gstreamer-rs/gstreamer/src/format/clock_time.rs
Bilal Elmoussaoui 4ebec84f5e Adapt to no longer renamed ffi crates
Allows us to set all the crates in the main workspace file, so changing
their versions or branch is much simpler and reduce the amount of noise
in the diff

Part-of: <https://gitlab.freedesktop.org/gstreamer/gstreamer-rs/-/merge_requests/1450>
2024-06-02 11:20:55 +02:00

1817 lines
63 KiB
Rust

// Take a look at the license at the top of the repository in the LICENSE file.
use std::{
fmt,
io::{self, prelude::*},
time::Duration,
};
use crate::{ffi, prelude::*};
use glib::translate::*;
use super::{
Format, FormattedValue, FormattedValueError, FormattedValueFullRange, FormattedValueIntrinsic,
FormattedValueNoneBuilder, GenericFormattedValue, Signed, SpecificFormattedValue,
SpecificFormattedValueFullRange, SpecificFormattedValueIntrinsic,
};
const TRY_FROM_FLOAT_SECS_ERROR_MSG: &str =
"can not convert float seconds to ClockTime: value is either negative, too big or NaN";
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct TryFromFloatSecsError;
impl fmt::Display for TryFromFloatSecsError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(TRY_FROM_FLOAT_SECS_ERROR_MSG)
}
}
impl std::error::Error for TryFromFloatSecsError {}
#[derive(PartialEq, Eq, PartialOrd, Ord, Hash, Clone, Copy, Default)]
pub struct ClockTime(u64);
impl ClockTime {
#[doc(alias = "GST_SECOND")]
pub const SECOND: ClockTime = ClockTime(1_000_000_000);
#[doc(alias = "GST_MSECOND")]
pub const MSECOND: ClockTime = ClockTime(1_000_000);
#[doc(alias = "GST_USECOND")]
pub const USECOND: ClockTime = ClockTime(1_000);
#[doc(alias = "GST_NSECOND")]
pub const NSECOND: ClockTime = ClockTime(1);
// checker-ignore-item
pub const MAX: ClockTime = ClockTime(ffi::GST_CLOCK_TIME_NONE - 1);
#[inline]
pub const fn hours(self) -> u64 {
self.0 / Self::SECOND.0 / 60 / 60
}
#[inline]
pub const fn minutes(self) -> u64 {
self.0 / Self::SECOND.0 / 60
}
#[inline]
pub const fn seconds(self) -> u64 {
self.0 / Self::SECOND.0
}
#[inline]
pub fn seconds_f32(self) -> f32 {
self.0 as f32 / Self::SECOND.0 as f32
}
#[inline]
pub fn seconds_f64(self) -> f64 {
self.0 as f64 / Self::SECOND.0 as f64
}
#[inline]
pub const fn mseconds(self) -> u64 {
self.0 / Self::MSECOND.0
}
#[inline]
pub const fn useconds(self) -> u64 {
self.0 / Self::USECOND.0
}
#[inline]
pub const fn nseconds(self) -> u64 {
self.0
}
// rustdoc-stripper-ignore-next
/// Builds a new `ClockTime` which value is the given number of seconds.
///
/// # Panics
///
/// Panics if the resulting duration in nanoseconds exceeds the `u64` range.
#[track_caller]
#[inline]
pub const fn from_seconds(seconds: u64) -> Self {
skip_assert_initialized!();
// `Option::expect` is not `const` as of rustc 1.63.0.
ClockTime(match seconds.checked_mul(Self::SECOND.0) {
Some(res) => res,
None => panic!("Out of `ClockTime` range"),
})
}
// rustdoc-stripper-ignore-next
/// Builds a new `ClockTime` which value is the given number of seconds.
///
/// Returns an error if seconds is negative, infinite or NaN, or
/// the resulting duration in nanoseconds exceeds the `u64` range.
#[inline]
pub fn try_from_seconds_f32(seconds: f32) -> Result<Self, TryFromFloatSecsError> {
skip_assert_initialized!();
let dur = Duration::try_from_secs_f32(seconds).map_err(|_| TryFromFloatSecsError)?;
ClockTime::try_from(dur).map_err(|_| TryFromFloatSecsError)
}
// rustdoc-stripper-ignore-next
/// Builds a new `ClockTime` which value is the given number of seconds.
///
/// # Panics
///
/// Panics if seconds is negative, infinite or NaN, or the resulting duration
/// in nanoseconds exceeds the `u64` range.
#[track_caller]
#[inline]
pub fn from_seconds_f32(seconds: f32) -> Self {
skip_assert_initialized!();
Self::try_from_seconds_f32(seconds).expect(TRY_FROM_FLOAT_SECS_ERROR_MSG)
}
// rustdoc-stripper-ignore-next
/// Builds a new `ClockTime` which value is the given number of seconds.
///
/// Returns an error if seconds is negative, infinite or NaN, or
/// the resulting duration in nanoseconds exceeds the `u64` range.
#[inline]
pub fn try_from_seconds_f64(seconds: f64) -> Result<Self, TryFromFloatSecsError> {
skip_assert_initialized!();
let dur = Duration::try_from_secs_f64(seconds).map_err(|_| TryFromFloatSecsError)?;
ClockTime::try_from(dur).map_err(|_| TryFromFloatSecsError)
}
// rustdoc-stripper-ignore-next
/// Builds a new `ClockTime` which value is the given number of seconds.
///
/// # Panics
///
/// Panics if seconds is negative, infinite or NaN, or the resulting duration
/// in nanoseconds exceeds the `u64` range.
#[track_caller]
#[inline]
pub fn from_seconds_f64(seconds: f64) -> Self {
skip_assert_initialized!();
Self::try_from_seconds_f64(seconds).expect(TRY_FROM_FLOAT_SECS_ERROR_MSG)
}
// rustdoc-stripper-ignore-next
/// Builds a new `ClockTime` which value is the given number of milliseconds.
///
/// # Panics
///
/// Panics if the resulting duration in nanoseconds exceeds the `u64` range.
#[track_caller]
#[inline]
pub const fn from_mseconds(mseconds: u64) -> Self {
skip_assert_initialized!();
// `Option::expect` is not `const` as of rustc 1.63.0.
ClockTime(match mseconds.checked_mul(Self::MSECOND.0) {
Some(res) => res,
None => panic!("Out of `ClockTime` range"),
})
}
// rustdoc-stripper-ignore-next
/// Builds a new `ClockTime` which value is the given number of microseconds.
///
/// # Panics
///
/// Panics if the resulting duration in nanoseconds exceeds the `u64` range.
#[track_caller]
#[inline]
pub const fn from_useconds(useconds: u64) -> Self {
skip_assert_initialized!();
// `Option::expect` is not `const` as of rustc 1.63.0.
ClockTime(match useconds.checked_mul(Self::USECOND.0) {
Some(res) => res,
None => panic!("Out of `ClockTime` range"),
})
}
// rustdoc-stripper-ignore-next
/// Builds a new `ClockTime` which value is the given number of nanoseconds.
///
/// # Panics
///
/// Panics if the requested duration equals `GST_CLOCK_TIME_NONE`
/// (`u64::MAX`).
#[track_caller]
#[inline]
pub const fn from_nseconds(nseconds: u64) -> Self {
skip_assert_initialized!();
assert!(
nseconds != ffi::GST_CLOCK_TIME_NONE,
"Attempt to build a `ClockTime` with value `GST_CLOCK_TIME_NONE`",
);
ClockTime(nseconds * Self::NSECOND.0)
}
}
impl Signed<ClockTime> {
// rustdoc-stripper-ignore-next
/// Returns the `self` in nanoseconds.
#[inline]
pub fn nseconds(self) -> Signed<u64> {
match self {
Signed::Positive(val) => Signed::Positive(val.nseconds()),
Signed::Negative(val) => Signed::Negative(val.nseconds()),
}
}
// rustdoc-stripper-ignore-next
/// Creates new value from nanoseconds.
#[inline]
pub fn from_nseconds(val: Signed<u64>) -> Self {
skip_assert_initialized!();
match val {
Signed::Positive(val) => Signed::Positive(ClockTime::from_nseconds(val)),
Signed::Negative(val) => Signed::Negative(ClockTime::from_nseconds(val)),
}
}
// rustdoc-stripper-ignore-next
/// Returns the `self` in microseconds.
#[inline]
pub fn useconds(self) -> Signed<u64> {
match self {
Signed::Positive(val) => Signed::Positive(val.useconds()),
Signed::Negative(val) => Signed::Negative(val.useconds()),
}
}
// rustdoc-stripper-ignore-next
/// Creates new value from microseconds.
#[inline]
pub fn from_useconds(val: Signed<u64>) -> Self {
skip_assert_initialized!();
match val {
Signed::Positive(val) => Signed::Positive(ClockTime::from_useconds(val)),
Signed::Negative(val) => Signed::Negative(ClockTime::from_useconds(val)),
}
}
// rustdoc-stripper-ignore-next
/// Returns the `self` in milliseconds.
#[inline]
pub fn mseconds(self) -> Signed<u64> {
match self {
Signed::Positive(val) => Signed::Positive(val.mseconds()),
Signed::Negative(val) => Signed::Negative(val.mseconds()),
}
}
// rustdoc-stripper-ignore-next
/// Creates new value from milliseconds.
