Displaying a formatted value
//!
//! Formatted values implement the [`Display`] trait which allows getting
//! human readable representations.
//!
//! ```
//! # use gstreamer as gst;
//! # use gst::prelude::Displayable;
//! let time = gst::ClockTime::from_nseconds(45_834_908_569_837);
//!
//! assert_eq!(format!("{}", time), "12:43:54.908569837");
//! assert_eq!(format!("{:.0}", time), "12:43:54");
//!
//! let percent = gst::format::Percent::try_from(0.1234).unwrap();
//! assert_eq!(format!("{}", percent), "12.34 %");
//! assert_eq!(format!("{:5.1}", percent), " 12.3 %");
//! ```
//!
//! ## Some operations available on specific formatted values
//!
//! ```
//! # use gstreamer as gst;
//! let cur_pos = gst::ClockTime::ZERO;
//!
//! // All four arithmetic operations can be used:
//! let fwd = cur_pos + 2 * gst::ClockTime::SECOND / 3 - gst::ClockTime::MSECOND;
//!
//! // Examples of operations which make sure not to overflow:
//! let bwd = cur_pos.saturating_sub(2 * gst::ClockTime::SECOND);
//! let further = cur_pos.checked_mul(2).expect("Overflowed");
//!
//! // Specific formatted values can be compared:
//! assert!(fwd > bwd);
//! assert_ne!(fwd, cur_pos);
//!
//! # fn next() -> gst::ClockTime { gst::ClockTime::ZERO };
//! // Use `gst::ClockTime::MAX` for the maximum valid value:
//! let mut min_pos = gst::ClockTime::MAX;
//! for _ in 0..4 {
//! min_pos = min_pos.min(next());
//! }
//!
//! // And `gst::ClockTime::ZERO` for the minimum value:
//! let mut max_pos = gst::ClockTime::ZERO;
//! for _ in 0..4 {
//! max_pos = max_pos.max(next());
//! }
//!
//! // Specific formatted values implement the `MulDiv` trait:
//! # use gst::prelude::MulDiv;
//! # let (samples, rate) = (1024u64, 48000u64);
//! let duration = samples
//! .mul_div_round(*gst::ClockTime::SECOND, rate)
//! .map(gst::ClockTime::from_nseconds);
//! ```
//!
//! ## Types in operations
//!
//! Additions and substractions are available with the specific formatted value type
//! as both left and right hand side operands.
//!
//! On the other hand, multiplications are only available with plain integers.
//! This is because multiplying a `ClockTime` by a `ClockTime` would result in
//! `ClockTime²`, whereas a `u64 * ClockTime` (or `ClockTime * u64`) still
//! results in `ClockTime`.
//!
//! Divisions are available with both the specific formatted value and plain
//! integers as right hand side operands. The difference is that
//! `ClockTime / ClockTime` results in `u64` and `ClockTime / u64` results in
//! `ClockTime`.
//!
//! # Optional specific formatted values
//!
//! Optional specific formatted values are represented as a standard Rust
//! `Option<F>`. This departs from the C APIs which uses a sentinel that must
//! be checked in order to figure out whether the value is defined.
//!
//! Besides giving access to the usual `Option` features, this ensures the APIs
//! enforce mandatory or optional variants whenever possible.
//!
//! Note: for each specific formatted value `F`, the constant `F::NONE` is defined
//! as a shortcut for `Option::<F>::None`. For `gst::ClockTime`, this constant is
//! equivalent to the C constant `GST_CLOCK_TIME_NONE`.
//!
//! ## Examples
//!
//! ### Building a seek `Event` with undefined `stop` time
//!
//! ```
//! # use gstreamer as gst;
//! # gst::init();
//! # let seek_flags = gst::SeekFlags::FLUSH | gst::SeekFlags::KEY_UNIT;
//! let seek_evt = gst::event::Seek::new(
//! 1.0f64,
//! seek_flags,
//! gst::SeekType::Set,
//! 10 * gst::ClockTime::SECOND, // start at 10s
//! gst::SeekType::Set,
//! gst::ClockTime::NONE, // stop is undefined
//! );
//! ```
//!
//! ### Displaying an optional formatted value
//!
