mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer-rs.git
synced 2024-11-15 14:02:32 +00:00
a1165a7456
And also implement the Default trait for them.
250 lines
10 KiB
Rust
250 lines
10 KiB
Rust
// This example demonstrates how to overlay a video using the cairo
|
|
// library. For this, the cairooverlay element is used on a video stream.
|
|
// Additionally, this example uses functionality of the pango library, which handles
|
|
// text layouting. The pangocairo crate is a nice wrapper combining both libraries
|
|
// into a nice interface.
|
|
// The drawing surface which the cairooverlay element creates internally can then
|
|
// normally be drawn on using the cairo library.
|
|
// The operated pipeline looks like this:
|
|
|
|
// {videotestsrc} - {cairooverlay} - {capsfilter} - {videoconvert} - {autovideosink}
|
|
// The capsfilter element allows us to dictate the video resolution we want for the
|
|
// videotestsrc and the cairooverlay element.
|
|
|
|
use gst::prelude::*;
|
|
|
|
use pango::prelude::*;
|
|
|
|
use std::ops;
|
|
use std::sync::{Arc, Mutex};
|
|
|
|
use anyhow::Error;
|
|
use derive_more::{Display, Error};
|
|
|
|
#[path = "../examples-common.rs"]
|
|
mod examples_common;
|
|
|
|
#[derive(Debug, Display, Error)]
|
|
#[display(fmt = "Received error from {}: {} (debug: {:?})", src, error, debug)]
|
|
struct ErrorMessage {
|
|
src: String,
|
|
error: String,
|
|
debug: Option<String>,
|
|
source: glib::Error,
|
|
}
|
|
|
|
struct DrawingContext {
|
|
layout: LayoutWrapper,
|
|
info: Option<gst_video::VideoInfo>,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct LayoutWrapper(pango::Layout);
|
|
|
|
impl ops::Deref for LayoutWrapper {
|
|
type Target = pango::Layout;
|
|
|
|
fn deref(&self) -> &pango::Layout {
|
|
assert_eq!(self.0.ref_count(), 1);
|
|
&self.0
|
|
}
|
|
}
|
|
|
|
// SAFETY: We ensure that there are never multiple references to the layout.
|
|
unsafe impl Send for LayoutWrapper {}
|
|
|
|
fn create_pipeline() -> Result<gst::Pipeline, Error> {
|
|
gst::init()?;
|
|
|
|
let pipeline = gst::Pipeline::default();
|
|
let src = gst::ElementFactory::make("videotestsrc")
|
|
// The videotestsrc supports multiple test patterns. In this example, we will use the
|
|
// pattern with a white ball moving around the video's center point.
|
|
.property_from_str("pattern", "ball")
|
|
.build()?;
|
|
let overlay = gst::ElementFactory::make("cairooverlay").build()?;
|
|
|
|
// Plug in a capsfilter element that will force the videotestsrc and the cairooverlay to work
|
|
// with images of the size 800x800.
|
|
let caps = gst_video::VideoCapsBuilder::new()
|
|
.width(800)
|
|
.height(800)
|
|
.build();
|
|
let capsfilter = gst::ElementFactory::make("capsfilter")
|
|
.property("caps", &caps)
|
|
.build()?;
|
|
|
|
let videoconvert = gst::ElementFactory::make("videoconvert").build()?;
|
|
let sink = gst::ElementFactory::make("autovideosink").build()?;
|
|
|
|
pipeline.add_many(&[&src, &overlay, &capsfilter, &videoconvert, &sink])?;
|
|
gst::Element::link_many(&[&src, &overlay, &capsfilter, &videoconvert, &sink])?;
|
|
|
|
// The PangoFontMap represents the set of fonts available for a particular rendering system.
|
|
let fontmap = pangocairo::FontMap::new();
|
|
// Create a new pango layouting context for the fontmap.
|
|
let context = fontmap.create_context();
|
|
// Create a pango layout object. This object is a string of text we want to layout.