#[inline]
pub fn from_mseconds(val: Signed<u64>) -> Self {
skip_assert_initialized!();
match val {
Signed::Positive(val) => Signed::Positive(ClockTime::from_mseconds(val)),
Signed::Negative(val) => Signed::Negative(ClockTime::from_mseconds(val)),
}
}
// rustdoc-stripper-ignore-next
/// Returns the `self` in seconds.
#[inline]
pub fn seconds(self) -> Signed<u64> {
match self {
Signed::Positive(val) => Signed::Positive(val.seconds()),
Signed::Negative(val) => Signed::Negative(val.seconds()),
}
}
// rustdoc-stripper-ignore-next
/// Returns the `self` in f32 seconds.
#[inline]
pub fn seconds_f32(self) -> f32 {
match self {
Signed::Positive(val) => val.seconds_f32(),
Signed::Negative(val) => -val.seconds_f32(),
}
}
// rustdoc-stripper-ignore-next
/// Returns the `self` in f64 seconds.
#[inline]
pub fn seconds_f64(self) -> f64 {
match self {
Signed::Positive(val) => val.seconds_f64(),
Signed::Negative(val) => -val.seconds_f64(),
}
}
// rustdoc-stripper-ignore-next
/// Creates new value from seconds.
#[inline]
pub fn from_seconds(val: Signed<u64>) -> Self {
skip_assert_initialized!();
match val {
Signed::Positive(val) => Signed::Positive(ClockTime::from_seconds(val)),
Signed::Negative(val) => Signed::Negative(ClockTime::from_seconds(val)),
}
}
// rustdoc-stripper-ignore-next
/// Builds a new `Signed<ClockTime>` which value is the given number of seconds.
///
/// Returns an error if seconds is infinite or NaN, or
/// the resulting duration in nanoseconds exceeds the `u64` range.
#[inline]
pub fn try_from_seconds_f32(seconds: f32) -> Result<Self, TryFromFloatSecsError> {
skip_assert_initialized!();
ClockTime::try_from_seconds_f32(seconds.abs()).map(|ct| {
if seconds.is_sign_positive() {
Signed::Positive(ct)
} else {
Signed::Negative(ct)
}
})
}
// rustdoc-stripper-ignore-next
/// Builds a new `Signed<ClockTime>` which value is the given number of seconds.
///
/// # Panics
///
/// Panics if seconds is infinite or NaN, or the resulting duration
/// in nanoseconds exceeds the `u64` range.
#[track_caller]
#[inline]
pub fn from_seconds_f32(seconds: f32) -> Self {
skip_assert_initialized!();
Self::try_from_seconds_f32(seconds).expect(TRY_FROM_FLOAT_SECS_ERROR_MSG)
}
// rustdoc-stripper-ignore-next
/// Builds a new `Signed<ClockTime>` which value is the given number of seconds.
///
/// Returns an error if seconds is infinite or NaN, or
/// the resulting duration in nanoseconds exceeds the `u64` range.
#[inline]
pub fn try_from_seconds_f64(seconds: f64) -> Result<Self, TryFromFloatSecsError> {
skip_assert_initialized!();
ClockTime::try_from_seconds_f64(seconds.abs()).map(|ct| {
if seconds.is_sign_positive() {
Signed::Positive(ct)
} else {
Signed::Negative(ct)
}
})
}
// rustdoc-stripper-ignore-next
/// Builds a new `Signed<ClockTime>` which value is the given number of seconds.
///
/// # Panics
///
/// Panics if seconds is infinite or NaN, or the resulting duration
/// in nanoseconds exceeds the `u64` range.
#[track_caller]
#[inline]
pub fn from_seconds_f64(seconds: f64) -> Self {
skip_assert_initialized!();
Self::try_from_seconds_f64(seconds).expect(TRY_FROM_FLOAT_SECS_ERROR_MSG)
}
}
impl_format_value_traits!(ClockTime, Time, Time, u64);
option_glib_newtype_from_to!(ClockTime, ffi::GST_CLOCK_TIME_NONE);
// FIXME `functions in traits cannot be const` (rustc 1.64.0)
// rustdoc-stripper-ignore-next
/// `ClockTime` formatted value constructor trait.
pub trait TimeFormatConstructor {
// rustdoc-stripper-ignore-next
/// Builds a `ClockTime` formatted value from `self` interpreted as nano seconds.
fn nseconds(self) -> ClockTime;
// rustdoc-stripper-ignore-next
/// Builds a `ClockTime` formatted value from `self` interpreted as micro seconds.
fn useconds(self) -> ClockTime;
// rustdoc-stripper-ignore-next
/// Builds a `ClockTime` formatted value from `self` interpreted as milli seconds.
fn mseconds(self) -> ClockTime;
// rustdoc-stripper-ignore-next
/// Builds a `ClockTime` formatted value from `self` interpreted as seconds.
fn seconds(self) -> ClockTime;
// rustdoc-stripper-ignore-next
/// Builds a `ClockTime` formatted value from `self` interpreted as minutes.
fn minutes(self) -> ClockTime;
// rustdoc-stripper-ignore-next
/// Builds a `ClockTime` formatted value from `self` interpreted as hours.
fn hours(self) -> ClockTime;
}
impl TimeFormatConstructor for u64 {
#[track_caller]
#[inline]
fn nseconds(self) -> ClockTime {
ClockTime::from_nseconds(self)
}
#[track_caller]
#[inline]
fn useconds(self) -> ClockTime {
ClockTime::from_useconds(self)
}
#[track_caller]
#[inline]
fn mseconds(self) -> ClockTime {
ClockTime::from_mseconds(self)
}
#[track_caller]
#[inline]
fn seconds(self) -> ClockTime {
ClockTime::from_seconds(self)
}
#[track_caller]
#[inline]
fn minutes(self) -> ClockTime {
ClockTime::from_seconds(self * 60)
}
#[track_caller]
#[inline]
fn hours(self) -> ClockTime {
ClockTime::from_seconds(self * 60 * 60)
}
}
impl glib::value::ValueType for ClockTime {
type Type = Self;
}
pub enum ClockTimeValueTypeOrNoneChecker {}
unsafe impl glib::value::ValueTypeChecker for ClockTimeValueTypeOrNoneChecker {
type Error = glib::value::ValueTypeMismatchOrNoneError<glib::value::ValueTypeMismatchError>;
#[inline]
fn check(value: &glib::Value) -> Result<(), Self::Error> {
skip_assert_initialized!();
glib::value::GenericValueTypeChecker::<ClockTime>::check(value)?;
let gct = unsafe { glib::gobject_ffi::g_value_get_uint64(value.to_glib_none().0) };
if gct == ffi::GST_CLOCK_TIME_NONE {
return Err(glib::value::ValueTypeMismatchOrNoneError::UnexpectedNone);
}
Ok(())
}
}
unsafe impl<'a> glib::value::FromValue<'a> for ClockTime {
type Checker = ClockTimeValueTypeOrNoneChecker;
#[inline]
unsafe fn from_value(value: &glib::Value) -> ClockTime {
skip_assert_initialized!();
ClockTime(glib::gobject_ffi::g_value_get_uint64(
value.to_glib_none().0,
))
}
}
impl glib::value::ToValue for ClockTime {
#[inline]
fn to_value(&self) -> glib::Value {
let mut value = glib::Value::for_value_type::<ClockTime>();
let gct = self.into_glib();
if gct == ffi::GST_CLOCK_TIME_NONE {
crate::warning!(
crate::CAT_RUST,
"converting a defined `ClockTime` with value `GST_CLOCK_TIME_NONE` to `Value`, this is probably not what you wanted.",
);
}
unsafe { glib::gobject_ffi::g_value_set_uint64(value.to_glib_none_mut().0, gct) }
value
}
#[inline]
fn value_type(&self) -> glib::Type {
Self::static_type()
}
}
impl glib::value::ToValueOptional for ClockTime {
#[inline]
fn to_value_optional(opt: Option<&Self>) -> glib::Value {
skip_assert_initialized!();
let mut value = glib::Value::for_value_type::<ClockTime>();
let inner = opt.map(|inner| inner.0).unwrap_or(ffi::GST_CLOCK_TIME_NONE);
unsafe { glib::gobject_ffi::g_value_set_uint64(value.to_glib_none_mut().0, inner) };
value
}
}
impl From<ClockTime> for glib::Value {
#[inline]
fn from(v: ClockTime) -> glib::Value {
glib::value::ToValue::to_value(&v)
}
}
#[doc(hidden)]
impl StaticType for ClockTime {
#[inline]
fn static_type() -> glib::Type {
<u64 as StaticType>::static_type()
}
}
impl HasParamSpec for ClockTime {
type ParamSpec = glib::ParamSpecUInt64;
type SetValue = Self;
type BuilderFn = fn(&str) -> glib::ParamSpecUInt64Builder;
fn param_spec_builder() -> Self::BuilderFn {
Self::ParamSpec::builder
}
}
#[derive(Debug)]
pub struct DurationError;
impl fmt::Display for DurationError {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "out of range conversion from Duration attempted")
}
}
impl std::error::Error for DurationError {}
impl TryFrom<Duration> for ClockTime {
type Error = DurationError;
#[inline]
fn try_from(d: Duration) -> Result<Self, Self::Error> {
skip_assert_initialized!();
let nanos = d.as_nanos();
// Note: `std::u64::MAX` is `ClockTime::NONE`.