//! Optional formatted values can take advantage of the [`Display`] implementation
//! of the base specific formatted value. We have to workaround the [orphan rule]
//! that forbids the implementation of [`Display`] for `Option<FormattedValue>`
//! though. This is why displaying an optional formatted value necessitates calling
//! [`display()`].
//!
//! ```
//! # use gstreamer as gst;
//! # use gst::prelude::Displayable;
//! let opt_time = Some(45_834_908_569_837 * gst::ClockTime::NSECOND);
//!
//! assert_eq!(format!("{}", opt_time.display()), "12:43:54.908569837");
//! assert_eq!(format!("{:.0}", opt_time.display()), "12:43:54");
//! assert_eq!(format!("{:.0}", gst::ClockTime::NONE.display()), "--:--:--");
//! ```
//!
//! ### Some operations available on optional formatted values
//!
//! ```
//! # use gstreamer as gst;
//! # use gst::prelude::*;
//! let pts = Some(gst::ClockTime::ZERO);
//! assert!(pts.is_some());
//!
//! // All four arithmetic operations can be used. Ex.:
//! let fwd = pts.opt_add(2 * gst::ClockTime::SECOND);
//! // `pts` is defined, so `fwd` will contain the addition result in `Some`,
//! assert!(fwd.is_some());
//! // otherwise `fwd` would be `None`.
//!
//! // Examples of operations which make sure not to overflow:
//! let bwd = pts.opt_saturating_sub(2 * gst::ClockTime::SECOND);
//! let further = pts.opt_checked_mul(2).expect("Overflowed");
//!
//! // Optional specific formatted values can be compared:
//! assert_eq!(fwd.opt_gt(bwd), Some(true));
//! assert_ne!(fwd, pts);
//! assert_eq!(fwd.opt_min(bwd), bwd);
//!
//! // Optional specific formatted values operations also apply to non-optional values:
//! assert_eq!(fwd.opt_lt(gst::ClockTime::SECOND), Some(false));
//! assert_eq!(gst::ClockTime::SECOND.opt_lt(fwd), Some(true));
//!
//! // Comparing a defined values to an undefined value results in `None`:
//! assert_eq!(bwd.opt_gt(gst::ClockTime::NONE), None);
//! assert_eq!(gst::ClockTime::ZERO.opt_lt(gst::ClockTime::NONE), None);
//! ```
//!
//! # Signed formatted values
//!
//! Some APIs can return a signed formatted value. See [`Segment::to_running_time_full`]
//! for an example. In Rust, we use the [`Signed`] enum wrapper around the actual
//! formatted value.
//!
//! For each signed specific formatted value `F`, the constants `F::MIN_SIGNED` and
//! `F::MAX_SIGNED` represent the minimum and maximum signed values for `F`.
//!
//! ## Examples
//!
//! ### Handling a signed formatted value
//!
//! ```
//! # use gstreamer as gst;
//! # gst::init();
//! # let segment = gst::FormattedSegment::<gst::ClockTime>::new();
//! use gst::Signed::*;
//! match segment.to_running_time_full(2 * gst::ClockTime::SECOND) {
//! Some(Positive(pos_rtime)) => println!("positive rtime {}", pos_rtime),
//! Some(Negative(pos_rtime)) => println!("negative rtime {}", pos_rtime),
//! None => println!("undefined rtime"),
//! }
//! ```
//!
//! ### Converting a formatted value into a signed formatted value
//!
//! ```
//! # use gstreamer as gst;
//! # use gst::prelude::UnsignedIntoSigned;
//! let pos = gst::ClockTime::SECOND;
//!
//! let positive_one_sec = pos.into_positive();
//! assert!(positive_one_sec.is_positive());
//!
//! let negative_one_sec = pos.into_negative();
//! assert!(negative_one_sec.is_negative());
//! ```
//!
//! ### Handling one sign only
//!
//! ```
//! # use gstreamer as gst;
//! # use gst::prelude::UnsignedIntoSigned;
//! # struct NegativeError;
//! let p_one_sec = gst::ClockTime::SECOND.into_positive();
//!
//! let one_sec = p_one_sec.positive().expect("positive");
//! let one_sec_or_zero = p_one_sec.positive().unwrap_or(gst::ClockTime::ZERO);
//!