|
|
// It is wrapped in a LayoutWrapper (defined above) to be able to send it across threads.
|
|
let layout = LayoutWrapper(pango::Layout::new(&context));
|
|
|
|
// Select the text content and the font we want to use for the piece of text.
|
|
let font_desc = pango::FontDescription::from_string("Sans Bold 26");
|
|
layout.set_font_description(Some(&font_desc));
|
|
layout.set_text("GStreamer");
|
|
|
|
// The following is a context struct (containing the pango layout and the configured video info).
|
|
// We have to wrap it in an Arc (or Rc) to get reference counting, that is: to be able to have
|
|
// shared ownership of it in multiple different places (the two signal handlers here).
|
|
// We have to wrap it in a Mutex because Rust's type-system can't know that both signals are
|
|
// only ever called from a single thread (the streaming thread). It would be enough to have
|
|
// something that is Send in theory but that's not how signal handlers are generated unfortunately.
|
|
// The Mutex (or otherwise if we didn't need the Sync bound we could use a RefCell) is to implement
|
|
// interior mutability (see Rust docs). Via this we can get a mutable reference to the contained
|
|
// data which is checked at runtime for uniqueness (blocking in case of mutex, panic in case
|
|
// of refcell) instead of compile-time (like with normal references).
|
|
let drawer = Arc::new(Mutex::new(DrawingContext { layout, info: None }));
|
|
|
|
let drawer_clone = drawer.clone();
|
|
// Connect to the cairooverlay element's "draw" signal, which is emitted for
|
|
// each videoframe piped through the element. Here we have the possibility to
|
|
// draw on top of the frame (overlay it), using the cairo render api.
|
|
// Signals connected with the connect(<name>, ...) API get their arguments
|
|
// passed as array of glib::Value. For a documentation about the actual arguments
|
|
// it is always a good idea to either check the element's signals using either
|
|
// gst-inspect, or the online documentation.
|
|
overlay.connect("draw", false, move |args| {
|
|
use std::f64::consts::PI;
|
|
|
|
let drawer = &drawer_clone;
|
|
let drawer = drawer.lock().unwrap();
|
|
|
|
// Get the signal's arguments
|
|
let _overlay = args[0].get::<gst::Element>().unwrap();
|
|
// This is the cairo context. This is the root of all of cairo's
|
|
// drawing functionality.
|
|
let cr = args[1].get::<cairo::Context>().unwrap();
|
|
let timestamp = args[2].get::<gst::ClockTime>().unwrap();
|
|
let _duration = args[3].get::<gst::ClockTime>().unwrap();
|
|
|
|
let info = drawer.info.as_ref().unwrap();
|
|
let layout = &drawer.layout;
|
|
|
|
let angle = 2.0 * PI * (timestamp % (10 * gst::ClockTime::SECOND)).nseconds() as f64
|
|
/ (10.0 * gst::ClockTime::SECOND.nseconds() as f64);
|
|
|
|
// The image we draw (the text) will be static, but we will change the
|
|
// transformation on the drawing context, which rotates and shifts everything
|
|
// that we draw afterwards. Like this, we have no complicated calulations
|
|
// in the actual drawing below.
|
|
// Calling multiple transformation methods after each other will apply the
|
|
// new transformation on top. If you repeat the cr.rotate(angle) line below
|
|
// this a second time, everything in the canvas will rotate twice as fast.
|
|
cr.translate(
|
|
f64::from(info.width()) / 2.0,
|
|
f64::from(info.height()) / 2.0,
|
|
);
|
|
cr.rotate(angle);
|
|
|
|
// This loop will render 10 times the string "GStreamer" in a circle
|
|
for i in 0..10 {
|
|
// Cairo, like most rendering frameworks, is using a stack for transformations
|
|
// with this, we push our current transformation onto this stack - allowing us
|
|
// to make temporary changes / render something / and then returning to the
|
|
// previous transformations.