if nanos >= std::u64::MAX as u128 {
return Err(DurationError);
}
Ok(ClockTime::from_nseconds(nanos as u64))
}
}
impl From<ClockTime> for Duration {
#[inline]
fn from(t: ClockTime) -> Self {
skip_assert_initialized!();
Duration::from_nanos(t.nseconds())
}
}
impl_common_ops_for_newtype_uint!(ClockTime, u64);
impl_signed_div_mul!(ClockTime, u64);
impl_signed_int_into_signed!(ClockTime, u64);
// rustdoc-stripper-ignore-next
/// Tell [`pad_clocktime`] what kind of time we're formatting
enum Sign {
// rustdoc-stripper-ignore-next
/// An undefined time (`None`)
Undefined,
// rustdoc-stripper-ignore-next
/// A non-negative time (zero or greater)
NonNegative,
// For a future ClockTimeDiff formatting
#[allow(dead_code)]
// rustdoc-stripper-ignore-next
/// A negative time (below zero)
Negative,
}
// Derived from libcore `Formatter::pad_integral` (same APACHE v2 + MIT licenses)
//
// TODO: Would be useful for formatting ClockTimeDiff
// if it was a new type instead of an alias for i64
//
// rustdoc-stripper-ignore-next
/// Performs the correct padding for a clock time which has already been
/// emitted into a str, as by [`write_clocktime`]. The str should *not*
/// contain the sign; that will be added by this method.
fn pad_clocktime(f: &mut fmt::Formatter<'_>, sign: Sign, buf: &str) -> fmt::Result {
skip_assert_initialized!();
use std::fmt::{Alignment, Write};
use self::Sign::*;
// Start by determining how we're padding, gathering
// settings from the Formatter and the Sign
// Choose the fill character
let sign_aware_zero_pad = f.sign_aware_zero_pad();
let fill_char = match sign {
Undefined if sign_aware_zero_pad => '-', // Zero-padding an undefined time
_ if sign_aware_zero_pad => '0', // Zero-padding a valid time
_ => f.fill(), // Otherwise, pad with the user-chosen character
};
// Choose the sign character
let sign_plus = f.sign_plus();
let sign_char = match sign {
Undefined if sign_plus => Some(fill_char), // User requested sign, time is undefined
NonNegative if sign_plus => Some('+'), // User requested sign, time is zero or above
Negative => Some('-'), // Time is below zero
_ => None, // Otherwise, add no sign
};
// Our minimum width is the value's width, plus 1 for the sign if present
let width = buf.len() + sign_char.map_or(0, |_| 1);
// Subtract the minimum width from the requested width to get the padding,
// taking care not to allow wrapping due to underflow
let padding = f.width().unwrap_or(0).saturating_sub(width);
// Split the required padding into the three possible parts
let align = f.align().unwrap_or(Alignment::Right);
let (pre_padding, zero_padding, post_padding) = match align {
_ if sign_aware_zero_pad => (0, padding, 0), // Zero-padding: Pad between sign and value
Alignment::Left => (0, 0, padding), // Align left: Pad on the right side
Alignment::Right => (padding, 0, 0), // Align right: Pad on the left side
// Align center: Split equally between left and right side
// If the required padding is odd, the right side gets one more char
Alignment::Center => (padding / 2, 0, (padding + 1) / 2),
};
// And now for the actual writing
for _ in 0..pre_padding {
f.write_char(fill_char)?; // Left padding
}
if let Some(c) = sign_char {
f.write_char(c)?; // ------- Sign character
}
for _ in 0..zero_padding {
f.write_char(fill_char)?; // Padding between sign and value
}
f.write_str(buf)?; // ---------- Value
for _ in 0..post_padding {
f.write_char(fill_char)?; // Right padding
}
Ok(())
}
// rustdoc-stripper-ignore-next
/// Writes an unpadded, signless clocktime string with the given precision
fn write_clocktime<W: io::Write>(
mut writer: W,
clocktime: Option<ClockTime>,
precision: usize,
) -> io::Result<()> {
skip_assert_initialized!();
let precision = std::cmp::min(9, precision);
if let Some(ns) = clocktime.map(ClockTime::nseconds) {
// Split the time into parts
let (s, ns) = num_integer::div_rem(ns, 1_000_000_000);
let (m, s) = num_integer::div_rem(s, 60);
let (h, m) = num_integer::div_rem(m, 60);
// Write HH:MM:SS
write!(writer, "{h}:{m:02}:{s:02}")?;
if precision > 0 {
// Format the nanoseconds into a stack-allocated string
// The value is zero-padded so always 9 digits long
let mut buf = [0u8; 9];
write!(&mut buf[..], "{ns:09}").unwrap();
let buf_str = std::str::from_utf8(&buf[..]).unwrap();
// Write decimal point and a prefix of the nanoseconds for more precision
write!(writer, ".{buf_str:.precision$}")?;
}
} else {
// Undefined time
// Write HH:MM:SS, but invalid
write!(writer, "--:--:--")?;
if precision > 0 {
// Write decimal point and dashes for more precision
write!(writer, ".{:->p$}", "", p = precision)?;
}
}
Ok(())
}
fn fmt_opt_clock_time(ct: Option<ClockTime>, f: &mut fmt::Formatter) -> fmt::Result {
skip_assert_initialized!();
let precision = f.precision().unwrap_or(9);
// What the maximum time (u64::MAX - 1) would format to
const MAX_SIZE: usize = "5124095:34:33.709551614".len();
// Write the unpadded clocktime value into a stack-allocated string
let mut buf = [0u8; MAX_SIZE];
let mut cursor = io::Cursor::new(&mut buf[..]);
write_clocktime(&mut cursor, ct, precision).unwrap();
let pos = cursor.position() as usize;
let buf_str = std::str::from_utf8(&buf[..pos]).unwrap();
let sign = if ct.is_some() {
Sign::NonNegative
} else {
Sign::Undefined
};
pad_clocktime(f, sign, buf_str)
}
impl fmt::Display for ClockTime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt_opt_clock_time(Some(*self), f)
}
}
impl fmt::Debug for ClockTime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
pub struct DisplayableOptClockTime(Option<ClockTime>);
impl fmt::Display for DisplayableOptClockTime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt_opt_clock_time(self.0, f)
}
}
impl fmt::Debug for DisplayableOptClockTime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl crate::utils::Displayable for Option<ClockTime> {
type DisplayImpl = DisplayableOptClockTime;
fn display(self) -> DisplayableOptClockTime {
DisplayableOptClockTime(self)
}
}
impl crate::utils::Displayable for ClockTime {
type DisplayImpl = ClockTime;
fn display(self) -> ClockTime {
self
}
}
impl std::iter::Sum for ClockTime {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
skip_assert_initialized!();
iter.fold(ClockTime::ZERO, |a, b| a + b)
}
}
#[cfg(test)]
mod tests {
use opt_ops::prelude::*;
use super::*;
use crate::format::{Signed, UnsignedIntoSigned};
const CT_1: ClockTime = ClockTime::from_nseconds(1);
const CT_2: ClockTime = ClockTime::from_nseconds(2);
const CT_3: ClockTime = ClockTime::from_nseconds(3);