//! let one_sec_or_err = p_one_sec.positive_or(NegativeError);
//! let one_sec_or_else_err = p_one_sec.positive_or_else(|value| {
//! println!("{} is negative", value);
//! NegativeError
//! });
//! ```
//!
//! ### Displaying a signed formatted value
//!
//! ```
//! # use gstreamer as gst;
//! # use gst::prelude::Displayable;
//! # gst::init();
//! # let mut segment = gst::FormattedSegment::<gst::ClockTime>::new();
//! # segment.set_start(10 * gst::ClockTime::SECOND);
//! let start = segment.start().unwrap();
//! assert_eq!(format!("{:.0}", start), "0:00:10");
//!
//! let p_rtime = segment.to_running_time_full(20 * gst::ClockTime::SECOND);
//! // Use `display()` with optional signed values.
//! assert_eq!(format!("{:.0}", p_rtime.display()), "+0:00:10");
//!
//! let p_rtime = segment.to_running_time_full(gst::ClockTime::ZERO);
//! assert_eq!(format!("{:.0}", p_rtime.display()), "-0:00:10");
//!
//! let p_rtime = segment.to_running_time_full(gst::ClockTime::NONE);
//! assert_eq!(format!("{:.0}", p_rtime.display()), "--:--:--");
//! ```
//!
//! ## Some operations available for signed formatted values
//!
//! All the operations available for formatted values can be used with
//! signed formatted values.
//!
//! ```
//! # use gstreamer as gst;
//! # use gst::prelude::UnsignedIntoSigned;
//! let p_one_sec = gst::ClockTime::SECOND.into_positive();
//! let p_two_sec = (2 * gst::ClockTime::SECOND).into_positive();
//! let n_one_sec = gst::ClockTime::SECOND.into_negative();
//!
//! assert_eq!(p_one_sec + p_one_sec, p_two_sec);
//! assert_eq!(p_two_sec - p_one_sec, p_one_sec);
//! assert_eq!(gst::ClockTime::ZERO - p_one_sec, n_one_sec);
//! assert_eq!(p_one_sec * 2u64, p_two_sec);
//! assert_eq!(n_one_sec * -1i64, p_one_sec);
//! assert_eq!(p_two_sec / 2u64, p_one_sec);
//! assert_eq!(p_two_sec / p_one_sec, 2);
//!
//! // Examples of operations which make sure not to overflow:
//! assert_eq!(p_one_sec.saturating_sub(p_two_sec), n_one_sec);
//! assert_eq!(p_one_sec.checked_mul(2), Some(p_two_sec));
//!
//! // Signed formatted values can be compared:
//! assert!(p_one_sec > n_one_sec);
//!
//! # fn next() -> gst::Signed<gst::ClockTime> { gst::ClockTime::ZERO.into_positive() };
//! // Use `gst::ClockTime::MAX_SIGNED` for the maximum valid signed value:
//! let mut min_signed_pos = gst::ClockTime::MAX_SIGNED;
//! for _ in 0..4 {
//! min_signed_pos = min_signed_pos.min(next());
//! }
//!
//! // And `gst::ClockTime::MIN_SIGNED` for the minimum valid signed value:
//! let mut max_signed_pos = gst::ClockTime::MIN_SIGNED;
//! for _ in 0..4 {
//! max_signed_pos = max_signed_pos.max(next());
//! }
//!
//! // Signed formatted values implement the `MulDiv` trait:
//! # use gst::prelude::MulDiv;
//! # let rate = 48000u64;
//! let samples = (1024 * gst::format::Default::ONE).into_negative();
//! let duration = samples
//! .mul_div_round(*gst::ClockTime::SECOND, rate)
//! .map(|signed_default| {
//! let signed_u64 = signed_default.into_inner_signed();
//! gst::Signed::<gst::ClockTime>::from_nseconds(signed_u64)
//! })
//! .unwrap();
//! assert!(duration.is_negative());
//! ```
//!
//! ### Some operations available for optional signed formatted values
//!
//! All the operations available for optional formatted values can be used
//! with signed formatted values.
//!
//! ```
//! # use gstreamer as gst;
//! # use gst::prelude::*;
//! let p_one_sec = gst::ClockTime::SECOND.into_positive();
//! let p_two_sec = (2 * gst::ClockTime::SECOND).into_positive();
//! let n_one_sec = gst::ClockTime::SECOND.into_negative();
//!
