gstreamer-rs/examples/src/bin/gtksink.rs

180 lines
7.5 KiB
Rust

// This example demonstrates how to use gstreamer in conjunction with the gtk widget toolkit.
// This example shows the video produced by a videotestsrc within a small gtk gui.
// For this, the gtkglsink is used, which creates a gtk widget one can embed the gtk gui.
// For this, there multiple types of widgets. gtkglsink uses OpenGL to render frames, and
// gtksink uses the CPU to render the frames (which is way slower).
// So the example application first tries to use OpenGL, and when that fails, fall back.
// The pipeline looks like the following:
// gtk-gui: {gtkglsink}-widget
// (|)
// {videotestsrc} - {glsinkbin}
use std::cell::RefCell;
use gio::prelude::*;
use gst::prelude::*;
use gtk::prelude::*;
fn create_ui(app: &gtk::Application) {
let pipeline = gst::Pipeline::default();
let src = gst::ElementFactory::make("videotestsrc").build().unwrap();
// Create the gtk sink and retrieve the widget from it. The sink element will be used
// in the pipeline, and the widget will be embedded in our gui.
// Gstreamer then displays frames in the gtk widget.
// First, we try to use the OpenGL version - and if that fails, we fall back to non-OpenGL.
let (sink, widget) = if let Ok(gtkglsink) = gst::ElementFactory::make("gtkglsink").build() {
// Using the OpenGL widget succeeded, so we are in for a nice playback experience with
// low cpu usage. :)
// The gtkglsink essentially allocates an OpenGL texture on the GPU, that it will display.
// Now we create the glsinkbin element, which is responsible for conversions and for uploading
// video frames to our texture (if they are not already in the GPU). Now we tell the OpenGL-sink
// about our gtkglsink element, form where it will retrieve the OpenGL texture to fill.
let glsinkbin = gst::ElementFactory::make("glsinkbin")
.property("sink", &gtkglsink)
.build()
.unwrap();
// The gtkglsink creates the gtk widget for us. This is accessible through a property.
// So we get it and use it later to add it to our gui.
let widget = gtkglsink.property::<gtk::Widget>("widget");
(glsinkbin, widget)
} else {
// Unfortunately, using the OpenGL widget didn't work out, so we will have to render
// our frames manually, using the CPU. An example why this may fail is, when
// the PC doesn't have proper graphics drivers installed.
let sink = gst::ElementFactory::make("gtksink").build().unwrap();
// The gtksink creates the gtk widget for us. This is accessible through a property.
// So we get it and use it later to add it to our gui.
let widget = sink.property::<gtk::Widget>("widget");
(sink, widget)
};
pipeline.add_many(&[&src, &sink]).unwrap();
src.link(&sink).unwrap();
// Create a simple gtk gui window to place our widget into.
let window = gtk::Window::new(gtk::WindowType::Toplevel);
window.set_default_size(320, 240);
let vbox = gtk::Box::new(gtk::Orientation::Vertical, 0);
// Add our widget to the gui
vbox.pack_start(&widget, true, true, 0);
let label = gtk::Label::new(Some("Position: 00:00:00"));
vbox.pack_start(&label, true, true, 5);
window.add(&vbox);
window.show_all();
app.add_window(&window);
// Need to move a new reference into the closure.
// !!ATTENTION!!:
// It might seem appealing to use pipeline.clone() here, because that greatly
// simplifies the code within the callback. What this actually does, however, is creating
// a memory leak. The clone of a pipeline is a new strong reference on the pipeline.
// Storing this strong reference of the pipeline within the callback (we are moving it in!),
// which is in turn stored in another strong reference on the pipeline is creating a
// reference cycle.
// DO NOT USE pipeline.clone() TO USE THE PIPELINE WITHIN A CALLBACK
let pipeline_weak = pipeline.downgrade();
// Add a timeout to the main loop that will periodically (every 500ms) be
// executed. This will query the current position within the stream from
// the underlying pipeline, and display it in our gui.
// Since this closure is called by the mainloop thread, we are allowed
// to modify the gui widgets here.
let timeout_id = glib::timeout_add_local(std::time::Duration::from_millis(500), move || {
// Here we temporarily retrieve a strong reference on the pipeline from the weak one
// we moved into this callback.
let pipeline = match pipeline_weak.upgrade() {
Some(pipeline) => pipeline,
None => return glib::Continue(true),
};
// Query the current playing position from the underlying pipeline.
let position = pipeline.query_position::<gst::ClockTime>();
// Display the playing position in the gui.
label.set_text(&format!("Position: {:.0}", position.display()));
// Tell the callback to continue calling this closure.
glib::Continue(true)
});
let bus = pipeline.bus().unwrap();
pipeline
.set_state(gst::State::Playing)
.expect("Unable to set the pipeline to the `Playing` state");
let app_weak = app.downgrade();
bus.add_watch_local(move |_, msg| {
use gst::MessageView;
let app = match app_weak.upgrade() {
Some(app) => app,
None => return glib::Continue(false),
};
match msg.view() {
MessageView::Eos(..) => app.quit(),
MessageView::Error(err) => {
println!(
"Error from {:?}: {} ({:?})",
err.src().map(|s| s.path_string()),
err.error(),
err.debug()
);
app.quit();
}
_ => (),
};
glib::Continue(true)
})
.expect("Failed to add bus watch");
// Pipeline reference is owned by the closure below, so will be
// destroyed once the app is destroyed
let timeout_id = RefCell::new(Some(timeout_id));
let pipeline = RefCell::new(Some(pipeline));
app.connect_shutdown(move |_| {
// Optional, by manually destroying the window here we ensure that
// the gst element is destroyed when shutting down instead of having to wait
// for the process to terminate, allowing us to use the leaks tracer.
unsafe {
window.destroy();
}
// GTK will keep the Application alive for the whole process lifetime.
// Wrapping the pipeline in a RefCell<Option<_>> and removing it from it here
// ensures the pipeline is actually destroyed when shutting down, allowing us
// to use the leaks tracer for example.
if let Some(pipeline) = pipeline.borrow_mut().take() {
pipeline
.set_state(gst::State::Null)
.expect("Unable to set the pipeline to the `Null` state");
pipeline.bus().unwrap().remove_watch().unwrap();
}
if let Some(timeout_id) = timeout_id.borrow_mut().take() {
timeout_id.remove();
}
});
}
fn main() -> glib::ExitCode {
// Initialize gstreamer and the gtk widget toolkit libraries.
gst::init().unwrap();
gtk::init().unwrap();
let res = {
let app = gtk::Application::new(None, gio::ApplicationFlags::FLAGS_NONE);
app.connect_activate(create_ui);
app.run()
};
// Optional, can be used to detect leaks using the leaks tracer
unsafe {
gst::deinit();
}
res
}