const CT_10: ClockTime = ClockTime::from_nseconds(10);
const CT_20: ClockTime = ClockTime::from_nseconds(20);
const CT_30: ClockTime = ClockTime::from_nseconds(30);
const P_CT_0: Signed<ClockTime> = Signed::Positive(ClockTime::ZERO);
const P_CT_NONE: Option<Signed<ClockTime>> = None;
const P_CT_1: Signed<ClockTime> = Signed::Positive(ClockTime::from_nseconds(1));
const P_CT_2: Signed<ClockTime> = Signed::Positive(ClockTime::from_nseconds(2));
const P_CT_3: Signed<ClockTime> = Signed::Positive(ClockTime::from_nseconds(3));
const N_CT_1: Signed<ClockTime> = Signed::Negative(ClockTime::from_nseconds(1));
const N_CT_2: Signed<ClockTime> = Signed::Negative(ClockTime::from_nseconds(2));
const N_CT_3: Signed<ClockTime> = Signed::Negative(ClockTime::from_nseconds(3));
#[test]
fn opt_time_clock() {
assert_eq!(CT_1.into_glib(), 1);
assert_eq!(Some(CT_1).into_glib(), 1);
assert_eq!(ClockTime::NONE.into_glib(), ffi::GST_CLOCK_TIME_NONE);
let ct_1_from: ClockTime = unsafe { try_from_glib(1u64) }.unwrap();
assert_eq!(ct_1_from, CT_1);
let opt_ct_some: Option<ClockTime> = unsafe { from_glib(1u64) };
assert_eq!(opt_ct_some, Some(CT_1));
let ct_none: Option<ClockTime> = unsafe { from_glib(ffi::GST_CLOCK_TIME_NONE) };
assert_eq!(ct_none, None);
}
#[test]
#[allow(clippy::eq_op, clippy::op_ref)]
fn ops() {
assert_eq!(CT_10 + CT_20, CT_30);
assert_eq!(CT_30 - CT_20, CT_10);
assert_eq!(CT_30 - CT_30, ClockTime::ZERO);
assert_eq!(CT_10 * 3, CT_30);
assert_eq!(3 * CT_10, CT_30);
assert_eq!(CT_20 / 2, CT_10);
assert_eq!(CT_20 / CT_2, 10);
assert_eq!(CT_30.nseconds(), 30);
assert_eq!(P_CT_1 + P_CT_2, P_CT_3);
assert_eq!(P_CT_3 + N_CT_2, P_CT_1);
assert_eq!(P_CT_2 + N_CT_3, N_CT_1);
assert_eq!(N_CT_3 + P_CT_1, N_CT_2);
assert_eq!(N_CT_2 + P_CT_3, P_CT_1);
assert_eq!(N_CT_2 + N_CT_1, N_CT_3);
assert_eq!(CT_1 + P_CT_2, P_CT_3);
assert_eq!(P_CT_1 + CT_2, P_CT_3);
assert_eq!(CT_3 + N_CT_1, P_CT_2);
assert_eq!(N_CT_1 + CT_2, P_CT_1);
assert_eq!(P_CT_3 - P_CT_2, P_CT_1);
assert_eq!(P_CT_2 - P_CT_3, N_CT_1);
assert_eq!(P_CT_2 - N_CT_1, P_CT_3);
assert_eq!(N_CT_2 - P_CT_1, N_CT_3);
assert_eq!(N_CT_3 - N_CT_1, N_CT_2);
assert_eq!(CT_3 - P_CT_2, P_CT_1);
assert_eq!(P_CT_3 - CT_2, P_CT_1);
assert_eq!(N_CT_2 - CT_1, N_CT_3);
assert_eq!(CT_2 - N_CT_1, P_CT_3);
assert_eq!(P_CT_1 * 2i64, P_CT_2);
assert_eq!(P_CT_1 * -2i64, N_CT_2);
assert_eq!(N_CT_1 * 2i64, N_CT_2);
assert_eq!(N_CT_1 * -2i64, P_CT_2);
assert_eq!(2i64 * P_CT_1, P_CT_2);
assert_eq!(-2i64 * P_CT_1, N_CT_2);
assert_eq!(P_CT_1 * 2u64, P_CT_2);
assert_eq!(N_CT_1 * 2u64, N_CT_2);
assert_eq!(P_CT_2 / 2i64, P_CT_1);
assert_eq!(P_CT_2 / -2i64, N_CT_1);
assert_eq!(N_CT_2 / 2i64, N_CT_1);
assert_eq!(N_CT_2 / -2i64, P_CT_1);
assert_eq!(P_CT_2 / N_CT_2, Signed::Negative(1));
assert_eq!(P_CT_2 / 2u64, P_CT_1);
assert_eq!(N_CT_2 / 2u64, N_CT_1);
assert_eq!(P_CT_3 % 2i64, P_CT_1);
assert_eq!(P_CT_3 % -2i64, P_CT_1);
assert_eq!(N_CT_3 % 2i64, N_CT_1);
assert_eq!(N_CT_3 % -2i64, N_CT_1);
assert_eq!(N_CT_3 % N_CT_2, N_CT_1);
assert_eq!(P_CT_3 % 2u64, P_CT_1);
assert_eq!(N_CT_3 % 2u64, N_CT_1);
}
#[test]
fn checked_ops() {
assert_eq!(CT_1.checked_add(CT_1), Some(CT_2));
assert_eq!(P_CT_1.checked_add(P_CT_2), Some(P_CT_3));
assert_eq!(P_CT_3.checked_add(N_CT_2), Some(P_CT_1));
assert_eq!(P_CT_2.checked_add(N_CT_3), Some(N_CT_1));
assert_eq!(N_CT_3.checked_add(P_CT_1), Some(N_CT_2));
assert_eq!(N_CT_2.checked_add(P_CT_3), Some(P_CT_1));
assert_eq!(N_CT_2.checked_add(N_CT_1), Some(N_CT_3));
assert_eq!(CT_1.opt_checked_add(CT_1), Ok(Some(CT_2)));
assert_eq!(CT_1.opt_checked_add(Some(CT_1)), Ok(Some(CT_2)));
assert_eq!(Some(CT_1).opt_checked_add(Some(CT_1)), Ok(Some(CT_2)));
assert_eq!(CT_1.opt_checked_add(ClockTime::NONE), Ok(None));
assert_eq!(Some(CT_1).opt_checked_add(ClockTime::NONE), Ok(None));
assert_eq!(CT_1.opt_checked_add(P_CT_1), Ok(Some(P_CT_2)));
assert_eq!(N_CT_3.opt_checked_add(CT_1), Ok(Some(N_CT_2)));
assert!(ClockTime::MAX.checked_add(CT_1).is_none());
assert_eq!(
ClockTime::MAX.opt_checked_add(Some(CT_1)),
Err(opt_ops::Error::Overflow)
);
assert_eq!(P_CT_1.opt_checked_add(P_CT_1), Ok(Some(P_CT_2)));
assert_eq!(P_CT_1.opt_checked_add(Some(N_CT_2)), Ok(Some(N_CT_1)));
assert_eq!(Some(P_CT_1).opt_checked_add(Some(P_CT_1)), Ok(Some(P_CT_2)));
assert_eq!(P_CT_1.opt_checked_add(ClockTime::NONE), Ok(None));
assert_eq!(Some(N_CT_1).opt_checked_add(ClockTime::NONE), Ok(None));
assert_eq!(
ClockTime::MAX.into_positive().opt_checked_add(Some(P_CT_1)),
Err(opt_ops::Error::Overflow)
);
assert_eq!(CT_2.checked_sub(CT_1), Some(CT_1));
assert_eq!(P_CT_3.checked_sub(P_CT_2), Some(P_CT_1));
assert_eq!(P_CT_2.checked_sub(P_CT_3), Some(N_CT_1));
assert_eq!(P_CT_2.checked_sub(N_CT_1), Some(P_CT_3));
assert_eq!(N_CT_2.checked_sub(P_CT_1), Some(N_CT_3));
assert_eq!(N_CT_3.checked_sub(N_CT_1), Some(N_CT_2));
assert_eq!(N_CT_2.checked_sub(N_CT_3), Some(P_CT_1));
assert_eq!(CT_2.opt_checked_sub(CT_1), Ok(Some(CT_1)));
assert_eq!(CT_2.opt_checked_sub(Some(CT_1)), Ok(Some(CT_1)));
assert_eq!(Some(CT_2).opt_checked_sub(CT_1), Ok(Some(CT_1)));
assert_eq!(Some(CT_2).opt_checked_sub(Some(CT_1)), Ok(Some(CT_1)));
assert_eq!(CT_2.opt_checked_sub(ClockTime::NONE), Ok(None));
assert_eq!(Some(CT_2).opt_checked_sub(ClockTime::NONE), Ok(None));
assert_eq!(P_CT_2.opt_checked_sub(CT_1), Ok(Some(P_CT_1)));
assert_eq!(N_CT_2.opt_checked_sub(CT_1), Ok(Some(N_CT_3)));
assert!(CT_1.checked_sub(CT_2).is_none());
assert_eq!(
Some(CT_1).opt_checked_sub(CT_2),
Err(opt_ops::Error::Overflow)
);
assert_eq!(P_CT_2.opt_checked_sub(Some(N_CT_1)), Ok(Some(P_CT_3)));
assert_eq!(Some(N_CT_2).opt_checked_sub(P_CT_1), Ok(Some(N_CT_3)));
assert_eq!(CT_1.checked_mul(2), Some(CT_2));
assert_eq!(Some(CT_1).opt_checked_mul(2), Ok(Some(CT_2)));
assert_eq!(1u64.opt_checked_mul(Some(CT_2)), Ok(Some(CT_2)));
assert_eq!(P_CT_1.checked_mul(2), Some(P_CT_2));
assert_eq!(P_CT_1.checked_mul(-2), Some(N_CT_2));
assert_eq!(N_CT_1.checked_mul(2), Some(N_CT_2));
assert_eq!(N_CT_1.checked_mul(-2), Some(P_CT_2));
assert_eq!(Some(P_CT_1).opt_checked_mul(-2i64), Ok(Some(N_CT_2)));
assert_eq!(N_CT_1.opt_checked_mul(2u64), Ok(Some(N_CT_2)));
assert_eq!((-2i64).opt_checked_mul(Some(P_CT_1)), Ok(Some(N_CT_2)));
assert_eq!(P_CT_1.checked_mul_unsigned(2u64), Some(P_CT_2));
assert_eq!(N_CT_1.checked_mul_unsigned(2u64), Some(N_CT_2));
assert_eq!(CT_3.checked_div(3), Some(CT_1));
assert_eq!(P_CT_3.checked_div(3), Some(P_CT_1));
assert_eq!(P_CT_3.checked_div(-3), Some(N_CT_1));
assert_eq!(N_CT_3.checked_div(3), Some(N_CT_1));
assert_eq!(N_CT_3.checked_div(-3), Some(P_CT_1));