//! // Signed `ClockTime` addition with optional and non-optional operands.
//! assert_eq!(Some(p_one_sec).opt_add(p_one_sec), Some(p_two_sec));
//! assert_eq!(p_two_sec.opt_add(Some(n_one_sec)), Some(p_one_sec));
//!
//! // This can also be used with unsigned formatted values.
//! assert_eq!(Some(p_one_sec).opt_add(gst::ClockTime::SECOND), Some(p_two_sec));
//!
//! // Etc...
//! ```
//!
//! # Generic Formatted Values
//!
//! Sometimes, generic code can't assume a specific format will be used. For such
//! use cases, the [`GenericFormattedValue`] enum makes it possible to select
//! the appropriate behaviour at runtime.
//!
//! Most variants embed an optional specific formatted value.
//!
//! ## Example
//!
//! ### Generic handling of the position from a `SegmentDone` event
//!
//! ```
//! # use gstreamer as gst;
//! # use gst::prelude::{Displayable, ElementExtManual};
//! # gst::init();
//! # let event = gst::event::SegmentDone::new(512 * gst::format::Buffers::ONE);
//! if let gst::EventView::SegmentDone(seg_done_evt) = event.view() {
//! use gst::GenericFormattedValue::*;
//! match seg_done_evt.get() {
//! Buffers(buffers) => println!("Segment done @ {}", buffers.display()),
//! Bytes(bytes) => println!("Segment done @ {}", bytes.display()),
//! Time(time) => println!("Segment done @ {}", time.display()),
//! other => println!("Unexpected format for Segment done position {other:?}"),
//! }
//! }
//! ```
//!
//! [`GstFormat`]: https://gstreamer.freedesktop.org/documentation/gstreamer/gstformat.html?gi-language=c
//! [`ClockTime`]: struct.ClockTime.html
//! [`Buffers`]: struct.Buffers.html
//! [`Percent`]: struct.Percent.html
//! [`Display`]: https://doc.rust-lang.org/std/fmt/trait.Display.html
//! [`display()`]: ../prelude/trait.Displayable.html
//! [orphan rule]: https://doc.rust-lang.org/book/ch10-02-traits.html?highlight=orphan#implementing-a-trait-on-a-type
//! [`Segment::to_running_time_full`]: ../struct.FormattedSegment.html#method.to_running_time_full
//! [`Signed`]: enum.Signed.html
//! [`GenericFormattedValue`]: generic/enum.GenericFormattedValue.html
use thiserror::Error;
#[macro_use]
mod macros;
mod clock_time;
pub use clock_time::ClockTime;
#[cfg(feature = "serde")]
mod clock_time_serde;
mod compatible;
pub use compatible::*;
#[cfg(feature = "serde")]
mod format_serde;
mod generic;
pub use generic::*;
mod signed;
pub use signed::*;
mod specific;
pub use specific::*;
mod undefined;
pub use undefined::*;
use crate::Format;
#[derive(Clone, Copy, Debug, PartialEq, Eq, Error)]
#[error("invalid formatted value format {:?}", .0)]
pub struct FormattedValueError(Format);
pub trait FormattedValue: Copy + Clone + Sized + Into<GenericFormattedValue> + 'static {
// rustdoc-stripper-ignore-next
/// Type which allows building a `FormattedValue` of this format from any raw value.
type FullRange: FormattedValueFullRange + From<Self>;
#[doc(alias = "get_default_format")]
fn default_format() -> Format;
#[doc(alias = "get_format")]
fn format(&self) -> Format;
// rustdoc-stripper-ignore-next
/// Returns `true` if this `FormattedValue` represents a defined value.
fn is_some(&self) -> bool;
// rustdoc-stripper-ignore-next
/// Returns `true` if this `FormattedValue` represents an undefined value.
fn is_none(&self) -> bool {
!self.is_some()
}
unsafe fn into_raw_value(self) -> i64;
}
// rustdoc-stripper-ignore-next
/// A [`FormattedValue`] which can be built from any raw value.
///
/// # Examples:
///
/// - `GenericFormattedValue` is the `FormattedValueFullRange` type for `GenericFormattedValue`.
/// - `Undefined` is the `FormattedValueFullRange` type for `Undefined`.