|
|
cr.save().expect("Failed to save state");
|
|
|
|
let angle = (360. * f64::from(i)) / 10.0;
|
|
let red = (1.0 + f64::cos((angle - 60.0) * PI / 180.0)) / 2.0;
|
|
cr.set_source_rgb(red, 0.0, 1.0 - red);
|
|
cr.rotate(angle * PI / 180.0);
|
|
|
|
// Update the text layout. This function is only updating pango's internal state.
|
|
// So e.g. that after a 90 degree rotation it knows that what was previously going
|
|
// to end up as a 200x100 rectangle would now be 100x200.
|
|
pangocairo::functions::update_layout(&cr, &**layout);
|
|
let (width, _height) = layout.size();
|
|
// Using width and height of the text, we can properly possition it within
|
|
// our canvas.
|
|
cr.move_to(
|
|
-(f64::from(width) / f64::from(pango::SCALE)) / 2.0,
|
|
-(f64::from(info.height())) / 2.0,
|
|
);
|
|
// After telling the layout object where to draw itself, we actually tell
|
|
// it to draw itself into our cairo context.
|
|
pangocairo::functions::show_layout(&cr, &**layout);
|
|
|
|
// Here we go one step up in our stack of transformations, removing any
|
|
// changes we did to them since the last call to cr.save();
|
|
cr.restore().expect("Failed to restore state");
|
|
}
|
|
|
|
None
|
|
});
|
|
|
|
// Add a signal handler to the overlay's "caps-changed" signal. This could e.g.
|
|
// be called when the sink that we render to does not support resizing the image
|
|
// itself - but the user just changed the window-size. The element after the overlay
|
|
// will then change its caps and we use the notification about this change to
|
|
// resize our canvas's size.
|
|
// Another possibility for when this might happen is, when our video is a network
|
|
// stream that dynamically changes resolution when enough bandwith is available.
|
|
overlay.connect("caps-changed", false, move |args| {
|
|
let _overlay = args[0].get::<gst::Element>().unwrap();
|
|
let caps = args[1].get::<gst::Caps>().unwrap();
|
|
|
|
let mut drawer = drawer.lock().unwrap();
|
|
drawer.info = Some(gst_video::VideoInfo::from_caps(&caps).unwrap());
|
|
|
|
None
|
|
});
|
|
|
|
Ok(pipeline)
|
|
}
|
|
|
|
fn main_loop(pipeline: gst::Pipeline) -> Result<(), Error> {
|
|
pipeline.set_state(gst::State::Playing)?;
|
|
|
|
let bus = pipeline
|
|
.bus()
|
|
.expect("Pipeline without bus. Shouldn't happen!");
|
|
|
|
for msg in bus.iter_timed(gst::ClockTime::NONE) {
|
|
use gst::MessageView;
|
|
|
|
match msg.view() {
|
|
MessageView::Eos(..) => break,
|
|
MessageView::Error(err) => {
|
|
pipeline.set_state(gst::State::Null)?;
|
|
return Err(ErrorMessage {
|
|
src: msg
|
|
.src()
|
|
.map(|s| String::from(s.path_string()))
|
|
.unwrap_or_else(|| String::from("None")),
|
|
error: err.error().to_string(),
|
|
debug: err.debug(),
|
|
source: err.error(),
|
|
}
|
|
.into());
|
|
}
|
|
_ => (),
|
|
}
|
|
}
|
|
|
|
pipeline.set_state(gst::State::Null)?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn example_main() {
|
|
match create_pipeline().and_then(main_loop) {
|
|
Ok(r) => r,
|
|
Err(e) => eprintln!("Error! {}", e),
|
|
}
|
|
}
|
|
|
|
fn main() {
|
|
// tutorials_common::run is only required to set up the application environment on macOS
|
|
// (but not necessary in normal Cocoa applications where this is set up automatically)
|
|
examples_common::run(example_main);
|
|
}
|