assert_eq!(Some(CT_3).opt_checked_div(CT_3), Ok(Some(1)));
assert_eq!(Some(P_CT_3).opt_checked_div(-3i64), Ok(Some(N_CT_1)));
assert_eq!(N_CT_3.opt_checked_div(3u64), Ok(Some(N_CT_1)));
assert_eq!(P_CT_3.checked_div_unsigned(3u64), Some(P_CT_1));
assert_eq!(N_CT_3.checked_div_unsigned(3u64), Some(N_CT_1));
}
#[test]
fn overflowing_ops() {
assert_eq!(CT_1.overflowing_add(CT_2), (CT_3, false));
assert_eq!(CT_1.opt_overflowing_add(Some(CT_2)), Some((CT_3, false)));
assert_eq!(Some(CT_1).opt_overflowing_add(CT_2), Some((CT_3, false)));
assert_eq!(
Some(CT_1).opt_overflowing_add(Some(CT_2)),
Some((CT_3, false))
);
assert_eq!(ClockTime::NONE.opt_overflowing_add(CT_2), None);
assert_eq!(CT_1.opt_overflowing_add(ClockTime::NONE), None);
assert_eq!(
ClockTime::MAX.overflowing_add(CT_1),
(ClockTime::ZERO, true)
);
assert_eq!(
Some(ClockTime::MAX).opt_overflowing_add(Some(CT_1)),
Some((ClockTime::ZERO, true)),
);
assert_eq!(CT_3.overflowing_sub(CT_2), (CT_1, false));
assert_eq!(CT_3.opt_overflowing_sub(Some(CT_2)), Some((CT_1, false)));
assert_eq!(Some(CT_3).opt_overflowing_sub(CT_2), Some((CT_1, false)));
assert_eq!(
Some(CT_3).opt_overflowing_sub(Some(CT_2)),
Some((CT_1, false))
);
assert_eq!(
Some(CT_3).opt_overflowing_sub(&Some(CT_2)),
Some((CT_1, false))
);
assert_eq!(ClockTime::NONE.opt_overflowing_sub(CT_2), None);
assert_eq!(CT_2.opt_overflowing_sub(ClockTime::NONE), None);
assert_eq!(CT_1.overflowing_sub(CT_2), (ClockTime::MAX, true));
assert_eq!(
Some(CT_1).opt_overflowing_sub(CT_2),
Some((ClockTime::MAX, true))
);
}
#[test]
fn saturating_ops() {
let p_ct_max: Signed<ClockTime> = ClockTime::MAX.into_positive();
let n_ct_max: Signed<ClockTime> = ClockTime::MAX.into_negative();
assert_eq!(CT_1.saturating_add(CT_2), CT_3);
assert_eq!(P_CT_1.saturating_add(P_CT_2), P_CT_3);
assert_eq!(P_CT_2.saturating_add(N_CT_3), N_CT_1);
assert_eq!(P_CT_3.saturating_add(N_CT_2), P_CT_1);
assert_eq!(N_CT_3.saturating_add(P_CT_1), N_CT_2);
assert_eq!(N_CT_2.saturating_add(P_CT_3), P_CT_1);
assert_eq!(N_CT_2.saturating_add(N_CT_1), N_CT_3);
assert_eq!(CT_1.opt_saturating_add(Some(CT_2)), Some(CT_3));
assert_eq!(Some(CT_1).opt_saturating_add(Some(CT_2)), Some(CT_3));
assert_eq!(Some(CT_1).opt_saturating_add(ClockTime::NONE), None);
assert_eq!(P_CT_1.opt_saturating_add(Some(CT_2)), Some(P_CT_3));
assert_eq!(Some(CT_1).opt_saturating_add(P_CT_2), Some(P_CT_3));
assert_eq!(ClockTime::MAX.saturating_add(CT_1), ClockTime::MAX);
assert_eq!(
Some(ClockTime::MAX).opt_saturating_add(Some(CT_1)),
Some(ClockTime::MAX)
);
assert_eq!(p_ct_max.saturating_add(P_CT_1), p_ct_max);
assert_eq!(CT_3.saturating_sub(CT_2), CT_1);
assert_eq!(P_CT_3.saturating_sub(P_CT_2), P_CT_1);
assert_eq!(P_CT_2.saturating_sub(P_CT_3), N_CT_1);
assert_eq!(P_CT_2.saturating_sub(N_CT_1), P_CT_3);
assert_eq!(N_CT_2.saturating_sub(P_CT_1), N_CT_3);
assert_eq!(N_CT_3.saturating_sub(N_CT_1), N_CT_2);
assert_eq!(N_CT_2.saturating_sub(N_CT_3), P_CT_1);
assert_eq!(CT_3.opt_saturating_sub(Some(CT_2)), Some(CT_1));
assert_eq!(Some(CT_3).opt_saturating_sub(Some(CT_2)), Some(CT_1));
assert_eq!(Some(CT_3).opt_saturating_sub(ClockTime::NONE), None);
assert_eq!(P_CT_2.opt_saturating_sub(Some(CT_3)), Some(N_CT_1));
assert_eq!(Some(CT_3).opt_saturating_sub(P_CT_2), Some(P_CT_1));
assert!(CT_1.saturating_sub(CT_2).is_zero());
assert_eq!(P_CT_1.saturating_sub(P_CT_2), N_CT_1);
assert_eq!(
Some(CT_1).opt_saturating_sub(Some(CT_2)),
Some(ClockTime::ZERO)
);
assert_eq!(CT_1.saturating_mul(2), CT_2);
assert_eq!(ClockTime::MAX.saturating_mul(2), ClockTime::MAX);
assert_eq!(P_CT_1.saturating_mul(2), P_CT_2);
assert_eq!(P_CT_1.saturating_mul(-2), N_CT_2);
assert_eq!(N_CT_1.saturating_mul(2), N_CT_2);
assert_eq!(N_CT_1.saturating_mul(-2), P_CT_2);
assert_eq!(Some(N_CT_1).opt_saturating_mul(-2i64), Some(P_CT_2));
assert_eq!((-2i64).opt_saturating_mul(Some(N_CT_1)), Some(P_CT_2));
assert_eq!(P_CT_1.saturating_mul_unsigned(2u64), P_CT_2);
assert_eq!(N_CT_1.saturating_mul_unsigned(2u64), N_CT_2);
assert_eq!(p_ct_max.saturating_mul(2), p_ct_max);
assert_eq!(n_ct_max.saturating_mul(2), n_ct_max);
assert_eq!(Some(2i64).opt_saturating_mul(p_ct_max), Some(p_ct_max));
assert_eq!(2u64.opt_saturating_mul(Some(n_ct_max)), Some(n_ct_max));
assert_eq!(p_ct_max.saturating_mul_unsigned(2u64), p_ct_max);
assert_eq!(n_ct_max.saturating_mul_unsigned(2u64), n_ct_max);
}
#[test]
fn wrapping_ops() {
assert_eq!(CT_1.wrapping_add(CT_2), CT_3);
assert_eq!(CT_1.opt_wrapping_add(CT_2), Some(CT_3));
assert_eq!(Some(CT_1).opt_wrapping_add(CT_2), Some(CT_3));
assert_eq!(Some(CT_1).opt_wrapping_add(Some(CT_2)), Some(CT_3));
assert_eq!(Some(CT_1).opt_wrapping_add(None), None);
assert_eq!(ClockTime::MAX.wrapping_add(CT_1), ClockTime::ZERO);
assert_eq!(
Some(ClockTime::MAX).opt_wrapping_add(Some(CT_1)),
Some(ClockTime::ZERO)
);
assert_eq!(CT_3.wrapping_sub(CT_2), CT_1);
assert_eq!(CT_3.opt_wrapping_sub(CT_2), Some(CT_1));
assert_eq!(Some(CT_3).opt_wrapping_sub(CT_2), Some(CT_1));
assert_eq!(Some(CT_3).opt_wrapping_sub(Some(CT_2)), Some(CT_1));
assert_eq!(Some(CT_3).opt_wrapping_sub(ClockTime::NONE), None);
assert_eq!(CT_1.wrapping_sub(CT_2), ClockTime::MAX);
assert_eq!(
Some(CT_1).opt_wrapping_sub(Some(CT_2)),
Some(ClockTime::MAX)
);
}
#[test]
fn mul_div_ops() {
use muldiv::MulDiv;
assert_eq!(CT_1.mul_div_floor(7, 3), Some(CT_2));
assert_eq!(P_CT_1.mul_div_floor(7u64, 3), Some(P_CT_2));
assert_eq!(P_CT_1.mul_div_floor(-7i64, 3), Some(N_CT_2));
assert_eq!(P_CT_1.mul_div_floor(7i64, -3), Some(N_CT_2));
assert_eq!(P_CT_1.mul_div_floor(-7i64, -3), Some(P_CT_2));
assert_eq!(N_CT_1.mul_div_floor(7u64, 3), Some(N_CT_2));
assert_eq!(N_CT_1.mul_div_floor(-7i64, 3), Some(P_CT_2));
assert_eq!(N_CT_1.mul_div_floor(7i64, -3), Some(P_CT_2));
assert_eq!(N_CT_1.mul_div_floor(-7i64, -3), Some(N_CT_2));
assert_eq!(CT_1.mul_div_round(10, 3), Some(CT_3));
assert_eq!(CT_1.mul_div_round(8, 3), Some(CT_3));
assert_eq!(P_CT_1.mul_div_round(10u64, 3), Some(P_CT_3));
assert_eq!(P_CT_1.mul_div_round(8u64, 3), Some(P_CT_3));
assert_eq!(P_CT_1.mul_div_round(-10i64, 3), Some(N_CT_3));
assert_eq!(P_CT_1.mul_div_round(-8i64, 3), Some(N_CT_3));
assert_eq!(P_CT_1.mul_div_round(10i64, -3), Some(N_CT_3));
assert_eq!(P_CT_1.mul_div_round(-10i64, -3), Some(P_CT_3));
assert_eq!(N_CT_1.mul_div_round(10u64, 3), Some(N_CT_3));
assert_eq!(N_CT_1.mul_div_round(-10i64, 3), Some(P_CT_3));
assert_eq!(N_CT_1.mul_div_round(10i64, -3), Some(P_CT_3));
assert_eq!(N_CT_1.mul_div_round(-10i64, -3), Some(N_CT_3));
assert_eq!(CT_1.mul_div_ceil(7, 3), Some(CT_3));