/// - `Option<Percent>` is the `FormattedValueFullRange` type for `Percent`.
pub trait FormattedValueFullRange: FormattedValue + TryFrom<GenericFormattedValue> {
unsafe fn from_raw(format: Format, value: i64) -> Self;
}
// rustdoc-stripper-ignore-next
/// A trait implemented on the intrinsic type of a `FormattedValue`.
///
/// # Examples
///
/// - `GenericFormattedValue` is the intrinsic type for `GenericFormattedValue`.
/// - `Undefined` is the intrinsic type for `Undefined`.
/// - `Bytes` is the intrinsic type for `Option<Bytes>`.
pub trait FormattedValueIntrinsic: FormattedValue {}
pub trait FormattedValueNoneBuilder: FormattedValueFullRange {
// rustdoc-stripper-ignore-next
/// Returns the `None` value for `Self` as a `FullRange` if such a value can be represented.
///
/// - For `SpecificFormattedValue`s, this results in `Option::<FormattedValueIntrinsic>::None`.
/// - For `GenericFormattedValue`, this can only be obtained using [`Self::none_for_format`]
/// because the `None` is an inner value of some of the variants.
///
/// # Panics
///
/// Panics if `Self` is `GenericFormattedValue` in which case, the `Format` must be known.
fn none() -> Self;
// rustdoc-stripper-ignore-next
/// Returns the `None` value for `Self` if such a value can be represented.
///
/// - For `SpecificFormattedValue`s, this is the same as `Self::none()`
/// if the `format` matches the `SpecificFormattedValue`'s format.
/// - For `GenericFormattedValue` this is the variant for the specified `format`,
/// initialized with `None` as a value, if the `format` can represent that value.
///
/// # Panics
///
/// Panics if `None` can't be represented by `Self` for `format` or by the requested
/// `GenericFormattedValue` variant.
#[track_caller]
fn none_for_format(format: Format) -> Self {
skip_assert_initialized!();
// This is the default impl. `GenericFormattedValue` must override.
if Self::default_format() != format {
panic!(
"Expected: {:?}, requested {format:?}",
Self::default_format()
);
}
Self::none()
}
}
use std::fmt;
impl fmt::Display for Format {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::Undefined => f.write_str("undefined"),
Self::Default => f.write_str("default"),
Self::Bytes => f.write_str("bytes"),
Self::Time => f.write_str("time"),
Self::Buffers => f.write_str("buffers"),
Self::Percent => f.write_str("%"),
Self::__Unknown(format) => write!(f, "(format: {})", format),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::utils::Displayable;
fn with_compatible_formats<V1, V2>(
arg1: V1,
arg2: V2,
) -> Result<V2::Original, FormattedValueError>
where
V1: FormattedValue,
V2: CompatibleFormattedValue<V1>,
{
skip_assert_initialized!();
arg2.try_into_checked(arg1)
}
#[test]
fn compatible() {
assert_eq!(
with_compatible_formats(ClockTime::ZERO, ClockTime::ZERO),
Ok(ClockTime::ZERO),
);
assert_eq!(
with_compatible_formats(ClockTime::ZERO, ClockTime::NONE),
Ok(ClockTime::NONE),
);
assert_eq!(
with_compatible_formats(ClockTime::NONE, ClockTime::ZERO),
Ok(ClockTime::ZERO),
);
assert_eq!(
with_compatible_formats(
ClockTime::ZERO,
GenericFormattedValue::Time(Some(ClockTime::ZERO)),
),
Ok(GenericFormattedValue::Time(Some(ClockTime::ZERO))),
);
assert_eq!(
with_compatible_formats(
GenericFormattedValue::Time(Some(ClockTime::ZERO)),
ClockTime::NONE,
),
Ok(ClockTime::NONE),
);
}
#[test]
fn incompatible() {
with_compatible_formats(
ClockTime::ZERO,
GenericFormattedValue::Buffers(Some(42 * Buffers::ONE)),
)
.unwrap_err();
with_compatible_formats(
GenericFormattedValue::Buffers(Some(42 * Buffers::ONE)),
ClockTime::NONE,
)
.unwrap_err();
}
fn with_compatible_explicit<T, V>(arg: V, f: Format) -> Result<V::Original, FormattedValueError>
where
T: FormattedValue,
V: CompatibleFormattedValue<T>,
{
skip_assert_initialized!();
arg.try_into_checked_explicit(f)
}
#[test]
fn compatible_explicit() {
assert_eq!(
with_compatible_explicit::<ClockTime, _>(ClockTime::ZERO, Format::Time),
Ok(ClockTime::ZERO),
);
assert_eq!(
with_compatible_explicit::<ClockTime, _>(ClockTime::NONE, Format::Time),
Ok(ClockTime::NONE),
);
assert_eq!(
with_compatible_explicit::<ClockTime, _>(ClockTime::ZERO, Format::Time),
Ok(ClockTime::ZERO),
);
assert_eq!(
with_compatible_explicit::<ClockTime, _>(
GenericFormattedValue::Time(None),
Format::Time
),
Ok(GenericFormattedValue::Time(None)),
);
assert_eq!(
with_compatible_explicit::<GenericFormattedValue, _>(ClockTime::NONE, Format::Time),
Ok(ClockTime::NONE),
);
}
#[test]
fn incompatible_explicit() {
with_compatible_explicit::<Buffers, _>(GenericFormattedValue::Time(None), Format::Buffers)
.unwrap_err();
with_compatible_explicit::<GenericFormattedValue, _>(Buffers::ZERO, Format::Time)
.unwrap_err();
with_compatible_explicit::<GenericFormattedValue, _>(
GenericFormattedValue::Time(None),
Format::Buffers,
)
.unwrap_err();
}
#[test]
fn none_builder() {
let ct_none: Option<ClockTime> = Option::<ClockTime>::none();
assert!(ct_none.is_none());
let ct_none: Option<ClockTime> = Option::<ClockTime>::none_for_format(Format::Time);
assert!(ct_none.is_none());
let gen_ct_none: GenericFormattedValue =
GenericFormattedValue::none_for_format(Format::Time);
assert!(gen_ct_none.is_none());
assert!(ClockTime::ZERO.is_some());
assert!(!ClockTime::ZERO.is_none());
}
#[test]
#[should_panic]
fn none_for_inconsistent_format() {
let _ = Option::<ClockTime>::none_for_format(Format::Percent);
}
#[test]
#[should_panic]
fn none_for_unsupported_format() {
let _ = GenericFormattedValue::none_for_format(Format::Undefined);
}
#[test]
fn none_signed_builder() {
let ct_none: Option<Signed<ClockTime>> = Option::<ClockTime>::none_signed();
assert!(ct_none.is_none());
let ct_none: Option<Signed<ClockTime>> =
Option::<ClockTime>::none_signed_for_format(Format::Time);
assert!(ct_none.is_none());
let gen_ct_none: GenericSignedFormattedValue =
GenericFormattedValue::none_signed_for_format(Format::Time);
assert!(gen_ct_none.abs().is_none());
}
#[test]
fn signed_optional() {
let ct_1 = Some(ClockTime::SECOND);
let signed = ct_1.into_positive().unwrap();
assert_eq!(signed, Signed::Positive(ClockTime::SECOND));
assert!(signed.is_positive());
assert_eq!(signed.positive_or(()).unwrap(), ClockTime::SECOND);
assert_eq!(signed.positive_or_else(|_| ()).unwrap(), ClockTime::SECOND);
signed.negative_or(()).unwrap_err();
assert_eq!(
signed.negative_or_else(|val| val).unwrap_err(),
ClockTime::SECOND
);
let signed = ct_1.into_negative().unwrap();
assert_eq!(signed, Signed::Negative(ClockTime::SECOND));
assert!(signed.is_negative());
assert_eq!(signed.negative_or(()).unwrap(), ClockTime::SECOND);
assert_eq!(signed.negative_or_else(|_| ()).unwrap(), ClockTime::SECOND);
signed.positive_or(()).unwrap_err();
assert_eq!(
signed.positive_or_else(|val| val).unwrap_err(),
ClockTime::SECOND
);
let ct_none = ClockTime::NONE;
assert!(ct_none.into_positive().is_none());