assert_eq!(P_CT_1.mul_div_ceil(7u64, 3), Some(P_CT_3));
assert_eq!(P_CT_1.mul_div_ceil(-7i64, 3), Some(N_CT_3));
assert_eq!(P_CT_1.mul_div_ceil(7i64, -3), Some(N_CT_3));
assert_eq!(P_CT_1.mul_div_ceil(-7i64, -3), Some(P_CT_3));
assert_eq!(N_CT_1.mul_div_ceil(7u64, 3), Some(N_CT_3));
assert_eq!(N_CT_1.mul_div_ceil(-7i64, 3), Some(P_CT_3));
assert_eq!(N_CT_1.mul_div_ceil(7i64, -3), Some(P_CT_3));
assert_eq!(N_CT_1.mul_div_ceil(-7i64, -3), Some(N_CT_3));
}
#[test]
#[allow(clippy::nonminimal_bool)]
fn comp() {
assert!(ClockTime::ZERO < CT_2);
assert!(Some(ClockTime::ZERO) < Some(CT_2));
assert!(CT_2 < CT_3);
assert!(Some(CT_2) < Some(CT_3));
assert!(ClockTime::ZERO < CT_3);
assert!(Some(ClockTime::ZERO) < Some(CT_3));
assert_eq!(CT_2, CT_2);
assert_ne!(CT_3, CT_2);
assert!(ClockTime::ZERO.into_positive() < P_CT_1);
assert!(ClockTime::ZERO.into_positive() > N_CT_1);
assert!(P_CT_1 < P_CT_2);
assert!(P_CT_1 > N_CT_2);
assert!(N_CT_1 < P_CT_2);
assert!(N_CT_3 < N_CT_2);
assert!(P_CT_1 < CT_2);
assert!(CT_1 < P_CT_2);
assert!(N_CT_2 < CT_1);
assert!(CT_1 > N_CT_2);
assert_eq!(CT_2, P_CT_2);
assert_ne!(N_CT_3, CT_3);
assert_eq!(Some(CT_2).opt_lt(Some(CT_3)), Some(true));
assert_eq!(Some(CT_3).opt_lt(CT_2), Some(false));
assert_eq!(Some(CT_2).opt_le(Some(CT_3)), Some(true));
assert_eq!(Some(CT_3).opt_le(CT_3), Some(true));
assert_eq!(Some(P_CT_2).opt_lt(Some(P_CT_3)), Some(true));
assert_eq!(Some(P_CT_3).opt_lt(P_CT_2), Some(false));
assert_eq!(Some(P_CT_2).opt_le(Some(P_CT_3)), Some(true));
assert_eq!(Some(P_CT_3).opt_le(P_CT_3), Some(true));
assert_eq!(Some(P_CT_0).opt_lt(P_CT_NONE), None);
assert_eq!(P_CT_NONE.opt_lt(P_CT_0), None);
assert_eq!(Some(N_CT_3).opt_lt(Some(N_CT_2)), Some(true));
assert_eq!(Some(N_CT_2).opt_lt(N_CT_3), Some(false));
assert_eq!(Some(N_CT_3).opt_le(Some(N_CT_2)), Some(true));
assert_eq!(Some(N_CT_3).opt_le(N_CT_3), Some(true));
assert_eq!(Some(P_CT_2).opt_lt(N_CT_3), Some(false));
assert_eq!(Some(N_CT_3).opt_lt(Some(P_CT_2)), Some(true));
assert!(CT_3 > CT_2);
assert!(Some(CT_3) > Some(CT_2));
assert!(CT_2 > ClockTime::ZERO);
assert!(Some(CT_2) > Some(ClockTime::ZERO));
assert!(CT_3 > ClockTime::ZERO);
assert!(Some(CT_3) > Some(ClockTime::ZERO));
assert!(!(ClockTime::NONE > None));
// This doesn't work due to the `PartialOrd` impl on `Option<T>`
//assert_eq!(Some(ClockTime::ZERO) > ClockTime::ZERO, false);
assert!(!(Some(ClockTime::ZERO) < ClockTime::NONE));
assert_eq!(Some(CT_3).opt_gt(Some(CT_2)), Some(true));
assert_eq!(Some(CT_3).opt_ge(Some(CT_2)), Some(true));
assert_eq!(Some(CT_3).opt_ge(CT_3), Some(true));
assert_eq!(Some(P_CT_3).opt_gt(Some(P_CT_2)), Some(true));
assert_eq!(Some(P_CT_3).opt_ge(Some(P_CT_2)), Some(true));
assert_eq!(Some(P_CT_3).opt_ge(P_CT_3), Some(true));
assert_eq!(Some(P_CT_0).opt_gt(P_CT_NONE), None);
assert_eq!(P_CT_NONE.opt_gt(P_CT_0), None);
assert_eq!(Some(N_CT_3).opt_gt(Some(N_CT_2)), Some(false));
assert_eq!(Some(N_CT_3).opt_ge(Some(N_CT_2)), Some(false));
assert_eq!(Some(N_CT_3).opt_ge(N_CT_3), Some(true));
assert_eq!(Some(P_CT_2).opt_gt(N_CT_3), Some(true));
assert_eq!(Some(N_CT_3).opt_gt(Some(P_CT_2)), Some(false));
assert!(!(ClockTime::NONE < None));
assert!(!(ClockTime::NONE > None));
// This doesn't work due to the `PartialOrd` impl on `Option<T>`
//assert!(Some(ClockTime::ZERO) > ClockTime::NONE, false);
// Use opt_gt instead.
assert_eq!(Some(ClockTime::ZERO).opt_gt(ClockTime::NONE), None);
assert_eq!(ClockTime::ZERO.opt_gt(ClockTime::NONE), None);
assert_eq!(ClockTime::ZERO.opt_ge(ClockTime::NONE), None);
assert_eq!(ClockTime::NONE.opt_gt(Some(ClockTime::ZERO)), None);
assert_eq!(ClockTime::NONE.opt_gt(ClockTime::ZERO), None);
assert_eq!(ClockTime::NONE.opt_ge(ClockTime::ZERO), None);
assert!(!(Some(ClockTime::ZERO) < ClockTime::NONE));
assert_eq!(Some(ClockTime::ZERO).opt_lt(ClockTime::NONE), None);
assert_eq!(Some(ClockTime::ZERO).opt_le(ClockTime::NONE), None);
assert_eq!(CT_3.opt_min(CT_2), Some(CT_2));
assert_eq!(CT_3.opt_min(Some(CT_2)), Some(CT_2));
assert_eq!(Some(CT_3).opt_min(Some(CT_2)), Some(CT_2));
assert_eq!(ClockTime::NONE.opt_min(Some(CT_2)), None);
assert_eq!(Some(CT_3).opt_min(ClockTime::NONE), None);
assert_eq!(P_CT_3.opt_min(P_CT_2), Some(P_CT_2));
assert_eq!(P_CT_2.opt_min(P_CT_3), Some(P_CT_2));
assert_eq!(N_CT_3.opt_min(N_CT_2), Some(N_CT_3));
assert_eq!(N_CT_2.opt_min(N_CT_3), Some(N_CT_3));
assert_eq!(P_CT_2.opt_min(N_CT_3), Some(N_CT_3));
assert_eq!(CT_3.opt_max(CT_2), Some(CT_3));
assert_eq!(CT_3.opt_max(Some(CT_2)), Some(CT_3));
assert_eq!(Some(CT_3).opt_max(Some(CT_2)), Some(CT_3));
assert_eq!(ClockTime::NONE.opt_max(Some(CT_2)), None);
assert_eq!(Some(CT_3).opt_max(ClockTime::NONE), None);
assert_eq!(P_CT_3.opt_max(P_CT_2), Some(P_CT_3));
assert_eq!(P_CT_2.opt_max(P_CT_3), Some(P_CT_3));
assert_eq!(N_CT_3.opt_max(N_CT_2), Some(N_CT_2));
assert_eq!(N_CT_2.opt_max(N_CT_3), Some(N_CT_2));
assert_eq!(P_CT_2.opt_max(N_CT_3), Some(P_CT_2));
}
#[test]
fn display() {
let none = Option::<ClockTime>::None;
let some = Some(45_834_908_569_837 * ClockTime::NSECOND);
let lots = ClockTime::from_nseconds(std::u64::MAX - 1);
// Simple
assert_eq!(format!("{:.0}", DisplayableOptClockTime(none)), "--:--:--");
assert_eq!(
format!("{:.3}", DisplayableOptClockTime(none)),
"--:--:--.---"
);
assert_eq!(
format!("{}", DisplayableOptClockTime(none)),
"--:--:--.---------"
);
assert_eq!(format!("{:.0}", DisplayableOptClockTime(some)), "12:43:54");
assert_eq!(
format!("{:.3}", DisplayableOptClockTime(some)),
"12:43:54.908"
);
assert_eq!(
format!("{}", DisplayableOptClockTime(some)),
"12:43:54.908569837"
);
assert_eq!(format!("{lots:.0}"), "5124095:34:33");
assert_eq!(format!("{lots:.3}"), "5124095:34:33.709");
assert_eq!(format!("{lots}"), "5124095:34:33.709551614");
// Precision caps at 9
assert_eq!(
format!("{:.10}", DisplayableOptClockTime(none)),
"--:--:--.---------"
);
assert_eq!(
format!("{:.10}", DisplayableOptClockTime(some)),
"12:43:54.908569837"
);
assert_eq!(format!("{lots:.10}"), "5124095:34:33.709551614");
// Short width
assert_eq!(format!("{:4.0}", DisplayableOptClockTime(none)), "--:--:--");
assert_eq!(
format!("{:4.3}", DisplayableOptClockTime(none)),
"--:--:--.---"
);
assert_eq!(
format!("{:4}", DisplayableOptClockTime(none)),
"--:--:--.---------"
);
assert_eq!(format!("{:4.0}", DisplayableOptClockTime(some)), "12:43:54");
assert_eq!(
format!("{:4.3}", DisplayableOptClockTime(some)),
"12:43:54.908"
);
assert_eq!(
format!("{:4}", DisplayableOptClockTime(some)),
"12:43:54.908569837"
);