assert!(ct_none.into_negative().is_none());
}
#[test]
fn signed_mandatory() {
let ct_1 = ClockTime::SECOND;
let signed = ct_1.into_positive();
assert_eq!(signed, Signed::Positive(ct_1));
assert!(signed.is_positive());
assert_eq!(signed.positive(), Some(ct_1));
assert!(!signed.is_negative());
assert!(signed.negative().is_none());
assert_eq!(signed.signum(), 1);
let signed = ct_1.into_negative();
assert_eq!(signed, Signed::Negative(ct_1));
assert!(signed.is_negative());
assert_eq!(signed.negative(), Some(ct_1));
assert!(!signed.is_positive());
assert!(signed.positive().is_none());
assert_eq!(signed.signum(), -1);
let signed = Default::ONE.into_positive();
assert_eq!(signed, Signed::Positive(Default::ONE));
assert!(signed.is_positive());
assert_eq!(signed.positive(), Some(Default::ONE));
assert!(!signed.is_negative());
assert!(signed.negative().is_none());
assert_eq!(signed.signum(), 1);
let signed = Default::ONE.into_negative();
assert_eq!(signed, Signed::Negative(Default::ONE));
assert!(signed.is_negative());
assert_eq!(signed.negative(), Some(Default::ONE));
assert!(!signed.is_positive());
assert!(signed.positive().is_none());
assert_eq!(signed.signum(), -1);
let ct_zero = ClockTime::ZERO;
let p_ct_zero = ct_zero.into_positive();
assert!(p_ct_zero.is_positive());
assert!(!p_ct_zero.is_negative());
assert_eq!(p_ct_zero.signum(), 0);
let n_ct_zero = ct_zero.into_negative();
assert!(n_ct_zero.is_negative());
assert!(!n_ct_zero.is_positive());
assert_eq!(n_ct_zero.signum(), 0);
}
#[test]
fn signed_generic() {
let ct_1 = GenericFormattedValue::Time(Some(ClockTime::SECOND));
assert!(ct_1.is_some());
let signed = ct_1.into_positive();
assert_eq!(
signed,
GenericSignedFormattedValue::Time(Some(Signed::Positive(ClockTime::SECOND))),
);
assert_eq!(signed.is_positive(), Some(true));
assert_eq!(signed.is_negative(), Some(false));
assert_eq!(signed.signum(), Some(1));
let signed = ct_1.into_negative();
assert_eq!(
signed,
GenericSignedFormattedValue::Time(Some(Signed::Negative(ClockTime::SECOND))),
);
assert_eq!(signed.is_negative(), Some(true));
assert_eq!(signed.is_positive(), Some(false));
assert_eq!(signed.signum(), Some(-1));
let ct_none = GenericFormattedValue::Time(ClockTime::NONE);
assert!(ct_none.is_none());
let signed = ct_none.into_positive();
assert_eq!(signed, GenericSignedFormattedValue::Time(None),);
assert!(signed.is_positive().is_none());
assert!(signed.is_negative().is_none());
assert!(signed.signum().is_none());
let signed = ct_none.into_negative();
assert_eq!(signed, GenericSignedFormattedValue::Time(None),);
assert!(signed.is_negative().is_none());
assert!(signed.is_positive().is_none());
assert!(signed.signum().is_none());
let ct_zero = GenericFormattedValue::Time(Some(ClockTime::ZERO));
assert!(ct_zero.is_some());
let signed = ct_zero.into_positive();
assert_eq!(
signed,
GenericSignedFormattedValue::Time(Some(Signed::Positive(ClockTime::ZERO))),
);
assert_eq!(signed.is_positive(), Some(true));
assert_eq!(signed.is_negative(), Some(false));
assert_eq!(signed.signum(), Some(0));
}
#[test]
fn signed_roundtrip() {
let ct_1 = Some(ClockTime::SECOND);
let raw_ct_1 = unsafe { ct_1.into_raw_value() };
let signed = unsafe { Option::<ClockTime>::from_raw(Format::Time, raw_ct_1) }
.into_signed(1)
.unwrap();
assert_eq!(signed, Signed::Positive(ClockTime::SECOND));
assert!(signed.is_positive());
let signed = unsafe { Option::<ClockTime>::from_raw(Format::Time, raw_ct_1) }