assert_eq!(format!("{lots:4.0}"), "5124095:34:33");
assert_eq!(format!("{lots:4.3}"), "5124095:34:33.709");
assert_eq!(format!("{lots:4}"), "5124095:34:33.709551614");
// Simple padding
assert_eq!(
format!("{:>9.0}", DisplayableOptClockTime(none)),
" --:--:--"
);
assert_eq!(
format!("{:<9.0}", DisplayableOptClockTime(none)),
"--:--:-- "
);
assert_eq!(
format!("{:^10.0}", DisplayableOptClockTime(none)),
" --:--:-- "
);
assert_eq!(
format!("{:>13.3}", DisplayableOptClockTime(none)),
" --:--:--.---"
);
assert_eq!(
format!("{:<13.3}", DisplayableOptClockTime(none)),
"--:--:--.--- "
);
assert_eq!(
format!("{:^14.3}", DisplayableOptClockTime(none)),
" --:--:--.--- "
);
assert_eq!(
format!("{:>19}", DisplayableOptClockTime(none)),
" --:--:--.---------"
);
assert_eq!(
format!("{:<19}", DisplayableOptClockTime(none)),
"--:--:--.--------- "
);
assert_eq!(
format!("{:^20}", DisplayableOptClockTime(none)),
" --:--:--.--------- "
);
assert_eq!(
format!("{:>9.0}", DisplayableOptClockTime(some)),
" 12:43:54"
);
assert_eq!(
format!("{:<9.0}", DisplayableOptClockTime(some)),
"12:43:54 "
);
assert_eq!(
format!("{:^10.0}", DisplayableOptClockTime(some)),
" 12:43:54 "
);
assert_eq!(
format!("{:>13.3}", DisplayableOptClockTime(some)),
" 12:43:54.908"
);
assert_eq!(
format!("{:<13.3}", DisplayableOptClockTime(some)),
"12:43:54.908 "
);
assert_eq!(
format!("{:^14.3}", DisplayableOptClockTime(some)),
" 12:43:54.908 "
);
assert_eq!(
format!("{:>19}", DisplayableOptClockTime(some)),
" 12:43:54.908569837"
);
assert_eq!(
format!("{:<19}", DisplayableOptClockTime(some)),
"12:43:54.908569837 "
);
assert_eq!(
format!("{:^20}", DisplayableOptClockTime(some)),
" 12:43:54.908569837 "
);
assert_eq!(format!("{lots:>14.0}"), " 5124095:34:33");
assert_eq!(format!("{lots:<14.0}"), "5124095:34:33 ");
assert_eq!(format!("{lots:^15.0}"), " 5124095:34:33 ");
assert_eq!(format!("{lots:>18.3}"), " 5124095:34:33.709");
assert_eq!(format!("{lots:<18.3}"), "5124095:34:33.709 ");
assert_eq!(format!("{lots:^19.3}"), " 5124095:34:33.709 ");
assert_eq!(format!("{lots:>24}"), " 5124095:34:33.709551614");
assert_eq!(format!("{lots:<24}"), "5124095:34:33.709551614 ");
assert_eq!(format!("{lots:^25}"), " 5124095:34:33.709551614 ");
// Padding with sign or zero-extension
assert_eq!(
format!("{:+11.0}", DisplayableOptClockTime(none)),
" --:--:--"
);
assert_eq!(
format!("{:011.0}", DisplayableOptClockTime(none)),
"-----:--:--"
);
assert_eq!(
format!("{:+011.0}", DisplayableOptClockTime(none)),
"-----:--:--"
);
assert_eq!(
format!("{:+15.3}", DisplayableOptClockTime(none)),
" --:--:--.---"
);
assert_eq!(
format!("{:015.3}", DisplayableOptClockTime(none)),
"-----:--:--.---"
);
assert_eq!(
format!("{:+015.3}", DisplayableOptClockTime(none)),
"-----:--:--.---"
);
assert_eq!(
format!("{:+21}", DisplayableOptClockTime(none)),
" --:--:--.---------"
);
assert_eq!(
format!("{:021}", DisplayableOptClockTime(none)),
"-----:--:--.---------"
);
assert_eq!(
format!("{:+021}", DisplayableOptClockTime(none)),
"-----:--:--.---------"
);
assert_eq!(
format!("{:+11.0}", DisplayableOptClockTime(some)),
" +12:43:54"
);
assert_eq!(
format!("{:011.0}", DisplayableOptClockTime(some)),
"00012:43:54"
);
assert_eq!(
format!("{:+011.0}", DisplayableOptClockTime(some)),
"+0012:43:54"
);
assert_eq!(
format!("{:+15.3}", DisplayableOptClockTime(some)),
" +12:43:54.908"
);
assert_eq!(
format!("{:015.3}", DisplayableOptClockTime(some)),
"00012:43:54.908"
);
assert_eq!(
format!("{:+015.3}", DisplayableOptClockTime(some)),
"+0012:43:54.908"
);
assert_eq!(
format!("{:+21}", DisplayableOptClockTime(some)),
" +12:43:54.908569837"
);
assert_eq!(
format!("{:021}", DisplayableOptClockTime(some)),
"00012:43:54.908569837"
);
assert_eq!(
format!("{:+021}", DisplayableOptClockTime(some)),
"+0012:43:54.908569837"
);
assert_eq!(format!("{lots:+16.0}"), " +5124095:34:33");
assert_eq!(format!("{lots:016.0}"), "0005124095:34:33");
assert_eq!(format!("{lots:+016.0}"), "+005124095:34:33");
assert_eq!(format!("{lots:+20.3}"), " +5124095:34:33.709");
assert_eq!(format!("{lots:020.3}"), "0005124095:34:33.709");
assert_eq!(format!("{lots:+020.3}"), "+005124095:34:33.709");
assert_eq!(format!("{lots:+26}"), " +5124095:34:33.709551614");
assert_eq!(format!("{lots:026}"), "0005124095:34:33.709551614");
assert_eq!(format!("{lots:+026}"), "+005124095:34:33.709551614");
}
#[test]
fn iter_sum() {
let s: ClockTime = vec![ClockTime::from_seconds(1), ClockTime::from_seconds(2)]
.into_iter()
.sum();
assert_eq!(s, ClockTime::from_seconds(3));
}
#[test]
#[should_panic]
fn attempt_to_build_from_clock_time_none() {
let _ = ClockTime::from_nseconds(ffi::GST_CLOCK_TIME_NONE);
}
#[test]
#[should_panic]
fn attempt_to_build_from_u64max() {
let _ = ClockTime::from_nseconds(u64::MAX);
}
#[test]
fn try_into_signed() {
let time = crate::Signed::Positive(ClockTime::from_nseconds(0));
assert_eq!(i64::try_from(time), Ok(0));
let time = crate::Signed::Positive(ClockTime::from_nseconds(123));
assert_eq!(i64::try_from(time), Ok(123));
let time = crate::Signed::Positive(ClockTime::from_nseconds(u64::MAX - 1));
assert!(i64::try_from(time).is_err());
let time = crate::Signed::Positive(ClockTime::from_nseconds(u64::MAX >> 1));
assert_eq!(i64::MAX as i128, (u64::MAX >> 1) as i128);
assert_eq!(i64::try_from(time), Ok(i64::MAX));
let time = crate::Signed::Negative(ClockTime::from_nseconds(0));
assert_eq!(i64::try_from(time), Ok(0));
let time = crate::Signed::Negative(ClockTime::from_nseconds(123));
assert_eq!(i64::try_from(time), Ok(-123));
let time = crate::Signed::Negative(ClockTime::from_nseconds(u64::MAX - 1));
assert!(i64::try_from(time).is_err());
let time = crate::Signed::Negative(ClockTime::from_nseconds(u64::MAX >> 1));
assert_eq!(i64::MIN as i128 + 1, -((u64::MAX >> 1) as i128));
assert_eq!(i64::try_from(time), Ok(i64::MIN + 1));
let time = crate::Signed::Negative(ClockTime::from_nseconds((u64::MAX >> 1) + 1));
assert_eq!(i64::MIN as i128, -(((u64::MAX >> 1) + 1) as i128));
assert_eq!(i64::try_from(time), Ok(i64::MIN));
}
#[test]
fn properties_macro_usage() {
use super::ClockTime;
use glib::{prelude::*, subclass::prelude::*};
use std::cell::Cell;
#[derive(Default, glib::Properties)]
#[properties(wrapper_type = TestObject)]
pub struct TestObjectImp {
#[property(get, set)]
clock_time: Cell<ClockTime>,
#[property(get, set)]
optional_clock_time: Cell<Option<ClockTime>>,
}
#[glib::object_subclass]
impl ObjectSubclass for TestObjectImp {
const NAME: &'static str = "GstTestObject";
type Type = TestObject;
}
impl ObjectImpl for TestObjectImp {
fn properties() -> &'static [glib::ParamSpec] {
Self::derived_properties()
}
fn set_property(&self, id: usize, value: &glib::Value, pspec: &glib::ParamSpec) {
self.derived_set_property(id, value, pspec);
}
fn property(&self, id: usize, pspec: &glib::ParamSpec) -> glib::Value {
self.derived_property(id, pspec)
}
}
glib::wrapper! {
pub struct TestObject(ObjectSubclass<TestObjectImp>);
}
let obj: TestObject = glib::Object::new();
assert_eq!(obj.clock_time(), ClockTime::default());
obj.set_clock_time(ClockTime::MAX);
assert_eq!(obj.clock_time(), ClockTime::MAX);
assert_eq!(obj.optional_clock_time(), None);
obj.set_optional_clock_time(ClockTime::MAX);
assert_eq!(obj.optional_clock_time(), Some(ClockTime::MAX));
}
#[test]
fn seconds_float() {
let res = ClockTime::ZERO;
assert_eq!(res.seconds_f32(), 0.0);
assert_eq!(res.seconds_f64(), 0.0);
let res = ClockTime::from_nseconds(2_700_000_000);
assert_eq!(res.seconds_f32(), 2.7);
assert_eq!(res.seconds_f64(), 2.7);
let res = ClockTime::MAX;
assert_eq!(res.seconds_f32(), 18_446_744_073.709_553);
assert_eq!(res.seconds_f64(), 18_446_744_073.709_553);
}
#[test]
fn seconds_float_signed() {
let pos = Signed::Positive(ClockTime::ZERO);
assert_eq!(pos.seconds_f32(), 0.0);
assert_eq!(pos.seconds_f64(), 0.0);
let neg = Signed::Negative(ClockTime::ZERO);
assert_eq!(neg.seconds_f32(), 0.0);
assert_eq!(neg.seconds_f64(), 0.0);
let pos = Signed::Positive(ClockTime::from_nseconds(2_700_000_000));
assert_eq!(pos.seconds_f32(), 2.7);
assert_eq!(pos.seconds_f64(), 2.7);
let neg = Signed::Negative(ClockTime::from_nseconds(2_700_000_000));
assert_eq!(neg.seconds_f32(), -2.7);
assert_eq!(neg.seconds_f64(), -2.7);
let pos = Signed::Positive(ClockTime::MAX);
assert_eq!(pos.seconds_f32(), 18_446_744_073.709_553);
assert_eq!(pos.seconds_f64(), 18_446_744_073.709_553);
let neg = Signed::Negative(ClockTime::MAX);
assert_eq!(neg.seconds_f32(), -18_446_744_073.709_553);
assert_eq!(neg.seconds_f64(), -18_446_744_073.709_553);
}
#[test]
fn try_from_seconds_f32() {
let res = ClockTime::try_from_seconds_f32(0.0);
assert_eq!(res, Ok(ClockTime::ZERO));
let res = ClockTime::try_from_seconds_f32(1e-20);
assert_eq!(res, Ok(ClockTime::ZERO));
let res = ClockTime::try_from_seconds_f32(4.2e-7);
assert_eq!(res, Ok(ClockTime::from_nseconds(420)));
let res = ClockTime::try_from_seconds_f32(2.7);
assert_eq!(res, Ok(ClockTime::from_nseconds(2_700_000_048)));
// subnormal float:
let res = ClockTime::try_from_seconds_f32(f32::from_bits(1));
assert_eq!(res, Ok(ClockTime::ZERO));
// the conversion uses rounding with tie resolution to even
let res = ClockTime::try_from_seconds_f32(0.999e-9);
assert_eq!(res, Ok(ClockTime::from_nseconds(1)));
let res = ClockTime::try_from_seconds_f32(-5.0);
assert!(res.is_err());
let res = ClockTime::try_from_seconds_f32(f32::NAN);
assert!(res.is_err());
let res = ClockTime::try_from_seconds_f32(2e19);
assert!(res.is_err());
// this float represents exactly 976562.5e-9
let val = f32::from_bits(0x3A80_0000);
let res = ClockTime::try_from_seconds_f32(val);
assert_eq!(res, Ok(ClockTime::from_nseconds(976_562)));
// this float represents exactly 2929687.5e-9
let val = f32::from_bits(0x3B40_0000);
let res = ClockTime::try_from_seconds_f32(val);
assert_eq!(res, Ok(ClockTime::from_nseconds(2_929_688)));
// this float represents exactly 1.000_976_562_5
let val = f32::from_bits(0x3F802000);
let res = ClockTime::try_from_seconds_f32(val);
assert_eq!(res, Ok(ClockTime::from_nseconds(1_000_976_562)));
// this float represents exactly 1.002_929_687_5
let val = f32::from_bits(0x3F806000);
let res = ClockTime::try_from_seconds_f32(val);
assert_eq!(res, Ok(ClockTime::from_nseconds(1_002_929_688)));
}
#[test]
fn try_from_seconds_f64() {
let res = ClockTime::try_from_seconds_f64(0.0);
assert_eq!(res, Ok(ClockTime::ZERO));
let res = ClockTime::try_from_seconds_f64(1e-20);
assert_eq!(res, Ok(ClockTime::ZERO));
let res = ClockTime::try_from_seconds_f64(4.2e-7);
assert_eq!(res, Ok(ClockTime::from_nseconds(420)));
let res = ClockTime::try_from_seconds_f64(2.7);
assert_eq!(res, Ok(ClockTime::from_nseconds(2_700_000_000)));
// subnormal float:
let res = ClockTime::try_from_seconds_f64(f64::from_bits(1));
assert_eq!(res, Ok(ClockTime::ZERO));
// the conversion uses rounding with tie resolution to even
let res = ClockTime::try_from_seconds_f64(0.999e-9);
assert_eq!(res, Ok(ClockTime::from_nseconds(1)));
let res = ClockTime::try_from_seconds_f64(0.999_999_999_499);
assert_eq!(res, Ok(ClockTime::from_nseconds(999_999_999)));
let res = ClockTime::try_from_seconds_f64(0.999_999_999_501);
assert_eq!(res, Ok(ClockTime::from_seconds(1)));
let res = ClockTime::try_from_seconds_f64(42.999_999_999_499);
assert_eq!(res, Ok(ClockTime::from_nseconds(42_999_999_999)));
let res = ClockTime::try_from_seconds_f64(42.999_999_999_501);
assert_eq!(res, Ok(ClockTime::from_seconds(43)));
let res = ClockTime::try_from_seconds_f64(-5.0);
assert!(res.is_err());
let res = ClockTime::try_from_seconds_f64(f64::NAN);
assert!(res.is_err());
let res = ClockTime::try_from_seconds_f64(2e19);
assert!(res.is_err());
// this float represents exactly 976562.5e-9
let val = f64::from_bits(0x3F50_0000_0000_0000);
let res = ClockTime::try_from_seconds_f64(val);
assert_eq!(res, Ok(ClockTime::from_nseconds(976_562)));
// this float represents exactly 2929687.5e-9
let val = f64::from_bits(0x3F68_0000_0000_0000);
let res = ClockTime::try_from_seconds_f64(val);
assert_eq!(res, Ok(ClockTime::from_nseconds(2_929_688)));
// this float represents exactly 1.000_976_562_5
let val = f64::from_bits(0x3FF0_0400_0000_0000);
let res = ClockTime::try_from_seconds_f64(val);
assert_eq!(res, Ok(ClockTime::from_nseconds(1_000_976_562)));
// this float represents exactly 1.002_929_687_5
let val = f64::from_bits(0x3FF0_0C00_0000_0000);
let res = ClockTime::try_from_seconds_f64(val);
assert_eq!(res, Ok(ClockTime::from_nseconds(1_002_929_688)));
}
#[test]
fn try_from_seconds_f32_signed() {
let pos = Signed::<ClockTime>::from_seconds_f32(5.0);
assert!(pos.is_positive());
let neg = Signed::<ClockTime>::from_seconds_f32(-5.0);
assert!(neg.is_negative());
}
#[test]
fn try_from_seconds_f64_signed() {
let pos = Signed::<ClockTime>::from_seconds_f64(5.0);
assert!(pos.is_positive());
let neg = Signed::<ClockTime>::from_seconds_f64(-5.0);
assert!(neg.is_negative());
}
#[test]
fn absdiff() {
let t1 = ClockTime::from_seconds(10);
let t2 = ClockTime::from_seconds(4);
let d = ClockTime::from_seconds(6);
assert_eq!(t1.absdiff(t2), d);
assert_eq!(t2.absdiff(t1), d);
}
}