.into_signed(-1)
.unwrap();
assert_eq!(signed, Signed::Negative(ClockTime::SECOND));
assert!(signed.is_negative());
let ct_none = ClockTime::NONE;
let raw_ct_none = unsafe { ct_none.into_raw_value() };
let signed =
unsafe { Option::<ClockTime>::from_raw(Format::Time, raw_ct_none) }.into_signed(1);
assert!(signed.is_none());
let signed =
unsafe { Option::<ClockTime>::from_raw(Format::Time, raw_ct_none) }.into_signed(-1);
assert!(signed.is_none());
}
#[test]
fn display_new_types() {
let bytes = 42 * Bytes::ONE;
assert_eq!(&format!("{bytes}"), "42 bytes");
assert_eq!(&format!("{}", bytes.display()), "42 bytes");
assert_eq!(&format!("{}", Some(bytes).display()), "42 bytes");
assert_eq!(&format!("{}", Bytes::NONE.display()), "undef. bytes");
let gv_1 = GenericFormattedValue::Percent(Some(42 * Percent::ONE));
assert_eq!(&format!("{gv_1}"), "42 %");
assert_eq!(
&format!("{}", GenericFormattedValue::Percent(None)),
"undef. %"
);
let percent = Percent::try_from(0.1234).unwrap();
assert_eq!(&format!("{percent}"), "12.34 %");
assert_eq!(&format!("{percent:5.1}"), " 12.3 %");
let other: Other = 42.try_into().unwrap();
assert_eq!(&format!("{other}"), "42");
let g_other = GenericFormattedValue::new(Format::__Unknown(128), 42);
assert_eq!(&format!("{g_other}"), "42 (format: 128)");
assert_eq!(&format!("{}", g_other.display()), "42 (format: 128)");
let g_other_none = GenericFormattedValue::Other(Format::__Unknown(128), None);
assert_eq!(&format!("{g_other_none}"), "undef. (format: 128)");
assert_eq!(
&format!("{}", g_other_none.display()),
"undef. (format: 128)"
);
}
#[test]
fn display_signed() {
let bytes_42 = 42 * Bytes::ONE;
let p_bytes = bytes_42.into_positive();
assert_eq!(&format!("{p_bytes}"), "+42 bytes");
assert_eq!(&format!("{}", p_bytes.display()), "+42 bytes");
let some_p_bytes = Some(p_bytes);
assert_eq!(&format!("{}", some_p_bytes.display()), "+42 bytes");
let p_some_bytes = Signed::Positive(Some(bytes_42));
assert_eq!(&format!("{}", p_some_bytes.display()), "+42 bytes");
let n_bytes = bytes_42.into_negative();
assert_eq!(&format!("{n_bytes}"), "-42 bytes");
assert_eq!(&format!("{}", n_bytes.display()), "-42 bytes");
let some_n_bytes = Some(n_bytes);
assert_eq!(&format!("{}", some_n_bytes.display()), "-42 bytes");
let n_some_bytes = Signed::Negative(Some(bytes_42));
assert_eq!(&format!("{}", n_some_bytes.display()), "-42 bytes");
let p_none_bytes = Signed::Positive(Bytes::NONE);
assert_eq!(&format!("{}", p_none_bytes.display()), "undef. bytes");
let n_none_bytes = Signed::Negative(Bytes::NONE);
assert_eq!(&format!("{}", n_none_bytes.display()), "undef. bytes");
let none_s_bytes = Option::<Signed<Bytes>>::None;
assert_eq!(&format!("{}", none_s_bytes.display()), "undef. bytes");
let ct_1 = 45_834_908_569_837 * ClockTime::NSECOND;
assert_eq!(&format!("{ct_1}"), "12:43:54.908569837");
assert_eq!(&format!("{}", ct_1.display()), "12:43:54.908569837");
let g_ct_1 = GenericFormattedValue::Time(Some(ct_1));
assert_eq!(&format!("{g_ct_1}"), "12:43:54.908569837");
assert_eq!(&format!("{}", g_ct_1.display()), "12:43:54.908569837");
let p_g_ct1 = g_ct_1.into_positive();
assert_eq!(&format!("{p_g_ct1}"), "+12:43:54.908569837");
assert_eq!(&format!("{}", p_g_ct1.display()), "+12:43:54.908569837");
let n_g_ct1 = g_ct_1.into_negative();
assert_eq!(&format!("{n_g_ct1}"), "-12:43:54.908569837");
assert_eq!(&format!("{}", n_g_ct1.display()), "-12:43:54.908569837");
}
}